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Let St(a) denote the subclass of functions f(z) analytic in the open
unit disk D which satisfy the conditions f(0)=0, f'(0)=1 and
Re(zf'(z)/f(z)) > a for z in D. In this note we investigate the compact,
convex family co S(St(a)) which is the closed convex hull of the set of all
functions analytic in D that are subordinate to some function in St(«),
a < 1/2. The principal result establishes that every support point of
coS(St(a)) arising from a “nontrivial” functional must also be an
extreme point, hence a function of the form f(z) = xz/(1 — yz)X1~9,
x| = |y] = 1.

To amplify on this synopsis, let &/ denote the set of functions
analytic in the open unit disk D= {z€ C | |z] <1}. Then &« is a
locally convex linear topological space under the topology of uniform
convergence on compact subsets of D. A function f in .« is said to be
subordinate to a function F in & (written f < F), if there is a function
¢ in B, such that f(z) = F(¢(z)), where B, = {p € & |p(0) =0,
{p(z)}<1lin D}.

Let % be a compact subset of 7. A function f in Z is a support
point of # if there is a continuous linear functional J on 7 such that

ReJ(f) = max{ReJ(g)lg € F )

and ReJ is non-constant on %. We use =% to denote the set of
support points of # and co# and £coF to denote, respectively, the
closed convex hull of % and the set of extreme points of the closed
convex hull of #.

Let S(St(a)) denote the set of functions in &/ that are subordinate to
some function in St(a). Then S(St(a)) is a compact subset of & [11, p.
365]. In [3] and [6] it was shown that

coSt(a) = {f a—————i—)z(l—_a) du(x): p is a probability measure

the unit circle}
and that

é”EGSt(a) = Z St(a) = {W |x| = 1}.
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The analogous questions for S(St(a)) have not been so readily answered
and only recently has a reasonably complete description been presented.
Hallenbeck [8] and Hallenbeck and MacGregor [9] obtained coS(St(a))
for «a <0 and a =1/2 in 1974. The missing link, 0 < a < 1/2, was
completed by Perera in his doctoral dissertation [12]. Thus we now have

THEOREM ( Hallenbeck, MacGregor, Perera). Let a < 1/2. Then

XZ

——————dp(x, y): p is a probability
(1—2p)*7

coS(St(a)) = { /

measure on the torus} ,

s 5(5t(w) = | i sl =Iyl = 1).
(1 _ yZ)Z(l o)

If 1/2<a<1 and p=2(1— ), then 0 <p <1 and the usual
arguments break down. One encounters difficulties analogous to those for
the families ¥, of functions with bounded boundary rotation, when
2 < k < 4, or the families C(B) of close-to-convex functions of order f3,

when0 < 8 < 1.

Also in [3] the following sharp inequalities were obtained (for & = 0
see [13]): If f isin S(St(a)) and f(z) = X%_,a,z", then, for

2-2a)(3-2a) - (n—2a) (n
(n—1)!

and, forl/2 <a<1,|a,|<1(n=12,...).

=1,2,...)

a<0, |ag,|<

_In [12] Perera also obtains, for a <1/2, the support points of
coS(St(a)) as a consequence of a somewhat more general result. In this
note we show that the first inequality above for the coefficients also
obtains in the range 0 < a < 1/2, and examine the support points of
S(St(a)) for & < 1/2. In [10] Hallenbeck and MacGregor discussed the
case a = 0 and we extend this by showing, for & < 1/2, that if f is a
support point of S(St(a)) corresponding to a continuous linear functional
J on ./ not of the form J(f) = af(0) + bf'(0) (f € «Z,a,b € C), then f
is an extreme point of co S(St(a)).
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1. Extreme points of the closed convex hull of S(St(«a)) (a < 1/2).

LEMMA 1.1. Let U denote the unit circle { z € C||z| = 1} and let p and
v be two probability measures on U. If p and q are two non-negative real
numbers with p + q > 1, then there exists a probability measure N on
U X U such that

gl g e0)

xz
= —————d\(x, y).
uxu (1 —yz)?™? (x.7)

Proof. 1t is well known that log(l — z) is univalent and convex. It
follows that, if f(z) <1/(1 — z)? and g(z) < 1/(1 — z)9, then

1
1) 8() < Ty

This fact together with a trivial modification of the Herglotz formula
yields

1 1 ! 1
1 - xz)” {fu 1 - y2) d"()’)} < a- Z)p+q’

Since p + q¢ > 1 a result of Brannan, Clunie and Kirwan ([2], p. 5) yields

1 1 ! 1
(1 - xz)” {/;/ 1 - yz) d”()")} = j;/ (1 - wz)?*4 da(w),

for some probability measure « on U. Hence we have

| g el [, 5 0]

_f Xz
uxu (1 —wz)?*?

da(w) dp(x).

Now it is easy to see that the right hand side of the above equation
belongs to the set

{ fUXU (1 — yz)?*? (. 7)

and the lemma follows.

A is a probability measure on U X U }
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THEOREM 1.2. Let U be the unit circle {z € C| |z| = 1} and a < 1/2.
Also let F consist of the functions

z) = fUXU H‘:‘fzz—)zﬁ,—,,)dk(x,ﬂ,

where X\ varies over the probability measures on U X U. Then coS(St(a)) =
F and

XZ

&Eco S(St(a)) = { (1= yz)0®

|x|=}y|=1}.

Proof. This theorem was known for « < 0 and a = 1/2 ([9], [8]). Our
aim here is to prove it for 0 < a < 1/2. The main tool is Lemma 1.1.
Suppose that f is in &coS(St(a)). Then a result in [11, p. 366] implies
that f < g for some g € &co St(a). & co St(a)) was found in [3, p- 417] to
be the set of all functions
z

——————  with |x| = 1.
(1- xz)m_a)

Hence we have

J) = p(2)
S Ta—pE

for some |c| = 1 and ¢ in B,. Write f(z) in the form
(1-2a)
[ ep(z) . 1 }
- =
First using trivial modifications of the Herglotz formula and then apply-

ing the Lemma 1.1 with p=1and g=1—-2a(g >0 if a« <1/2) we
obtain

fey=¢f —— o dh(x,y)

uxu (1 — yz)z(l'“)
for some probability measure A on U X U. Since
cxz
(1= yz)7®

and # is compact and convex, it is clear that f € %#. Hence & co S(St(a))
C % and coS(St(a)) € Z. On the other hand

# € S(St(a)),

e#, forall|c|=|x|=]|y| =1,
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which implies that #C coS(St(a)) and coS(St(a)) = %. Now Theorem
1.1 in [4] yields

Xz

&coS(St(a)) C { m

x| =1yl = 1}-
These sets are actually equal. For, if
Xo2 _ xz
)X B quu ( e A, ),

(1 = y,z 1 - yz)

then by now standard methods we obtain x, = [y, ,xdA(x, y) and
A({x9, ¥o}) = 1. Hence the theorem.

COROLLARY 1.3. Let f(z) € S(St(a)) and f(z) = X%_1a,z". If a <
1/2, then
(2-2a)3~-2a) - (n—2a)
(n—1)

la,| < (n=1,2,...)

and the inequality is sharp.

Proof. This follows immediately from Theorem 1.2 and the argument
given in [11, p. 366].

REMARKS. (1) Corollary 1.3 was known for a = 0, a result of W.
Rogosinski [13, p. 72] and for « < 0 and for a = 1/2 [8, p. 61]. Since the
sharp bounds for the Taylor coefficients were also known for1/2 < a < 1
[3, p- 423}, we have now completed the determination of sharp bounds for
the Taylor coefficients of the functions in S(St(a)).

(2) It was noted in [8] that Theorem 1.2 is not true for 1/2 < a < 1.
We note that if 1/2 < a <1 then coS(St(a)) has a large number of
extreme points. We claim thatif 1 /2 < a < 1, then

¥(2)/(1 = xg(2))
belongs to & coS(St(«)) where Y(z) is an inner function with Y(0) =0
and |x| = 1. For, if
¥(2)
(1= xy(2))"
where 0 < t < 1 and f,(z), f,(z) € &coS(St(a)), then
V4

(1- xz)z(l_a)

= tfl(z) +(1 = 1) f,(2),

e H?



202 A. A. S. PERERA AND D. R. WILKEN

for some g > 1 (since 1/2 < a < 1) and

z
e Dl | —S55
(1 _ Z) (1—a) .
The conclusion that f,(z) = f,(z) can be drawn exactly the same way as
in {9, p. 466]. Hence the claim.

2. Support points of a family related to S(St(«)). Let U be the unit
circle and

%= { fuxu H——y;)‘pdu(x’y)

p is a probability measure on U X U} (p>0).

In §1 we showed that, if a« <1/2, then &, ,_,, = coS(St(a)). In this
section we are interested in determining the support points of the compact
convex family &,. In §3 we use this result when we consider the problem
of support points of S(St(a)). We first need a theorem from the first
named author’s doctoral dissertation and a lemma. We reproduce the
proof of the theorem for completeness.

LemMA 2.1. (D. Cantor, R. R. Phelps [5).) Let a,, ..., a, be complex
numbers with |a,|=1(k=1,2,...,n) and by, ..., b, be distinct complex
numbers with |b,| =1 (k = 1,2,...,n). Then there exists a finite Blaschke
product B(z) such that B(b,) = a, (k=1,2,...,n).

THEOREM 2.2.

X9, = { fU (ﬂ*y-)i,;du(y)

B is a finite
1—yz) /

Blaschke product and v is a probability measure on U} .

Proof. First note that

XZ

M{HT

Xl =yl =1}
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We begin as in [7]. Suppose that f is a support point of &,. Then there is
a continuous linear functional J on & such that ReJ(f) =
max{ReJ(g)|g € ¢,} and ReJ is non constant on ¥,. If we let M =
max{ReJ(g)|g € §¥%,}, then the above equation becomes ReJ(f) = M,
and

1) = [ Ty ),

vxu (1 —yz
for some probability measure p on U X U. Hence we have

Xz
1 -yz)”
p ae on UXU, ie RexF(y)=M, p ae on UX U, where F(y) =
J{z/(1 — yz)?} is analytic in D. If Rexf(y) = M holds at (x,, y;) then
F(y,) # 0, for otherwise M = 0 and it follows that J is constant on ¥,.
Thus |f(y)|= M, p ae. on U X U, and x is uniquely determined by
xF(y) = F(y)l

ReJ{ }=M,

Case (i). |F(y)| = M holds only for finitely many values of y.
Then

” X,z
f(z)= X N5 where|x, | =1=]yl], \.>0,
k=1 (1= yz2)

(k=1,2,...,n)
and X3_ A, =1
Case (11). |F(y)| = M holds for infinitely many values of y.
Then, as in [10, p. 539], F(y) = MB(y) for some finite Blaschke

product B(z), x is determined by xB(y) = 1 and the support of p is the
set T = {(x,y) € UX U|xB(y)=1}. Then

B(y)z
= | —=——du(x, ).
f(2) fT 0= y2) p(x, »)
Now for any Borel set A of U define v(A) = pu(C) where C(C T) is the
image of A under the homeomorphism y — (B(y), y) of U onto T.
Clearly » is a probability measure and f(z) takes the form

12)= [ 22 ).

The form for f(z), obtained in case (i), can also be written in the
above form. For we can use Lemma 2.1 with b, = y, and q, = X,.
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Conversely

fU (_l_;ﬁ!_)z_d,,(y)

1-yz)’
is a support point of ¢, for each finite Blaschke product B(z) and for
each probability measure » on U. To see this choose a continuous linear

functional J on & such that J{z/(1 — yz)?} = B(y). (This is easily seen
to be possible.) It is immediate that ReJ is non constant and peaks at

f—————(B(y)z dv(y).

1—yz)”
3. Support points of S(St(a)).

LEMMA 3.1. Let ¢(z) be a finite Blaschke product with ¢(0) =0
and let ¢ be a complex number with |c|=1. If a <1/2 and
@(2)/(1 = c@(2))* =% is a support point of S(St(a)) then ¢(z) = xz for
some |x| = 1.

Proof. We first note that a result in [6, p. 83] gives
1+ cop(z) = 1+ x,z

=Z)\

1—cop(z) Py k1 - x,z

where n is a positive integer,

(%)

Ix,|=1,A,>0(k=1,2,...,n)and ) A, =1.
k=1

If welet ¢ =1 — 2a (> 0), then

p(z

(1 - cqp(z)))z““” - E{l iqpc(qj()Z)} '{1 - clw(Z)}q

n

= Y A CX2 - h(z) whereh(z)={—-—l——)}q

P 1 - co(z

and we have used (*) in the second equality. By Lemma 1.1 we have

al h(z) = f —xz—d}\(x,y), and thus
(1

1—x,z _ yz)z(l‘a)
X,z _ Xz
) = e M)
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By Theorem 1.2, ¢x,z/(1 — x,z)h(z) belongs to coS(St(«)). Conse-
quently if

—~ K1 — x,z

%‘T:{Zn‘ﬂ\ ik }h(Z)

1-x,z

=kz::1)\k{ cx,z h(z)}

is a support point of S(St(a)), hence also of coS(St(a)), _then so is each
term. That is, (¢x,z/(1 — x,z))h(z) is a support point of co S(St(«a)).
Now by Theorem 2.2 we must have

{likc;czkz} B ,[ yz)

for some finite Blaschke product Bk(z) and some probability measure »,

2(1 — i ()

onU (k=1,2,...,n). In view of () we can write this as
_ n q —
X,Cz }{ N 1 } _ B,(y): dv
{1 — X,z ng "= x;z /U (a _yz)z(l‘a) ().

Comparison of the z coefficient of both sides yields

fumd”k()’) = X,C,

which implies that », is a point mass at some w, (|w,| =1, k = 1,2,..., n).
Hence we have

{xkEz }{Z’\ 1 }qz WZ_ and

(1 _ wkZ)Z(l )

B,(w,) = x,c.
Now since ¢ =1 — 2a > 0 (a < 1/2), comparison of singularities of the
above equation gives n = 1, as required.

THEOREM 3.2. Let a < 1/2 and J be a continuous linear functional on
&/ not of the form J(f) = af(0) + bf'(0) (a, b€ C and f € ). If f, is a
support point of S(St(a)) associated with J, then f,(z) = xz/(1 — yz)*1 =,

Proof. Let f, < g, where g, € St(a)) and consider ¥= { f € «|f <
go}- Then f, isin ¢ and ReJ peaks over ¢ at f,,. If ReJ is constant over
4 then ReJ(gy(xz™)) = constant, for all |x]=1, m =1, 2, 3,.... Hence
J{z"} =0(m=1,2,...), which violates the assumption on the form on
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J. Thus ReJ is non constant over ¢ and f, is a support point of ¢. By a
result of Abu-Muhanna [1], (see also [10]), f,(z) = g,(p,(z)) where ¢, is
a finite Blaschke product with ¢,(0) = 0. We claim ¢ (z) = x,z for some
Ixol = 1 and go(z) = z/(1 — cz)**~* for some |c| = 1. To see this define
L on St(a) by L(g)=J{g(9p,(z))}. Then L is a continuous linear
functional on &7 and Re L peaks over St(«) at g,. If Re L is non constant
over St(a) then g, becomes a support point of St(a), and g,(z) =
z/(1 = ¢cz)**~* for some |c| = 1[6, p. 89].

Hence fo(z) = @y.,/(1 = c@y(2))**~* and, by Lemma 3.1, @y(z) =
xoz with |xy| =1 as desired. If ReL 1is constant over St(«), then
ReJ{ g(py(2))} = ReJ{go(py(2))} for all g in St(a), and hence g(g,(z))
is a support point of S(St(«)) for all g in St(a). In particular this is true
when g(z) = z/(1 — ¢z)*** and so ¢y(z)/(1 — cpy(2))** ™ is a sup-
port point of S(St(a)). Again, by Lemma 3.1, ¢,(z) = x,z for some
|xol = 1. We now have ReJ{ g(x,z)} = constant, for all g in St(«). If we
take g(z) = z/(1 — xz)*2~9, |x| = 1, it follows that J(z") =0, n = 2,
3,..., again violating the assumed form of J. Consequently Re L is non
constant over St(a) and the theorem follows.

REMARKS. (1) It is not difficult to show that each function

xz/(1=y2)" 70 (x =1yl = 1)
is a support point corresponding to a continuous linear functional J not
of the form J( f) = af(0) + bf'(0).
(2) Theorem 3.2 is not true for 1 /2 < a < 1. For example
z"/(1 — xz") (Ixj=1,n=1,2,...)

is always a support point of S(St(a)) when 1/2 < a < 1. Moreover, if
a = 1/2, with a trivial modification of the proof given in [10] for ZS(K),
where K is the usual subclass of convex functions, one can show that

Y.(8(st(3))) = {foolf € St(3) and @
is a finite Blaschke product with ¢ (0) = 0}.
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