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PEAK POINTS IN BOUNDARIES NOT
OF FINITE TYPE

ALAN V. NOELL

It is known that, in domains in C? which are pseudoconvex and of
finite type, compact subsets of peak sets for 4~ (D) are peak sets for
A* (D). We give an example of a convex domain D (not of finite type)
whose weakly pseudoconvex boundary points form a line segment K,
with the property: X is a peak set for 4°(D), but a point p € K is not a
peak point for any 4*(D), a > 0. We also consider briefly the case when
the weakly pseudoconvex boundary points form a disc.

0. Introduction. Let D be a bounded pseudoconvex domain in C”
with C* boundary, and let A%(D) denote the algebra of functions
holomorphic in D and of class C* in D;here0 < a < . A compact set
K C 3D is a peak set for such an algebra A if there exists f € A so that
f=1on K while |f| < 1on D\ K; f is said to be a peak function for K.
(If a peak set is a singleton { p}, p is called a peak point.) If D is strongly
pseudoconvex, Chaumat and Chollet have proved in [3] that every com-
pact subset of a peak set for A®( D) is a peak set for A%(D). In [5] it was
shown that this also holds for domains in C? of finite type. (Recall that
D & C? is of finite type if one-dimensional complex manifolds cannot be
tangent to 9D to arbitrarily high order.) If 9D is allowed to contain a
complex manifold, it is easy to see that compact subsets of peak sets need
not be peak sets (cf. Example 2.2 below). The main purpose of this paper
is to show that compact subsets can fail to be peak sets even if 0D & C?
contains no complex manifold.

A closely related question is whether points of 9D are peak points for
some A%(D). It is known ([4], [6]) that, if p is a point of strong
pseudoconvexity, then p is a peak point for A*( D). In the case of points
of weak pseudoconvexity, the following fact is an immediate consequence
of a paper of Bedford and Fornass [1]: If D @ C? is of finite type, each
point p is a peak point for some A*(D), where a = a( p) is positive, but
it may approach zero as the geometry of 9D allows complex manifolds
tangent to higher and higher order at p. The main example below shows
that this degeneracy of « is reasonable since, if complex manifolds can be
tangent to arbitrarily high order at p, p may fail to be a peak point for
U,-04%D).
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Our main result is the following.

ExAMPLE 1.1. There exist a convex domain D & C? with C* boundary
and a compact set K C 9D so that

(a) K = w(9D) (the weakly pseudoconvex boundary points of D) is a
line segment;

(b) K is a peak set for A*(D);

(c) 0 € K, but 0 is not a peak point for any A% D), a > 0; and

(d) every point of K is a peak point for A(D):= A% D).

In §1 we construct D and K and prove they have the desired
properties. In §2 we indicate how the construction of D can be altered
slightly to give that other points of K fail to be peak points for A*(D),
a > 0. Section 2 also contains a brief description of the situation in which
w(0D) is a disc.

I wish to thank J. E. Fornass for suggesting the existence of the main
example and making many helpful comments on this material.

1. The main example.

1.1. Let (z,w) be coordinates in C? with z = x + iy and w = u + iv.
D will be defined near [-2,2] X {0} by

D= {(z,w): u+x(|x]) + ¢(ly]) + v2(1 + |z1>/100) < 0},
where x and ¢ have the following properties:

Each is C*, non-negative, and strictly convex off its zero

L1y

(1.1.2)  {x; x(x) =0} =[-2,2], and { y; ¢(y) = 0} = {0}.
(1.1.3) ¢ vanishes to infinite order at 0.

The precise form of x is irrelevant for this section. We will choose ¢
later so that (c) above holds. We extend the definition of D so that it is
convex with C* boundary and strongly pseudoconvex away from
K:=[-2,2] X {0}. Note that (a) and (b) above are obvious—a peak
function for K is e”. We defer the proof of (d) above to 1.5 below.

The idea of the construction is as follows. For 0 < ¢ << 1, the plane
{w = —&} intersects the set D N {(x + iy, —€); |x] < 1} in a set R, which
is the interior of a rectangle. If we had a peak function f for 0, the
function g:= 1 — Ref would be a harmonic function on R_, so g(0, —¢)
would be given as a Poisson integral over dR,. We could multiply g by a
large positive constant so that it would be larger than 1 on a significant



PEAK POINTS IN BOUNDARIES NOT OF FINITE TYPE 387

portion of dR,; furthermore, if we chose ¢ properly, the height of R,
would decrease slowly as € — 0. These two facts would give a lower
bound for g(0, —¢). Any Lipschitz regularity of g would give a contradic-
tory upper bound.

In practice it is much easier to make the above estimates if we first
replace the family { R,} by a one-parameter family of convex lenses
whose Poisson kernels are analyzed more simply.

1.2. A one-parameter family of lenses. Let D/ C C(z), j = 1,2, be the
open disc with center (-1)/i/¢ and radius V1 + ¢* /¢ for 0 <t < 1. Let
L, be the lens D} N D?. 9L, intersects the Rez axis at +1 and the Im z
axis at +8(z), where 8(¢):=t/(Vt? + 1 + 1). The interior angle 9L,
makes at + 1 is a(¢) := 2tan"'z. Note that

(1.2.1) a(t) >t >8(t) forsmall ¢.

We map L, to the unit disc U by a biholomorphism G,: Map L, to the
wedge { z; |Argz| < a(t)/2} by z = —(z + 1)/(z — 1); the wedge to the
right half-plane by z — z"”, where n(t):= #/a(t); and, the right half-
plane to U by z = (z — 1)/(z + 1). We extend G,, the composition of
these maps, to,a homeomorphism between L, and U, and we put

H,:=(G)™. G, leCS the points -1, 0, and 1. Also, the first and last maps
of which G, is the composition are biholomorphic near —1 and the inverse
image of -1, respectively, while the map z — z"” is Lipschitz of order
n(t) at 0. Thus, H, is Lipschitz of order 1/n(¢) at -1, and there exists a
constant ¢, independent of ¢ so that

(1.22) |G(2) +1]= [e))z +1]" if|z+1]<iandz €L,

We use these facts to get the following estimate.

1.3. LEMMA. Let L,, 8(t), and n(t) be as above. There exists a constant
¢ > 0 independent of t so that, if g is a function satisfying

(a) g is continuous on Z, and harmonic on L,,

(b) g =0, and

() g(z)21ifz€ L, and |2+ 1] <},
then

g(0) > exp[-c/8(1)].

Proof. Since g o H, is harmonic on U,

(13.1) 80) = 5 [ el H () ao.



388 ALAN V. NOELL

Let A,:= G,({z€ 9L, |z + 1] < 3}). By (1.2.2), 4, has length at least
(3¢,)""; also, ge H,>1 on A, Using these two facts and (1.2.1) in
(1.3.1), we get the desired inequality, if only ¢ is large enough.

1.4. Conclusion of the main example, part (c). We put Y (t):=
exp(—c/t) (for ¢t > 0) with ¢ as in 1.3 above. Choose ¢ so that

(1) < exp(-1/9(1)).
Suppose f is a peak function at 0 for 4%(D), for some a, 0 < a <
1. Now |JRef(-1,0)] <1, so we may choose M >0 so large that
M(1 — Ref(z,w)) = 1if (z,w)€ D, |z + 1] < , and |w| < 1. For ease
of notation put g:= M(1 — Ref). For each sufficiently small ¢ > 0, the
function g(z, —¢(8(2))) satisfies the conditions of Lemma 1.3, so

(1.4.1) g(0,-6(8(2))) = ¥(8(r)).
Since g € C*( D), there is a constant C > 0 with
(1.4.2) 12(0,-9(8(1)))| < Clo(3(1))]["

Therefore, if only ¢ is small enough,

Clo(8(2))] = ¢(8(r)) (by(1.4.1) and (1.4.2))

> [exp(-1/9(8())]** = |o(8() ",
so we get that |¢p(8(¢))|*/* = 1/C for all small ¢. This is impossible.

1.5. Proof of (d) of the main example. We show that each point of K
is a peak point for A( D).

Suppose p is a representing measure for p = (x,,0) € K. Since K is
a peak set, the support of p must be contained in K. Now the sequence
{exp[-n(z — x4)?]} in A(D) tends pointwise boundedly on K, as n — oo,
to the characteristic function of { p}. Thus supp p = {p}, and by
standard results from the theory of uniform algebras (e.g., 2.3.4 of [2]), p
is a peak point for A(D).

2. Two extensions of the main example.

2.1. REMARK. It is reasonable to ask whether any point of the set K
defined in 1.1 can be a peak point for some A% a > 0. Of course, the
arguments of §1 apply to each interior point of the line segment K. To
show that an end-point, say (2, 0), can fail to be a peak point, we argue as
follows. Choose the family of lenses so that the left vertex V] is fixed at 1
while the right vertex V is at the point 2 + ¢; the thickness is on the order
of ¢ as before. We map this figure to U so that V; = -1, ¥, —» 1, and
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2 — 0. A short computation similar to that in 1.3 above shows that we
should choose x so that x(2 + t) < A(A(¢)), where A(z):= ¢/, for
0 < ¢t < 1. With this choice of x we can argue as in 1.4 that there can be
no Lipschitz peak function at (2, 0).

2.2. ExampLE. If we allow dD to contain a complex manifold, it is
clear that compact subsets of peak sets for 4°( D) may fail to be peak sets
for even A(D). For example, suppose s > 0 is a C* increasing function
so that {r; s(r) = 0} = {r;r < 1} and s is strictly convex for r > 1. The
domain

Dy = {(z,w); u + s(|z]) + v*(1 + |z|>/100) < 0}

defined near E:= {|z| < 1} X {0} is convex with C* boundary, and E is
a peak set for A°(D,). However, no proper compact subset of E intersect-
ing U X {0} can be a peak set for A(D,), since any such peak function
would, as a holomorphic function on U, attain its maximum value at an
interior point. Each point p = ( p,, p,) of 9U X {0} is a peak point for
A(D,) (cf. Remark 2.3 below.) One cannot guarantee greater regularity of
the peak function, however. It is easy to see that no such peak function f
can be in 4Y(D,); if it were, f|, would have a non-zero derivative at p,,
and this would imply that f had a non-zero tangential derivative at p, a
contradiction. It is also true p cannot be a peak point for U, , 4*(D,);
the argument is similar to that in 2.1 above. Slicing D, by a plane
{w = —¢} gives a disc whose radius shrinks to 1 as ¢ — 0. Use of the
explicit formula for the Poisson kernel on such a disc yields a much
weaker condition on s than that imposed on ¢ and x above; in fact, one
only needs that s vanishes to infinite order at » = 1 to derive a contradic-
tion to Lipschitz regularity for a peak function.

2.3. REMARK. Since A(D) is a closed subalgebra of C(D), standard
results from the theory of uniform algebras (see, for example, 2.4.6 of [2]),
imply that any peak set for 4(D) contains at least a peak point for A( D).
The examples of this paper illustrate that this result cannot be extended to
the larger classes 4% a > 0.
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