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Suppose D C C" is a smoothly bounded domain and u is bounded
and pluriharmonic in D. Let u* denote the boundary function of u, and
let {, € 0D. It is shown that if u* has good averaging behavior on one
curve in 3D through {;, then u* has good averaging behavior on all
curves in 3D through {,, provided the curves in question satisfy a certain
directional condition. These results fail if the directional condition on the
curve is violated.

I. Introduction. Let D be a domain in C” with C!-boundary, and
for { € 9D, let T{,({) denote the complex tangent space of 0D at {. If f
is a complex valued function defined in D, we denote by f*({) the
nontangential limit of f at {, provided this limit exists.

Fix a point {, € 3D. We will be interested in C3-curves y: (-1,1) -
0D such that

(1) y(0) = $,, Y'(0) & Tacl)(go)-

Note that since T,($,) is of (real) codimension 1 within the full tangent
space of 0D at {,, the “typical” smooth curve in 9D through {, will
satisfy the last condition in (1).

The results of this paper are concerned with averaging properties of
pluriharmonic boundary values along such curves. The main thrust of
these results is that if good averaging behavior occurs on one curve
satisfying (1), then the same must be true of every curve satisfying (1). We
first take up the case of H*-boundary values.

THEOREM 1. If f € H®(D), and if
2) tim o [ /*(v(x)) dr = L
0

for one curve vy satisfying (1), then (2) is true for every curve vy satisfying

(1).
Note that Theorem 1 also tells us that if (2) is true, then

hhngjff ) dx = L

407
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as well, since the curve ¥, defined by ¥(x) = y(-x), satisfies (1) if and
only if y satisfies (1).

An easy corollary of Theorem 1 generalizes the familiar one variable
fact that the boundary values of an H*-function cannot have a jump
discontinuity.

COROLLARY. If v, and vy, are two curves satisfying (1), if f € H*(D),
and if

hl_i,%l+ ”f* YT L.i||L°°(0,h) =0, j=12

then L, = L,.

1.2. The first thing one might wonder about in Theorem 1 is the
existence of the boundary values f*(y(x)). It turns out that with y as in
(1), f*(y(x)) is guaranteed to exist for a.e. x in in a sufficiently small
neighborhood of 0, by the following result of Nagel and Rudin [7]:

THEOREM A. Suppose & > 0, and that y: [—¢, €] = 3D is a C3-curve
satisfying (v'(x),v(y(x))) # 0 for all x € [—¢, €], where v({) denotes the
outward unit normal to 0D at §, and { , ) is the usual complex inner
product. If f € H®(D), then f *(y(x)) exists for a.e. x € [—¢, &].

To see how Theorem A applies to our situation with y as in (1), define
a(x) = {(y'(x),»(y(x))). Then «(0) # 0, for this is precisely the last
condition in (1). The continuity of a then shows a(x) # 0 in [-¢, €] for
some ¢ > 0, so that f*(y(x)) exists a.e. in [—¢, €] by Theorem A.

REMARK. Theorem A is true for curves with less than C3-smoothness;
see [8] for the strongest result. We are assuming y is C> to keep the
exposition as simple as possible. (Later, in Part IV, it will be convenient to
assume vy is CS.)

II. Proof of Theorem 1 and related results.

2.1. One variable preliminaries: For ¢ > 0, set Q, = (—¢,¢) X (0, €).
Theorem 1 hinges on the following one variable result:

THEOREM B. If f € H*(Q,), then the following statements are equiva-
lent:
() lim,, _ oA"Y f*(x)dx = L
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(ii) im, _, k"Y', f*(x)dx = L
(iii) lim , _, o+ (i) =

Theorem B for the upper half plane follows from Corollaries 3.5, 3.6,
and 3.7 in [14]; very similar results for the unit disc appear in [1]. Of
course, conformal maps transfer Theorem B from one region to another,
and in particular to our region Q..

LeMMA 2.1. Let ¢ € C* N L*(Q,). For z € C set
_ 1 9 ;
1[/(2)—27”,./& T &AL
Then y € CY(Q,), 3y/3z = ¢ in Q,, and { is continuous on all of C.

Proof. We are using the notation d/9z = 1/2(9/0x + id/dy). That
¢y € CY(Q,) and 3y/9z = ¢ in Q, is well known; see [11], p. 339. The
continuity of ¢ on all of C follows since ¢ is the convolution of
¢ € L*(Q,) with 1/ € L (C).

2.2. Proof of Theorem 1. The first part of this argument comes from
[7], where we refer the reader for details. (The details are even easier here
since we are dealing with C3-curves.)

If y satisfies (1), then one of the vectors +iy’(0) points transversally
into D from {; suppose it is iy’(0) which does so. For x + iy € (-1,1) X
R, define I'(x + iy) = y(x) + iyy’(x). Since iy’(0) points transversally
into D and I'(x) = y(x) for x € (-1,1), there exists an ¢ > 0 such that
I'(Q,) € D, and such that d(I'(x + iy),dD) is on the order of |y| for
x + iy € Q.. Here d(w, dD) denotes the Euclidean distance from w € C”
to 0.

For f € H*(D), the chain rule gives

d 0
@  DGiy- 3 L)
a1 Iw
(x + iy € Q,), where we have written I' = (I',...,T,). Just as in [7],
Cauchy’s estimates show there is a constant C such that

|af/aw, (T(x + iy))| < C/ly| forx + iy € Q,,
and we easily compute 0I'/9z(x + iy) = 1/2iyy”(x). Thus by (3),
(feT)/3z € C' N L=(Q,).
Note that if instead it is —iy’(0) which points into D, everything said
so far holds verbatim with —Q, in place of Q..

)T (x + i)
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Now suppose 7v;, Y, satisfy (1), and that (2) holds for vy, and
f € H*(D). We assume that both iy,(0) and iy;(0) point transversally
into D, the argument for the other cases being exactly the same. Associate
I toy;on Q,, j=1,2, as described above. Since 3(f~I})/3z € ctn
L°°(Q€I), we can define

d(fT,)/0% .
‘P()_szgs (fg_l/ dsnd (x€0

as in Lemma 2.1. We then have fo I, — ¢, € H*( er). By the continuity
of Y, on C,
lim _f [f Y1(x 1(x)] dx = L — ‘1’1(0)-

h—0* h
By Theorem B this implies
yl_ifg+ (foT, —¢)(iy) = L — 4,(0),
which gives
Jim foTy(y) =

But the curves y — I(iy) approach {, nontangentially as y — 0. From
Cirka’s Lindelhof theorem ([11], p. 168), we conclude

lim foT,(iy) =
y—0*

The above argument in reverse can now be applied to foI, — ¢, to
obtain

lim —ff Y,(x))dx =L

h—0+ h

REMARK. With some extra work, one can push the proof of Theorem 1
through to the case where y is C! and y’ € Lip a for some a > 1,2, but
it seems substantially more difficult to treat the case where y is merely C'.

2.3. Weakly admissible limits. The notion of a weakly admissible limit
was introduced in [3]; see also [9]. This coincides with the definition of
hypoadmissible limit given in [2] and [5] and with the definition of
restricted K-limit in [11]. Cirka’s Lindelof theorem ([3], and [11], p. 171),
which we needed in the proof of Theorem 1, asserts that if f € H*(D)
and f has a limit L along a nontangential curve in D terminating at
{o € 0D, then f has a weakly admissible limit L at {,.
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THEOREM 2. If f € H®(D), and 0D is C3, then the following state-
ments are equivalent:
(i) lim,, |, o+ A7 f*(v(x)) dx = L for one curve v satisfying (1).
(ii) f has a weakly admissible limit L at §,.
(i) im, _, o+ A7YJ f*(v(x)) dx = L for every curve v satisfying (1).

Proof. Examining the proof of Theorem 1, we see that if y satisfies
(1), and T is associated with y as before, then

(4) lim, %fohf*(y(x)) dx =L iff ylirg+f(r(iy)) =L.

(More precisely, (4) is true if iy’(0) points transversally into D from {;
we assume without loss of generality that this is true of every y under
consideration here.) As noted earlier, the curve y — I'(iy) tends to §,
nontangentially as y — 0*. The implication (i) = (ii) thus follows from
Cirka’s Lindelof theorem.
If (i1) holds, then
lim f(T'(iy)) = L
y—0*
for every vy as above, since a weakly admissible limit implies a nontangen-
tial limit. Thus (ii) = (iii) by (4).
Since 9D is C?, there exist C3-curves y in 9D satisfying (1), so that
(iii) trivially implies (i).

2.4. Other averaging properties. Let B, denote the open unit ball in
C”, and let o, denote the usual rotation invariant Lebesgue measure on
0B,. If p is a complex Borel measure on 9B,, we denote by Du({,) and
2u(§,) the symmetric derivatives of p at {, € 9B, defined in [10].

Specializing to the case D = B,, we obtain

THEOREM 3. Let f € H*(B,), and put dp. = f* do,. Then each of the
statements Du(§,) = L, Du($,) = L is equivalent to each statement of
Theorem 2.

Proof. As shown in [10], the statements Du({,) = L and Du($,) = L
are each equivalent to the assertion

}lj}llf(rgO) = L,

which is equivalent to (ii) of Theorem 2 for the case D = B, by Cirka’s
Lindelof theorem.
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III. Examples.

3.1. Theorems 1 and 2 can fail in a variety of ways if the directional
condition in (1) is violated. In the first place, the boundary values
f*(v(x)) may not even exist. Suppose for example that 0D is C? and
strictly pseudoconvex, and that y'(x) € TG (y(x)) for every x € (—1,1).
Then as is well known, y([—1/2,1/2]) is a peak set for A( D), the algebra
of functions continuous on D and holomorphic in D (see, e.g., [11] p.
216). If g € A(D) peaks on y([—1/2,1/2}), then f = exp[ilog(l — g)] €
H>*(D), and f*(y(x)) fails to exist for every x € [—-1/2,1/2]. (Any
logarithms, powers, or arguments appearing in this paper will always
denote the usual principal branches.)

But even if f*(y(x)) exists for every x € (-1,1), Theorems 1 and 2
can fail rather badly if (1) is not satisfied. For convenience, we work in the
unit ball B in C2, with {, = ¢, = (1,0). Suppose y: (-1,1) - 9B is a
CZ2-curve such that
(5) v(0) = e, v'(0) € Tiz(e;), and y'(0) # 0.

(Note that (5) can be true while at the same time there exists an ¢ > 0
such that f*(y(x)) exists a.e. in (~¢, &) for every f € H*®(D). This will
happen if y'(x) € T(v(x)) in a deleted neighborhood of 0, by Thm. A.)
From (5) it follows that y(x) = (1 + ax? + o(x?), bx + o(x)) as x — 0,
where a, b € C and b # 0. The fact that |y(x)| = 1 for every x € (-1,1)
implies Re a < 0. Define f(z,w) = w(1 — z)~/2 Since |w(1 — z)"V?|* <
wi2(1 — |z)~* < 2for (z,w) € B, f € H®(B) € C(B — {e,}). One easily
computes

lim f*(y(x)) = b(-a)™%,  lim f*(y(x)) = —b(-a)™".

Thus f* has a jump discontinuity along every curve satisfying (5); i.e.,
the corollary to Theorem 1 fails for all of these curves. Also note that this
jump discontinuity depends on a and b, i.e., the jump discontinuity varies
from curve to curve. Finally, observe that f has a weakly admissible limit
0 at e,.

3.2. Here we give an example of an f € H*(B) with weakly admissi-
ble limit at e,, but such that

fails to exist for every y satisfying (5).
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For z € U, the open unit disc in C, define g(z) = exp[ilog(l — z)].
Clearly g € H*(U) N C(U — {1}). For (z,w) € B, define f(z,w)=
w2(1 — z) 'g(z). As in 3.1 one verifes f € H*(B) N C(B — {e,}), and
clearly f has a weakly admissible limit 0 at e,. We claim that for every
v asin (5),

(6) fim —/(;hf*(y(x)) dx  fails to exist.
Writing out the components of y as in 3.1, and noting
)lci_lz})(bx +o(x))(—ax? + o(x2))" = b2(-a) " # 0,
it 1s clear that to prove (6) we need only look at
%‘[)h g(1 + ax? + o(x?)) dx.
Since g € H*(U), |g'(z)|(1 — |z|) is bounded in U, hence
li_lg[g(l + ax? + o(x?)) — g(1 + ax?)] = 0.

(As x = 0,1 + ax? approaches 1 nontangentially since Rea < 0.) Thus it
is enough to consider

h
—}1;/ g(1 + ax?) dx.
0

This latter integral equals
(7) _1_fh eilog(—axz) dx = fl eilog(—ahzxz) dx.
hJy 0
Since arg(—ah?x?) is constant, (7) is equal to
(8) e-arg(-—a)eiloglahzlfl eilogxz dx.
0

The integral in (8) is not zero since (7) clearly does not vanish for all 4.
Thus (8) has no limit as 4 — 07, proving (6).

3.3. In the other direction, we give an example of an f € H*(B) and
a vy satisfying (5), such that f* is constant a.e. on y(-1, 1), but such that
f*(e,) fails to exist. To do this we use the following theorem of Saerens
[13]: if K is a peak set for A(B), p is a finite positive Borel measure on
K, and b € L®(p), then there exists g € H*(B) such that

I glls=ca) <1122
and g* = b p-a.e. on K.
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If y: (-1,1) - 9B is any C'-curve such that y(0) = e, and 0 # y’(x)
€ T5,(v(x)) for every x € (-1,1) (the curve y(x) = (cosx,sinx) will
do), then as was mentioned earlier, y([-1/2,1/2]) is a peak set for A( B).
Define p = s + 8, where s denotes arclength measure on y([-1/2,1/2)),
and § is the unit point mass at e;. Set b(y(x)) =0, x € [—-1/2,1/2] -
{0}, and b(e,;) = 1. By Saerens’s theorem, there exists a

g€ H*(B), |glu=m <1,

such that g* = b p-a.e. on y([-1/2,1/2]). Thus g*(y(x)) = 0 for a.e.
x €[-1/2,1/2] and g*(e,) = 1. Setting f = exp[ilog(l — g)], we see
f*(y(x))=1ae. in[-1/2,1/2], while lim, _,,-f(re;) does not exist.

IV. The pluriharmonic case.

4.1. Theorems 1 and 2 fail for bounded pluriharmonic functions, and
for a simple reason: Theorem B is false for bounded harmonic functions.
(Example: u(z) = argz). There is, however, a substitute for Theorem B
(Theorem C below), involving symmetric averages, which will enable us to
prove the following theorem.

THEOREM 4. If u is bounded and pluriharmonic in D, and 3D is C®,
then the following statements are equivalent:
@) lim,, _, o+ (1/2h) [*, u*(y(x)) dx = L for one CS-curve v satisfying
(D).
(i) lim , _, o+ #($, — y($5)) = L.
(i) im,, _, o+(1/2h) %, u*(v(x)) dx = L for every C-curve y satisfy-
ing (1).

REMARKS. 1. The existence of the boundary values u*(y(x)) for a.e. x
in a small enough interval about 0 follows easily from Theorem A. Fix a
curve vy satisfying (1) and assume without loss of generality that u is real.
Since there exists a neighborhood V of {, (open in C") such that V' N D is
simply connected, there exists a pluriharmonic v in ¥ N D such that
u + iv is holomorphic in ¥ N D. The function f = e“*"" then belongs to
H>(V N D), which implies f*(y(x)) exists a.e. in [—¢, €] for some ¢ > 0
as in 1.2. Clearly u*(y(x)) exists wherever f *(y(x)) exists.

2. In proving Theorem 4 we will need to deal with the operator
A = 92/9x? + 9%/dy? rather than 9/9z. Thus twice as many derivatives
will be involved here, accounting for the assumption y € C° rather than
vy € C.
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4.2. Theorem C and Lemma 4.2 below will play the same roles in
proving Theorem 4, respectively, as Theorem B and Lemma 2.1 did in
proving Theorems 1 and 2.

THEOREM C. If u is bounded and harmonic in Q. then the following
statements are equivalent:

(@) im,, _, o+(1/2h) [%, u*(x)dx = L

(i) lim , , 5+ u(iy) = L.

Theorem C for the upper half plane is due to Loomis [6]; again, a
conformal map transfers this to Q.. (For generalizations of Theorem C to
the upper half space of R”, see [12). Versions of Theorem C for the unit

ball in C” were obtained in [10]. All of these results hold under the weaker
hypothesis that u is positive.)

LeMMA 4.2. Suppose ¢ € C> N L*(Q,). For z € C, define
1 .
1P(Z)=ﬁj-Qe¢(§')log|z-—§|dxdy ($=x+iy).

Then ¢ € C*(Q,), Ay = ¢ in Q,, and { is continuous on all of C.

Proof. The first two assertions are well known; see [5], pp. 29-30.
That ¢ is continuous on all of C follows as in Lemma 2.1: ¢ is the
convolution of ¢ € L*(Q,) with log|¢| € L} .(C).

4.3. It will be convenient in the rest of the paper to suppose {, = 0
and »(§,) = (-i,0,...,0); recall that »({,) is the outward unit normal to
0D at {,. We let C’ denote the half space {z=(zy,...,z,) € C"
Im z, > 0}. Note that with these conventions, C; can be thought of as the
set of vectors pointing into D transversally from {, = 0.

Define Y = {(iy,z’): y > 0, z’ € C""!}. In Lemma 4.3, which is an
analogue of Cirka’s Lindelof theorem, we consider C'-curves 7 such that

9) 7:[0,1] = D, 7(0)=0, 7(0)e Y.

LemMA 4.3. If u is bounded and pluriharmonic in D, and if
im u(n(y)) =L
y=0
for one curve n satisfying (9), then

lim u(n(») = L

for every curve n satisfying (9).
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Proof. The proof is very much like the proof of Cirka’s Lindelof
theorem, and rests on two well known properties of Wu. First, the
boundedness of u implies the boundedness of |V u(z)|d(z,dD) for z € D.
Second, there is a better estimate on the derivatives of u in certain
directions: if v, u denotes the gradient of u with respect to the variables
X5y Vyy---»X,, ¥, (i-e., the gradient of u in the complex tangential
directions), then |V u(z)|d(z,0D) - 0 as z - 0 in D nontangentially.
(See, e.g., inequality (20) of [9].)

From the first property it follows that

ylirg+u(n(y)) =L

if and only if
lim u(yn(0)) =L,
y—0*

for any curve 7 as in (9). Thus we need only consider limits along rays
contained in Y.

Suppose v;, v, € Y, and that lim,, _, o+ u(yv;) = L; we wish to show
lim _, 5+ u(yv,) = L. The definition of Y shows there exist y, > 0 and
zo € {0} X C""! such that v, =y, + z,, and we have the standard
estimate

10)  [u(yvy) —ulpywr) < sup [ Vyu(yyooy + 2)|lyzol.
ze{0yxcm!
1z1<y120]
For small y > 0, the points yyw, + z satisfying |z| < y|z,| lie within a
nontangential approach region, and d( yy,v; + z,dD) is on the order of y.
Thus the right hand side of (10) > 0 as y — 0" by the second property
mentioned above, so that lim , _, o+ u(yv,) = L as desired.

4.4. Proof of Theorem 4. If y is any CS-curve satisfying (1), we may
assume that iy’(0) points transversally into D from 0, since the symmetric
averages in (i) and (iii) are unaffected if y(x) is replaced by y(-x). For
any such vy, define

L(x + i) = y(x) + ipy'(x) =(y*/2)y"(x)  (x+iy € (-1,1) XR).

Then for some &€ > 0, I' has the same properties on Q, as did the earlier I'
in the proof of Theorem 1, except this time 9I'/0z(x + iy) =

~1/4y" (x)y2
If u is bounded and pluriharmonic in D, we claim

(11) A(ueT) € C2n L*(Q,).
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To calculate A(u o T') it is best to write A = 402/029Z, and use the 9 /92
version of the chain rule. This slightly tedious computation was carried
out in the proof of Theorem 1 in [9], and we spare the reader the details
here. Once A(u°I') has been computed, (11) follows from Cauchy-type
estimates on the derivatives of u, the vanishing of 9%u/9z,0z ' for all i and
J, and the second order vanishing of I /dZ on (—¢, ). (Note that second
order derivatives of I' appear in the expression for A(u e I'). Since the
definition of I' already involves two derivatives of y, we see that to assert
A(u~T) € C*(Q,) requires that y be C%.)

Suppose now that (i) holds for u and y. With I" defined as above, we
see by (11) that ¢ can be defined as in Lemma 4.2, taking ¢ = A(u-°T).
The function u°I' — 4 is then bounded and harmonic in Q,, and by
Theorem C we conclude, since ¢ is continuous in C, that

h
(12) ylillg+ u(T(iy)) =L iff Jim, zih ’ u*(y(x))dx = L.
Setting n( y) = I'(iy), it is easily verified that 7 satisfies (9). Since the
curve y — &, — yr($,) = (ip,0,...,0) obviously satisfies (9), Lemma 4.3
shows that (ii) must hold.
A similar argument based on (12) and Lemma 4.3 shows that (ii) =
(iii), and the implication (iii) = (i) is obvious since 3D is CS.

4.5. Specializing to the ball, we have the following analogue of
Theorem 3.

THEOREM 5. Suppose u is bounded and pluriharmonic in B,, and put
dp = u*do,. Then each of the statements Dp($,) = L, Du(§,) =L is
equivalent to each statement of Theorem 4.

Proof. Again, each of the statements Du($,) = L, 9u($,) = L is
shown in [10] to be equivalent to the statement lim, _,,-u(r{,) = L.

4.6. Differentiability along vy and weakly admissible limits. Unlike the
case for an H*-function, the equivalent statements of Theorem 4 do not
imply a weakly admissible limit for a bounded pluriharmonic function.
The simple example u(z,, z,) = arg(1 — z;) in B, (take {, = e;) shows
this. What is needed is a stronger differentiability assumption on u* along
Y.

First we give some definitions. If y is a curve satisfying (1), if ¢ is
chosen as in 1.2, and if u is bounded and pluriharmonic in D, define

U(0)= [ ur(v(x))ax (1€ (-e,e)).

—&
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Forz = (z,,...,2,) € C!, define a(z) = argz;; clearly 0 < a(z) < = for
all z € C1.

THEOREM 6. If u is bounded and pluriharmonic in D, and 3D is CS,
then the following statements are equivalent:
(i) there exists a C®-curve vy satisfying (1) such that U/(0) = L.
(i1) there exist vy, v, € C%, with a(v,) # a(v,), such that
lim, , y+ u(rvy) = L = lim, _, o+ u(rv,).
(i11) u has a weakly admissible limit L at 0.
(iv) U, (0) = L for every C ®-curve v satisfying (1).

As was the case earlier, the proof of Theorem 6 strongly depends on a
one variable result:

THEOREM D. If u is bounded and harmonic in Q , put
Ur) = [ ur(x)dx (1€ (-,e)).
Then the following statements are equivalent:
1 U'(0)= L.
(ii) There exist 0,, 6,,0 < 0, < 6, < 7, such that lim, _ ;- u(re'%) =
L,j=1,2
(i11) u has a nontangential limit L at 0.

Theorem D, proved for the upper half plane, is due to Loomis [6]. See
also Gehring [4].

Proof of Theorem 6. As usual, we assume without loss of generality
that if y satisfies (1), then iy’(0) points transversally into D from 0. Since
the reader by now is familiar with our strategy of proof, we will be brief
about certain details.

Suppose (1) holds for u and y. Associating I" with y as in the proof of
Theorem 4, and using our usual argument together with Theorem D, we
see that u o I' has a nontangential limit L at 0. So certainly there exist 8,,
6,,0 <0, <8, <=, such that

1i1(1)1+u(1“(reiof)) =L, j=1,2.
The fact that 0T’ /dz(0) = 0 implies the curves r — T'(re'%) are tangent to
the rays re‘%y’(0), j = 1,2, respectively. Thus
lim u(rey’(0)) = L, j=1,2.
r—0*
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Since
a(e“y'(0)) =6,

we see that (ii) holds.

In proving (ii) = (iii) we need some preliminaries. For 0 < 8 < 7, set
Yy = {(re,z): r>0, z € C""'}. (The Y defined in §4.3 is Y, , in the
new notation.). If 5, and n, are C'-curves satisfying 7 ;+ 0,1] - D,
7,(0) = 0, 7’(0) € Y, then

li%l+ u(n,(r)) = L if and only if liI(I)1+ u(n,(r)) = L.

The proof of this is exactly the same as the proof of Lemma 4.3.

Now suppose (ii) holds, and put 8, = afv)), j =1,2. Let N be the
complex line {(A,0,...,0): A € C}, and set Dy = D N N. The vectors
(e,0), v, are both in Y, and similarly (¢, 0), v, € ¥,. We conclude

lir(r)x+ u(re’,0) = L, j=1,2.

Since D, can be thought of as a domain in C!, and since Theorem D is
true for any domain with smooth boundary, we conclude that u has a
nontangential limit within D, at 0. Estimates on v u like the one
mentioned in proving Lemma 4.3 now show that u has a weakly admissi-
ble limit L at 0. (We omit the proof of this last statement; the argument is
essentially the same as in the proof of Lemma 4.3. Again, see [3] or [9] for
the definition of a weakly admissible limit.)

If (iii) holds, let y be a C-curve satisfying (1), and associate I with y
as before. If K is a nontangential approach region in Q. of small enough
height, I'(K') will be contained in a nontangential approach region in D
with vertex 0. Since a weakly admissible limit implies a nontangential
limit, (iii) implies u I’ has a nontangential limit L at 0 within Q.. Our
usual argument, together with Theorem D, then gives (iv).

Finally, since 3D is C®, (iv) implies (i).
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