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Let £ C R” be a bounded, smooth domain. We construct a continu-
ous linear operator 7: W°(Q) » W°(Q) which for all k € (N U {0})
is actually continuous from W*(Q) — W (Q), and which moreover has
the property that ST = S, for any orthogonal projection S of W°(Q)
onto a subspace of the harmonic Bergman space. That is, the operator
assigns to each function a function vanishing to high (infinite if k = c0)
order at b}, but with the same projection. S can in particular be the
harmonic Bergman projection, or, when Q C C”, the (analytic) Bergman
projection. The question whether such an operator exists arises for
example in connection with regularity properties of the Bergman projec-
tion and their intimate connection with boundary regularity of holomor-
phic mappings.

1. Introduction and results. Let & C R” be a bounded domain with
smooth boundary. For k € N, we denote by W*(Q) the usual Sobolev
spaces of order k on € (see [10]), and by W () the closure of CZ(L) in
W (). h*(Q) denotes the closed subspace of W*(Q) consisting of
harmonic functions; the harmonic Bergman projection Q is the orthogo-
nal projection of Wo(Q) (= 2%Q)) onto #A°(2). We are interested in
projections onto subspaces of A°(2). The most interesting examples will
be Q itself and, in the case where { lies in complex euclidean space
C" = R*", the Bergman projection P. This is the orthogonal projection of
WO(Q) onto A°(R), the subspace of W°(§) consisting of analytic func-
tions. The purpose of the present paper is to construct a continuous linear
operator T from W°(Q) to W°(Q), which to each function in W*(Q)
assigns a function in W}(Q) (i.e. “ vanishing to order k — 1”), but with
the same projection. More precisely, we have

THEOREM 1.1. Let Q as above. There is a continuous linear operator T
Wo(Q) » WQ) which satisfies

(i) for all k € (N U {0}), T maps W*(Q) continuously into W§(Q).

(i1) if S is the orthogonal projection of W°(Q) onto an arbitrary closed
subspace of h®(), then
(1) ST =S.
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ReMARK 1.2. The point of the theorem is really that there exists T
with (1) and such that Q7 = Q. For § as in the theorem, S = SQ, so that
then trivially ST = SQT = SQ = S.

REMARK 1.3. By the standard interpolation argument, T is continuous
from W’(Q) to Wy(Q), for r real, > 0. For r = integer + 1/2, we even
get continuity from W’(2) to Wy ({2); see [10] for details and definition of
the last space.

REMARK 1.4. The smoothness of Tg depends only on the smoothness
of g near Q. More precisely: if g € W*(Q2\ K) for some compact subset
K, then Tg € W(R). This will be clear from the proof of Theorem 1.1.

The main source of motivation for constructing operators like 7' are
questions revolving about the Bergman projection P, and its intimate
connection with boundary behavior of holomorphic mappings ([4] and its
references, [7]). One of the key steps was Bell’s construction of (differen-
tial) operators @: W*+*NO(Q) - WF(Q), such that Pp* = P. ¢ is also
bounded from A*(Q) » W (Q) (4%(Q) is the analytic subspace of
Wk(Q)). A revised version of these operators is in [1]. Harmonic and
pluriharmonic versions were given in [2] and [3], respectively. From this
circle of ideas, the question also arises whether the conditions R*: P maps
Wk(Q) into itslef, and Rf: P maps W(Q) into W*(Q), are equivalent.
The ¢* do not give an answer. This question also arises from [9], where R
rather than R* appeared naturally. The question was answered affirma-
tively by the author in [12]. It was shown that there exist continuous
operators T*: Wk(Q) - WF(Q), such that PT* = P. For k = oo, it was
shown in [6] and [12] that for g € W*®({), there is always h € W;°()
with Ph = Pg, but it was not clear whether the function in W;°(2) could
be chosen in a continuous, linear way (in [12] a continuous linear map
into a quotient of W°({) was obtained). The operator T gives a unified
approach to all the above. In addition, we write down T quite explicitely
(in contrast to [12], where the author’s T* were obtained by abstract
arguments). This clarifies the situation; in fact it is precisely this feature
which allows to check the regularity properties. Note that the equivalence
for the harmonic Bergman projection, corresponding to R* < R, gives
nothing interesting, because Q always maps W*(Q) into itself ([2]). In
intermediate cases however, such as the projection onto the pluriharmonic
functions, the corresponding equivalence (also obtained from T') is of
interest.
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We also briefly mention that the operator T may be used to obtain
equivalence of certain negative Sobolev norms on harmonic functions (no
geometric assumptions on ), compare [5], §4. We do not elaborate on
this, because this equivalence also follows directly from the Sobolev
estimate on an “improper” % >-pairing given in [12], and it is our opinion
that the approach via the pairing is more natural in that context.

The construction of the operator T rests upon an observation about
the projections, which we now proceed to state. It says, loosely speaking,
that the condition of having the same projection as some given function
may be reformulated as a certain boundary condition. Consider the
Dirichlet problem for the Laplacian

Ah=g on{
) h=0 on b,
with g € W*(Q), so that the solution & € W *2(Q). Let ¥ be any
function in W**2(Q) such that

¥ =0
(3) ¥ 9k onbQ
v o

Here, 3 /d» denotes the normal derivative (normal to b€2, oriented inward);
the boundary values are, as usual, to be understood as traces. Then we
have

PROPOSITION 1.5. Let g € W*(Q) and let h be the solution of the
Dirichlet problem (2). For ¥ satisfying (3),
(4) S(A¥) = Sg,
for any projection S as in Theorem 1.1.

As we shall see, the main point here is that (4) is implied by a
boundary condition on ¥ (namely (3)).

Proposition 1.5 allows essentially to reduce the problem to finding
functions with prescribed normal derivatives on b{2. However, infinitely
many derivatives will be involved, and in order to get extensions depend-
ing linearly on the data, special care has to be taken. In §3, we construct
sequences of extension operators (roughly one operator for each normal
derivative) whose norms are well controlled. For certain boundary data
spaces (including the ones arising from our problem), they can be summed
up to yield a linear operator which gives functions with the infinitely
many prescribed normal derivatives. The construction is an infinite ver-
sion of a construction in [8]; it is also somewhat motivated by the
construction in [11].
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2. Proofs. We first prove Proposition 1.5. We have
(1) AV — g =A(¥ — h).
Use (2) and (3) (81) to conclude that ¥ — & = 9(¥ — h)/dv = 0 on bR
so that ¥ — h € W2(R) ([10]). Therefore, A(¥ — k) is orthogonal to
h°(Q) (integrate by parts, no boundary terms appear). Thus, by (1),
A¥ — g is orthogonal to A°(Q) and thus to the image of S, whence the

result.
Now we prove Theorem 1.1. Let L: W°(Q) > W2(Q) be the solution
operator of the Dirichlet problem

ALg=g onf

(2) Lg=0 on bQ.

For g € W°Q), Tg will be defined as AW, for suitable ¥, with
¥ =0

) 0 _ 9, onbo
v ang

(3) will ensure, by Proposition 1.5, that SAY = Sg. The condition that
AV = Tg € WF(Q), may also be formulated as a boundary condition; it
is equivalent to the condition

Y,
(4) —av—jA‘I/=O onbl, O0<j<k-1,
see [10]. The next step is to observe that (3) and (4) together may
equivalently be written by prescribing only normal derivatives of V. It
will be convenient to work in local coordinates near b2, so we choose a
partition of unity { ¢,} of b2, so that supp ¢, is contained in a coordinate
neighborhood U, of b, which is “small” so that its local coordinates
(6,,...,0,_,) together with » (signed distance to b{l) can be used as
coordinates of R™ near U,. Then the task is reduced (by linearity) to
constructing ¥, € W**2(Q) satisfying the boundary condition

¥, =0
¥, 2
(5) 5 = %5, L8
9’/
—A¥,=0 0<j<k-1,
v’

whenever the function g we start out with is in W*(Q). Near U,, the
Laplacian is expressed in the local coordinates (the index s is suppressed)
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as
9 laga 1 "Sha o,
(6) SRR T T PR o 7( % 57
where
= 0x, 0x,
8= Z g ap
! I=1 d i d J
(g7) =(g,;)" and g=det(g,;)
Thus

3/ . Y ¥ [19gd "= A [~
(7) =5, o0l 22 v aﬁif‘;l aa,(g@aa,. '

Note that the second term on the right side of (7) involves only normal
derivatives of order at most j + 1. So if one knows the traces of ¥ and
0¥ /dv on bR, and those of 3/A¥ /dv/, one may recursively calculate the
traces of 9/¥/0»/. Thus we obtain a sequence (B’)%, of differential
operators, such that for all £ € N, the boundary cond1t10n

¥ =0
0w, 9

(8) a5 % 5, L8
3/

S K i .
—E):J'_—BJ((anVLg)’ 2<j<k+1
is equivalent to the boundary condition (5) (in U,). For convenience, we
set By:= 0 and Bj; = id (the identity operator), so that (8) can be
rewritten as

/Y N

(9) - (psaLg), 0<j<k+1.

The order of B} does not exceed j — 1, for j > 1. Since B;(¢,(dLg/dv))
is compactly supported in U,, we may continue it to bl by setting it equal
to O outside U,. In this way, (9) may be viewed as a boundary condition
on all of bQ2. Then, any ¥, is W**2(Q) which satisfies this condition, will
also satisfy (5) on all of b2 (in U; by construction of the B;, on
bQ \ supp @, because there all normal derivatives are 0 on b{2). We point
out once more that the B; are easily calculated explicitly, by recursion,
starting with B;.
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In §3, we will for every given sequence (a;)7 of positive numbers
construct a sequence (R’)¥ of linear operators defined on C*(bQ)’ =
©_o, W k(bRQ), such that for all k € N:

1)
R/ is continuous from W*=/=12(pQ) to Wk(Q);
we denote the corresponding operator norm by || R/ ||x.

(i) for0<s<k-—-1,
0 .
J
(11) (WR u)
Note that these traces are well defined, since R'u € W*(Q).
(1i1)
(12) 2 IR flxe; < oo

Jj=0

(10)

_{O ifs#j

b Uu ifS=]

This property is independent of the boundary norm used (see §3).

This will put us in a position to define the operator 7. Denote by
the operator norm of

9

B W;L); WE(Q) » WE3/2-1(bQ).

We choose the sequence (a,)§ with a;:= sup sup, _;C;; and construct
the R/ corresponding to this sequence. Now we set for g € Wo(Q)

|

<R [k+2Cll gl wrc)-

(13) Tg:= (Z > R0 Ls

s j=0

T is well defined: for k € N fixed, we have

. d
}R’BJ’(‘PsﬁaLg)l

Wk+2(9)

Therefore,

(14) < [ IR 2 I

j=0

(.0
¥ R'B}{ 9,55 L]

j=0 WE+2(Q)

k
(Z R |+2C + X ”Rj”k"'zaj)“gllwk(ﬂ)

=0 j>k

()l gllwt@-
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Here, we have used (12); also note that s ranges only over finitely many
integers. From (14) it follows that T is continuous from W*(Q) to itself.
If

; d
= JBS —
(1s) ¥, T RB{ 05, 1¢)
and
(16) vi=Yv,

we have to check (3) and (4), or, after what we’ve done, just (9). Let k still
fixed. Let 0 < ¢ < k + 1. Then we calculate the traces

'Y t
(17) c= ¥ LR e Le)

th j=0 th

5 a s a
- jgoathj ((ps aVLg) - Bt ((Ps aVLg)
This is (9). Thus T has all the properties required in Theorem 1.1, except
possibly those relating to the case k£ = co. However, these are a conse-
quence of the properties for all k. Therefore, the proof of Theorem 1.1 is
complete.

REMARK 2.1. There is an abstract argument which gives an operator
T=: W*(Q) - Wg°(Q), such that ST* = S, for S as in Theorem 1.1. We
briefly indicate it, as it has some interest of its own. Again, it suffices to
treat the case S = Q. Moreover, we only need to find a right inverse 7 for
Q: W(R) » h*(Q), then T := TQ will do the job, since Q is continu-
ous from W*(Q) — h*(Q) ([2]). To find this right inverse, consider the
sequence

(18) 0 = kerQ — W(2) 3 h(2) - 0.

It is exact (for the surjectivity of Q, see [12]). Now A*(Q) = C*(bQ), by
the Poisson extension, which in turn is isomorphic to s, the space of
rapidly decreasing sequences ([14], Theorem 2.3). It is easy to show that
kerQ = W3°(R), which is again isomorphic to s ([14], Theorem 2.3).
Therefore, Vogt’s splitting theorem ([13], Theorem 2.2, see also Theorem
1.3) applies and yields a continuous right inverse T of Q. The drawback of
this approach is that it does not yeild exact preservation of differentiabil-
ity (measured in Sobolev norms) for T.
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3. Prescribing infinitely many normal derivatives. In this section, we
construct the operators R/ with properties (10), (11) and (12) of §2. With
the help of a partition of unity and local flattenings of the boundary, we
reduce the problem to the case where & is a euclidean half space,
Q= {(x,t) € R" X R/t > 0} (m here does not denote the same integer
as in the previous sections). This causes no problems as far as properties
(i) and (ii) (i.e. (10) and (11)) are concerned, but property (iii) needs some
attention, since cutoffs affect norms. Also, ||R’||, depends on the boundary
norms used, so it is not a priori clear that property (iii) is independent of
the choice of norm for the boundary Sobolev spaces. However, for both
problems the relevant norms are estimated by factors C;,, and considering
a new sequence & := (sup,.;C,)a; (a similar “diagonal process’ was
used in §2) shows that (iii) i1s preserved. With these considerations done,
we only state the result in the setting of a euclidean half space.

THEOREM 3.1. Let (a;)7 be an arbitrary sequence of positive numbers.
Then there exists a sequence (R’)3 of operators defined on W~-*(R™),
valued in W~ (), such that for all k € N:

(1)
(1) R’ is continuous from W*=I=12(R™) to WK(Q), j=0,1,2,...,
(i) for 0 <s <k -1,

¥ 1 _ [0 ifs#j .
(2) Bt“RaRm—{a ifs = j=0,1,2,....

(i) If ||R/||, denotes the operator norm of R’ as an operator from
WE=I=V2(R™) to WK(Q), then

(3) Y IR [xe; < oo.

j=0

REMARK 3.2. We identify b2 with R™. The left side of (2) is under-
stood in the sense of traces. These are well defined for 0 < s < k — 1,
since R/a € W (Q).

Proof. First note that

4) wkQ)= {ulu € 2%((0, ), W (R™)),

ak 2 0 m
Pt € £%((0, ), WO(R ))}.
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Here, #?((0, ), E) denotes the space of square integrable E-valued
functions on (0, c0), with norm

00 ) 1/2
(5) Juleromn = ( [ Iu()zar) "

Equality in (4) means “same elements and equivalent norms”, i.e.

) 1/2
dt
wOoR™)

For a proof, see [10], Theorem 7.4, Chapter 1. We identify the Sobolev
space W*(R™) in the usual way with its Fourier transform, consisting of
all functions a(§) which are square integrable with respect to the weight
(1 + |§)1)*dE. Thus u € L2((0, 00), WER™)) is an L2 function with
respect to ¢ with values in a weighted % -space with respect to £, and the
norm (5) becomes

3 )

otk

o 2
(6) | ]| wrc) = (fo ‘(”u(t)”Wk(R'") +

(M) Nulleq.conw @y = (fow(fkm Ju(t,£) (1 +|£|2)kd£) dt)l/z.

After these preparations, we are ready to define the R/. For a €
W —=(R™), set

(8) Ria(t, £):= ;—;q)(ﬁjt(l +167)%)a®)
with
(9) B;=max(1,(j%)e;)

@ is a fixed [0,1]-valued function in C°(R), supported in [-1,1], and
identically 1 on [-1/2,1/2].

Clearly, R/a € W-=(Q). Fix now k € N. Assume that a €
Wk=i=1/2(R™). To show (1), we shall use (4). For ¢ € (0, c0) fixed, the
right-hand side of (8) is in W*(R™), since a is locally integrable and ¢ has
compact support. So R/a is a W*(R™)-valued function on (0, 00); it is
easy to see that it is smooth. To estimate || R/al|;+.q,, We have to estimate
the right-hand side of (6). The first contribution is (after squaring (6)):

1) [“IRiat,&) [yt = | [ 1Rt 011 +1¢) " de | a
=f0°° fw (tjz!;ﬂz(ﬁjt(l +|£[2)1/2)|a(£)|2(1 +[g[2)"dgdt.
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Since supp ¢ C [-1,1], we are in fact only integrating over the subset of
(0, 00) X R™ where

(11) B(1 +|¢|

Using this and Fubini’s theorem, the last integral in (10) can be estimated
by

(12) /R(f“*’ (H'ﬂ)mdt) 1+|£1‘)+|§1)|a(£)|2d£

e 2me (O +1el)

1

= ——~——-——||a|l wk=I—172R™).

241, .
(B)7 ()
The calculation for the second contribution in (6) is essentially the same.
Note that

(13) aitk?Rja ;)tk( t/ (,Bt(l +[§|) ))a(&)

(£ (B ) mr+1er

<[ S (elr +16)) ot

Therefore, in order to estimate

A =0

it suffices to consider the terms

00 [ (el [ e (et +165)
x B242(1 +1£17) a(e) I dtdr.

For s > j, the integrand is 0, so nothing needs to be estimated. For s < j,
(14) may be treated exactly as (10), and we find that it is estimated by

(15) o

)1/2

dé

2
dé dt,

a2,
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where C, is a constant depending on k only. This shows property (i) of
the theorem. From (12) and (15), we also read off that

C
(16) IR/ < —=.,
(8)"™"
with a different C; (note that 8, > 1). Thus
‘ a;
17) Y IR ko, < C X
j=0 =0 (B;)

Now for j > k, (B8;)’~* = B, = (j)’a,, so that the right-hand side of (17)
is finite. This proves (iii).

To prove (ii), we first observe that the trace of 3°R’a/d¢* on R™ is the
limit, in Wk~ s=1/2(R™), as t, - 0%, of the traces on the hyperplanes
t = t, ([10]). Since 0 < s < k — 1, this convergence takes a fortiori place
in WOR™) =2%R™). Thus the trace we look for is the .#*limit, as
t—> 0" of

s Y 1/2
(18) oo +16) ) ato)
Because the limit exists, we may calculate it by taking the pointwise limit
a.e.; but this limit is 8, ,a(£), since for 7 small enough, @(8,2(1 + [£]>)/?)
= 1 (because £ is fixed). This proves (ii), and the proof of Theorem 3.1 is
complete.
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