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Taomas 1. VOGEL

Given a bounded open set & C R* with C>** boundary and a
monotone increasing function f(¢) with f(0) = O, this paper treats two
related exterior free boundary problems:

Problem A: Given A > 0, determine u € C}**(R" — Q) satisfying:

(1.1) Au=Af(u) inR'-Q
u=1 on 9%,
Problem B: Given ¢ > 0, determine v € CZ**(R" — Q) satisfying:
(12) Av=f(v) inR"-Q
v=rc on 9{).

In both problems, the free boundary is the boundary of the support of the
sought function.

Problem A comes from the Langmuir-Hinshelwood model for chemi-
cal kinetics (among biochemists this is known as Michaelis-Menten kinet-
ics) ([1],[2]). € then represents a patch of constant concentration of a
reactant diffusing into a substrate. Problem B has appeared in a paper by
Caffarelli and Spruck [3], in which they show that if € is convex, then the
level surfaces of u are convex surfaces. A special case of Problem B
appears in continuous hot-dip galvanizing ([9]).

Section 2 is concerned about existence and uniqueness for fixed ¢ or
A. From this point of view, Problem A is contained in Problem B,
therefore in this section we deal only with Problem B. The results follow
easily from the work that has been done on the interior problem
([5],[7),(8]). With this as a starting point, we attempt to determine
characteristics of the free boundary. The main thrust of this paper is to
show that in R?, as A — 0 (Problem A) or as ¢ = oo (Problem B), the
free boundaries are asymptotic to a family of circles. By this we mean the
following. Let p be a point in {, let d( p) be the distance from p to the
point on the free boundary closest to p, and let d,(p) be the distance
from p to the point on the free boundary farthest from p. Thenas A — 0
(Problem A) or as ¢ — oo (Problem B), the ratio 4,(p)/d( p) approaches
1. Thus, if we scale the picture so that the point on the free boundary
closest to p is at distance 1 from p, then the free boundary in this scaled
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picture approaches a unit circle uniformly. No assumption of regularity is
made on the free boundary. This fact has been proven in Problem B for
F() =X (>0 (9D where x, is the characteristic function of U. This is
the limiting case as p — 0 of f(¢) = t”. It is therefore a natural generali-
zation to consider the problem for more general f’s. The behavior of
problem A as A tends to infinity has been analyzed in [5].

If the constants ¢ and A are allowed to vary, then Problems A and B
are not the same. Indeed, the only case in which the problems are
equivalent is when f(¢) = kt? for ¢t > 0. In that case, a solution to
Problem B may be scaled to solve problem A with A = ¢?~!. For general
functions f(¢) the two problems are distinct. They are similar enough,
however, that the methods overlap greatly. Section 3 obtains the asymp-
totic result for Problem A, and in §4 the appropriate changes are made to
obtain the analogous result for problem B. The argument in §3 uses
radially symmetric solutions for comparisons. The proof uses the concept
of asymptotic independence, and gives a partial answer to the question: if
a family { Fr(x)} is asymptotically independent of R for large x, under
what conditions will the family of inverse functions { Fz'(y)} be asymp-
totically independent of R for large y? One can think of this question in a
more concrete fashion: if the asymptotic expansion of Fr(x) as x = o
has no R dependence in the highest order term, will this also be true of
the inverse function Fz'(y)? Without futher conditions, the answer is
“no”, as shown by the example of §3.

The reason that the methods of the present paper do not extend to
n > 2 is that the integral equation which corresponds to (3.3) clearly has
asymptotic dependence on R in higher dimensions.

2. Existence and uniqueness. We will deal with Problem B in this
section, since if A and c are fixed, problem A is a special case of problem
B. Let £ C R” be a bounded open set with C>** boundary, and let f()
be a continuous function defined for all € R have the following proper-
ties:

(a) f(t) is monotone increasing
(b) f(t)=0fort<0, f(¢£)>0fort>0
(2.1) (c) f(tr)is C'exceptatt =0

(d) liﬁ}%=kforsome0 <p <landsome0 < k < o0.
t

Let ¢ be a positive constant. We will show that the there exists a function
v € CZt(R" — Q) solving equation (1.2), that is, solving Problem B.
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To do this, we need the following existence lemma.

LEMMA 2.1. Let U C R" be a bounded open set with C*** boundary, let
f(t) be as above, and let ¢(x) be a non-negative element of H(U). Then
there exists a unique function w € C**%(U) with (w — ¢) € H}(U) which
is a classical solution of

(2.2) Aw = f(w) in U.
Here a; = min(a, p).

Proof. The existence proof is much the same as the analogous result
for f(w) = w” in [7]. The existence of a weak solution is shown varia-
tionally by minimizing the functional

_ [ (lvef
J(v) _fﬂ (‘T + F(v)) dx, veKk,
where F(t) = [{ f(s)ds, and K, = {v € H{(Q)|(v — ¢) € H}(Q)}. The
argument that this is a classical solution is the same as in [7]. Uniqueness
comes from Theorem 9.3 of [6] since f(¢) is monotone.

Lemma 2.1 implies uniqueness for the solution of Problem B im-
mediately. Indeed, if 4, and u, both solve (1.2) and have compact support
then we can let U = B, — 2, where B, = Bg(0) is a large enough ball to
contain supp(u;) U supp(u,). Then u; and u, will have the same boundary
values on U, so that we can apply Lemma 2.1.

To prove the existence of a solution to problem B, we must find a
solution wy, to (2.2) with U = B — @ and boundary values w, = ¢ on 9%,
wg = 0 on 0B, and then show that R, sufficiently large,

supp(wg,) N 0By = &.

We will then let u be the extension of wg by zero.

LEMMA 2.2. Suppose §) C &, C By. Let u;, i = 1,2, solve (2.2) with
U, = By — 2, and with boundary data
e on 3,
710 ondBg

Assume c, = c,. Then u,(x) = uy(x).

Proof. Since u,; is subharmonic, u,(x) < ¢; < ¢, on 9{,. We may
now apply Theorem 9.2 of [6] in U,.

Assume for simplicity that 0 € . From the above lemma we may
conclude the following: If & C By C B and v solves (2.2) with boundary
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data

¢ ond
$= {O on By’

then v is less than the radially symmetric function w(x; R, R;) =
w(|x|; R, R,) which solves (2.2) in By — ﬁRl with boundary values ¢ on
0B, and 0 on Bg. Thus, to show the existence of a solution to (2.2) it
suffices to show that given R, there is a value of R sufficiently large to
ensure that supp(w(x; R, R,)) N 3B, = &.

LeMMA 2.3. If (w; R, Rl) solves:
W+ w—(w) R, <r <R,
w(R,) =c

w(R)=0
then for R sufficiently large, w(r; R, R;) = 0 for R* < r < R. Here R* =
R*(c, Ry, f). (Of course w"” + w’/r is the radial Laplacian.)

Proof. By property (2.1), (d) of f(t), we must have f(¢) > bt? on [0, c]
for some b > 0. Let

1 20+ p) ,_
R* = c1=p/2 4 Rv

1-p b
and assume R > R*. I will prove that this suffices. Define x(r) by:
B p o \Va-» .
1 - 2/(1-p) * _ /(1~p) *
x(r)= ( p) —_’——2(p+1) (R r) r<R

0 R*<r
One can verify that:
x"(r) = bx? on[R;, )
x(R)) =c
x'(r)<0 on [R,, )
Thus x”(r) + (1/r)x'(r) < f(x(r)) on [R,, o0). From Theorem 9.2 of [6],

the comparison principle for quasi-linear elliptic operators, x(r) = v(r)
on [R,, R]. This gives the desired result.

THEOREM 2.4. Given a bounded @ C R" with C*** boundary and a
function f(t) satisfying properties (2.1), (a)—(d), there is a solution to
Problem B.
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Proof. Find R, so that € C B, . Let w(x) solve (2.2) with U =
Breerp) — © and boundary values ¢ on 92 and 0 on dBge(c r, ) From
Lemma 2.3, supp(w) N 0Bz. = @. Extend w(x) to the rest of R” by zero.
The result is the desired function v(x).

DEFINITION. The set I' = 0{u > 0} is called the free boundary. On T
we have u = 0, |Vu| = 0. No regularity claims are made for I'. The usual
regularity results ([4], Chap. 2) do not apply the case f(0) = 0.

3. Asymptotoc behavior of Problem A as \ approaches zero.

LEMMA 3.1. Let 2, C 2, be bounded open sets and let A, > X,. Let u;
solve Problem A corresponding to Q. Then u,(x) > u,(x) everywhere.

Proof. We have
Auy — N, f(w) = Auy — Ny f(u,) = 0.
Moreover, if supp(u,) U supp(u,) € By, u;(x) < u,(x) on (B, — 2,),
from the subharmonicity of ;. We therefore can apply Theorem 9.2, [6]
for the desired result.

As in [9], we will use radial solutions to gain insight into the
asymptotic behavior of general solutions. We will see that as A tends to
zero, the free boundaries are asymptotic to a family of circles, as in the
simpler case considered in [9]. For reasons which will become clear later
on, we set 1/pu = A, and we therefore consider the radially symmetric
problem:

(3.1) wi(r) +3w(r) = 21(w(r)) on[R,o0)

w(R) =1
sup{rlw(r) > 0} = g < 0,

where p and R are given, and ¢ is determined uniquely by p and R, so
that we write ¢ = Gg(p). We must first show that as p tends to infinity,
so does gq.

LEMMA 3.2. lim, ,  Gp(p) = co.
Proof. We seek y(r) to solve:
(3.2) y”+%y=%ﬂh R<r<R

y(R)=1, y(R)=0, y(R)=0.
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Here R is determined by the requirement that (3.2) has a solution, so that
R = R(p). One can integrate (3.2) explicitly to obtain:

_IM[R-R (_13)
= 7 + R*log 7|
and that y’ < 0 on (R, R).
As p tends to infinity, it is clear that R must become infinite. We
must now show that G(p) > R(p). But this is clear, since

Ay = 2(3) > bw = f(w).

If Gp(p) < R(p), then w(R) =y(R) =1 and w(R) = y(R) = 0. This
implies that w(r) > y(r), a contradiction.

To show that the free boundaries are asymptotic to a family of circles,
it 1s necessary to show that the highest order term of Gr(p) as p tends to
infinity does not depend on R. To make this idea precise, we must make
the following definition.

DErFINITION. A family of functions Hg(x) parametrized by R is
asymptotically independent of R as x tends to infinity if:
lim Hr(x)
x—o00 H Rz(x)

for any R,, R, in the parameter set.

Thus we seek to show that Gi(p) is asymptotically independent of R
as p tends to infinity. To do this, we must rewrite (3.1) as an integral
equation:

q 4
P
w(r) = —f(w dpdt.
(= [ [ 2/ 0e(e)) do

Changing the order of integration:

w(r) = fr" [’ 2 1(w(p)) dedp

f(w(p))

_ [ fw(p) (7 f(w(p))
—/; plogp p dp /rplogr u dp.

Hence,
(33  p= f: plogof(w(p)) dp — log R fR" of (w(p)) dp,

since w(R) = 1.

We will need to use g as a parameter, therefore it is necessary to show
that two solutions of (3.1) with the same value of ¢ and of R but possibly
different values of p are in fact identical.
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LeEMMA 3.3. Suppose that w,(r) and w,(r) solve (3.1) with the same R,
but with p., and p., not necessarily equal, and that the corresponding q’s are
equal. Then p, = p, and wi(r) = wy(r) forallr > R.

Proof. First we must show that if w(r) solves (3.1), then w’(r) < 0 on
(R, q) and w”’(r) > O on (R, g). Rewrite (3.1) as

d , r
Lw(r) = 21w

it is clear that rw'(r) increases to a value of zero at r = q. Hence
w/(r) <0 on (R,q). The fact that w”(r) is positive on this interval
follows immediately from (3.1).

Now, we may assume that p, < p,. It follows that w,(r) > w;(r) for
all r from Lemma 3.1. Suppose w,(r) > w,(r) for some r € (R, q).
Define ws(r) = wy(r — §), so that

" r ., 1
ws + r—3w8=[1,_1f(w5)
ws(g+8)=0
ws(R + 8) = 1.

For & sufficiently small we must have w,(r) > w;(r) for some r € (R +
d, q). However,

- fn) 2 0,

1=ws(R+8)>w,(R+8), and ws(q) > w,(gq) =0.

It therefore follows that ws(r) > w,(r) on (R + 8, g), which is a con-
tradiction. Hence w,(r) = w,(r) for all r € (R, q), so that p; = p,.

It follows from this lemma that solutions to (3.1) may be parame-
trized by R and g, and that for fixed R the function g = Gx(p) has an
inverse. From (3.3), this inverse can be expressed as:

(3.4) = Gil(q) =f: plogof (w(p; g, R)) dp

-logRj: pf(w(p; g, R))dp,

where we write w(p; g, R) to indicate the dependence of w on the
parameters ¢ and R. I will sometimes use p(g, R) instead of Gi'(q).
They are the same. We will see from this integral representation that
Gr'(q) is asymptotically independent of R for large g, and then use an
inverse lemma to show that G.(p) is asymptotically independent of R for
large p.
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LEMMA 3.4. For all r > R, with R fixed, limq_,ww(r; q,R) =1, and
lim q_,oow'(r; q,R) = 0.

Proof. This is obtained by a shooting argument. We first need a lower
bound on w(R; q, R) independent of g if g is sufficiently large. Let b(r)
solve

b’ + ~1—b’ =1, b(R)=1, b(2R)=0.
From Lemma 3.2, as ¢ tends to infinity, so does u. Therefore, for ¢ > 2R
sufficiently large, we have:

Aw(r; q,R) < Ab, w(R;q,R)=>b(R), w(2R;q,R)> b(2R),

hence w'(R; g, R) > b’(R) for q sufficiently large, the desired bound.
For any subsequence ¢; tending to infinity, we can, by taking a
subsequence, assume that lim; , w'(R; g, R) = L with b'(R) < L <0.

Let z(r) be that function which solves:
z” + %z’ =0, z(R)=1, z/(R)=L.

By the theorem on continuous dependence of solutions of O.D.E.’s on
their parameters, w(r; gq;, R) approaches z(r) almost uniformly on the
domain of existence of z(r), call it [R, R,). It remains to be shown that
R, = + oo0. From the almost uniform convergence of w(r; g;, R) to z(r),
it follows that z’(r) < 0 and z(r) > 0 on [R, R,). Hence z”(r) > 0, so
that L < z’(r) < 0 for all r € [R, R,). But this implies a bound on z(r)
as well. Thus, by well-known existence theorems, R, = + oco. We there-
fore have z(r) satisfying:

z”(r) + %z’(r) =0, z(R)=1, z(r)=0, z(r)<0

for R < r < + o0. It is easy to see by an explicit integration that z(r) = 1
is the only solution. This implies the desired result.

LeMMA 3.5.

iy —JAPf(w(piq, R))dp  _
g—~o [§ plogpf(w(p; ¢, R))dp

Proof. Integrating by parts:

/R‘I of(w(p; q,R))dp = (-Rw'(R; g, R))u(q, R,
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and
f: ologof(w(p; g, R)) dp = (1 — Rlog Rw(R; g, R))u(g, R).

Since R is fixed, the result follows immediately from Lemma 3.4.
LEMMA 3.6. If R, > R, then p(q, R,) < p(g, R).

Proof. Suppose that p(gq, R;) > p(g, R). Define ws(r) =
w(r — 8; q, R), with § > 0, so that

” L 1
Ws (r) + r— aws(r) = #(q R)f(ws(’”)):
implying that

144 1 ’
Wi (r) + 1wi(r) 2

o /o) 2 S 1 (0))

the last inequality by our assumption. Now set § to be R, — R. We have:
ws(R;) =1 =w(R;q,Ry)
amd
ws(g+ R, — R)=0=w(q+8;q,R,).

By the comparison principle for quasi-linear elliptic operators, we must
have

ws(r) < w(r; q, R,)
But this is contradicted at r = g.

LEMMA 3.7. If R < R, <'r, then
w(r;q,Ry) 2 w(r; ¢, R).

Proof. Define w,(r) = w(r — &; g, R,), for ¢ > 0. Then:

’” l ’ 1 1__
We + we = M(q, Rl)f(we) = [L(q,R)f(ws)’

r

the last inequality from Lemma 3.6. Suppose for some 7 € (R, + ¢, q), we
have

w(#) < w(#; g, R).
Since w,(q + &) = w(q + € q + & R) = 0, it follows from the comparison
principle that

w,(r) <w(r;q,R)
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for r € (7, q + €). However, this is violated at r = q. We therefore con-
clude that
w(r) > w(r;q,R)

for all r € (R + ¢, ¢q). Now let ¢ tend to zero to obtain the desired result.

LeMMA 3.8. The family of functions p = Gg'(q) is asymptotically
independent of R as q tends to infinity.

Proof. From Lemma 3.5 and equation (3.4), it follows that to prove
asymptotic independence of G'(g), we must show that
[# plog pf(w(p; q, R)) dp is asymptotically independent of R for large gq.
We must examine the quotient

J& plogpf(w(p; g, R)) dp
& plogpf(w(p: q,R,))dp
with R, assumed to be larger than R. Integrating by parts, this is:
p(g, R)[1 — Rlog Rw'(R; ¢, R)]
(g, R))[1 — R log Riw'(Ry; ¢, Ry)]

From Lemma 3.4, the quantities in brackets in both the numerator and
denominator approach 1. Therefore, using Lemma 3.6,

901 .

liminf JAPlogp/(w(p; g, R)) dp

s~ [{ plogpf(w(p; g, R,))dp
Now, write (3.5) as
(3.6) [& plogpf(w(p;q,R))dp  [# plogpf(w(p; g, R))dp
"7 J& elogef(w(ps g, Ry))de  [{ plogef(w(p;q, Ry))dp’

By Lemma 3.7 and the monotonicity of f, the second fraction in (3.6)

is bounded from above by 1. We must therefore prove that the first
fraction in (3.6) goes to zero. But this is clear, since the numerator is

bounded by | [& plogpf(1) dp), and the denominator grows like u(g, R;).
By this argument,

(3.5)

751 ‘g.R
lim sup J& plogpf(w(p; q,R))dp <1
g—w A plogpf(w(p;q,R,))dp

Hence

. [dplogpf(w(p;q,R))dp _
a—w [§ plogpf(w(p; g, R,)) dp
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We therefore conclude that

. Gr'(q) _

1,
9o Gr'(q)

i.e. that Gz'(q) is asymptotically independent of R as g tends to oo.

We must now use the asymptotic independence of Gz'(g) to establish
the asymptotic independence of G(p). One might think that this follows
immediately; that if y = gp(x) is insensitive to the value of R as x (and
y) tend to infinity, then x = gz!(y) should exhibit the same property. A
simple counter-example is gg(x) = R + logx, so that gz!(y)=e’ "k
Here gx(x) is clearly asymptotically independent of R, and just as clearly
we have asymptotic dependence on R of gz'(y). We must therefore
derive conditions which will imply the asymptotic independence of the
family of inverse functions and shown that these conditions are satisfied
in our particular case. The following lemma is more tractable for x
tending to infinity than for x tending to zero, which is why we use the
parameter p rather than A.

LEMMA 3.9. Suppose that the family of functions Fgp(x), defined for
x > R, satisfies:

(a) lim, _,  Fr(x) = oo forall R

(b) Fr(x) is positive and monotonically increasing in x for fixed R

(¢) { Fr(x)} is asymptotically independent of R as x tends to infinity

(d) (Fr(x + Ax) — Fp(x))/Ax 2 Fp(x)/x

for all x, R, and Ax for which these quantities are defined.

Then the family { Fg'(y)} is asymptotically independent of R as y tends

to infinity. ( Notice that no differentiability assumptions are made on Fp(x).)

Proof. From condition (d), we have:
Fr(x + Ax) — Fp(x)
Fr(x)
for all x, R, and Ax for which these quantities are defined, including
Ax =0. Fix R and R,, with R, > R. Pick y > max(F(R,), Fg(R)),
and let x = F,{ll(y). Let Ax = Fgl(FRl(x)) — x. (The choice of y ensures
that Fp (x) is in the domain of Fy 1). Putting these particular values of x

and Ax into (3.7) we obtain:

FRl(x) — Fp(x)
Fr(x)

Ax

(3.7) :

Fl(y) = Fgl(y)
F(y)

(3.8)
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As y tends to infinity, so does x = Fg Y(y) from assumption (a).
Therefore, from assumption (c), the left hand side of (3.8) must approach
zero. We conclude that:

F—l
lim () =1,

y=wo Fgl(y)

establishing the lemma.

Note. Condition (d) can clearly be weakened by inserting a multiplica-
tive constant depending on R.

LemMA 3.10. u(gq, R)/(q — R)? is monotonically increasing in q for
fixed R.

Proof. Take Ag > 0. Define s(r; q) to be u(R, g)w(r; g, R), so that:
s

” l/_ 2
ST _f(u)’

and consider the inhomogeneous scaling

r(q,R) _ ova.
zg(r) = w(q + Aq,R)s(R +(r— R)B;q + Aq).
We have
1 p(g+ Aq,R)Z,, 1 p(g+ Aq,R) 1 y
B> n(g,R) B pu(g,R) R+(r—R)B*
f(u(q,R) )
Set
u(q +Aq,R)
A= \/ u(q,R) ’
so that
’” 1 Z, _ Z,B
Y R/u(q,R)/u(q + &g, R) +(r—R) * f(u(q,R) )

We have that p(g, R) is increasing in g for fixed R from Lemma 3.1, so
that

z”+lz’>f(——z'8 )
B r =\ n(q,R)
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and

Using the comparison principle for quasi-linear elliptic operators, we
conclude that

zg(r) < s(r,q).

Now, zg(r) is first zero at

. p(g, R)
P=R+ ., —/—2—2 _(g+Ag—R)<q,
\/u(q+Aq,R) (g+2g-R)<gq

the last inequality since s(#, q) > 0. Hence
p(g,R) - _ p(g+ Aq,R)
(g-R)* (g+Aq-R)

2 b
as desired.

THEOREM 3.11. The family of function {Gg(p)} is asymptotically
independent of R as p. tends to infinity.

Proof. We must verify that each of the conditions of Lemma 3.9 hold
for the family { Gz'(¢)}. Condition (a) follows from Lemma 3.2. Condi-
tion (b) comes from Lemma 3.1. Condition (c) is proven in Lemma 3.8. It
remains for us to prove that condition (d) holds. First assume that
Ag > 0. From Lemma 3.10, we have

n(g+A4q,R)  p(q,R)
(g+Aq-R) ~ (g—R)

thus
u(g+Aq,R) _ p(q,R)
g+ Aq—R gq— R’
implying
(¢ — R)(p(q + Aq, R) — p(q, R)) > Agu(q, R).
That is,

Gi'(g + Ag) = Gi(9) _ GiMa) _ Gi(a)
Aq g-—R q
The proof for Ag < 0 is similar. This establishes condition (d) of Lemma
3.9, proving the theorem.
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THEOREM 3.12. Let @ C R* be a bounded open set with C*** boundary.
Let v,(x, y) solve Problem A, and let T, be the corresponding free boundary.
Then as N tends to zero, T, is asymptotic to a family of concentric circles
with center in . Moreover, the rate of growth of these circles depends only
on A, not on Q. To be precise, if

d(Ty.p) = int dist(p.q) and dy(Ty.p) = sup dis(p.q)
qE1 geT,

for some fixed p € Q, then

1.
A—-0 dl(r)n P)

Proof. Let B,( p) be a ball of radius r, contained in Q with center p,
and let B,( p) be a ball of radius r, containing . From Lemma 3.1, T, is
contained in the annulus with center p, inner radius G,(p) and outer
radius G, (p) (herep =1 /A). From Theorem 3.11, we have

i G.(p) _
p-w G (1)

L

completing the proof.

4. Asymptotic behavior of Problem B as ¢ approaches co. Proving
the result analogous to Theorem 3.12 in the case of problem B involves
much the same chain of logic as in §3. I will therefore omit proofs when
they are obvious modifications of those lemmas in §3. We will need an
assumption of f(¢) in addition to assumptions (2.1), (a)—(d).

(¢) lim, ., f(1)/1 = 0.

LEmMMA 4.1. Let @, C Q, be bounded open sets and let c, > c,. Let v,
solve Problem B corresponding to ,. Then v,(x) = v,(x) everywhere.

Proof. See Lemma 3.1.
The radially symmetric functions z(r) for problem B solve:
(1) () +2(r) = /(z) on(R,w)

z(R)=c¢>0, sup{r|z(r)>0}=g< .

Here R and c are given, and ¢ is determined uniquely by R and ¢, so we
write ¢ = Hy(c). We must show that ¢ tends to infinity, so does g.
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LeMMA 4.2. lim ., Hp(c) = oo.
Proof. Let y(r) solve:
(42) 7+ 15 = f(c)

7(R)=c¢, y(R)=0, y(R)=0.
Integrating (4.2) explicitly, we get
R*-R* R, (R c
0———‘a—°——+§—log('§) +RE‘)~.
By assumption (e), c¢/f(c) = oo, therefore we must have
lim,_,  R(c) = o0.Asin Lemma 3.2, Hp(c) = R(c), proving the lemma.

LEMMA 4.3. Suppose that z,(r) and z,(r) solve (4.1) with the same
value of q, but possibly differing R,, R, and c¢,, c,. Then z,(r) = z,(r)
where they are both defined.

Proof. As in Lemma 3.3, z’(r) <0 and z”(r) > 0 on (R,q). Let
zg(r) = z;(r — 8) for § > 0. Then

r” 1 14
zg + ~ 23 > f(zp).

If z4(?) < z,(#) for max(R,, R,) < } < g, then it follows from the com-
parison principle that z4(gq) < z,(q), since z4(q + 8) = z,(q + 8). But
this is a contradiction. Hence z4(r) = z,(r) on their domain of mutual
definition. Letting 6 tend to zero, we obtain z,(r) > z,(r) for
max(R,, R,) <r < gq. But since z; and z, are not distinguished, we
obtain z,(r) = z,(r).

Note. This result is much stronger that Lemma 3.3, the analogous
result for Problem A. Using Lemma 4.3, we may parametrize solutions to
(4.1) by ¢ and R. The analog in equation (3.4) is:

(4.3) = Hz'(q)
q q
=fR plogpf(z(p; q,R)) dp - longR pf(z(p; g, R)) dp,
where 1 will sometimes write ¢(g, R) for Hz'(q). Of course c(gq, R) =

z(R; q, R).

LEMMA 4.4. Forallr > R,

tim Z0GR) gy g ZiaR)

= = (.
g— 0 C(q,R) ) C‘(q,R)
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Proof. Let y(r) = z(r; q, R)/c(q, R). We have

(4.4 yrry =<f(@),  pR)=1.

From assumption e) on the function f, we have that the right hand side of
(4.4) approaches zero as ¢ tends to infinity. This is enough to ensure that
the shooting argument of Lemma 3.4 works.

LeEMMA 4.5.
i JAPf(z(pig, R))dp _
g~ [Eplogpf(z(p;q,R))dp

Proof. Integrating by parts, this fraction is:
~Rz'(R; ¢, R)
c¢(q,R) — Rlog Rz'(R; q,R)’
from which the result follows by Lemma 4.4.

LEMMA 4.6. Hz'(q) is asymptotically independent of R as q tends to
infinity.

Proof. From Lemma 4.5 and equation (4.3), it follows that to
prove asymptotic independence of Hgz'(gq), we must show that
[f plog f(z(p; q, R)) dp is asymptotically independent of R for large g.
This is an easier task than proving Lemma 3.8, because of the strength of
Lemma 4.3. We must examine the quotient:

J& plogpf(z(p;q,R))dp
Suplogpf(z(p;q,R))dp”

Write this as

___f"plogpf(z(p;q,R)) dp

1
7(e(a. R) e
R, f(z(p; g, R))
J, preee Ry

(4.5)

The denominator of (4.5) is bounded, by the monotonicity of z and of
f. The numerator of (4.5) can be written as:

c(q,R) |, _2(R;q,R)
f(c(q,R))[ (g, R) RleR|

after an integration by parts. By Lemma 4.4, the quantity in brackets
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approaches 1 as ¢ tends to infinity. By assumption (€) on f;
. _c(q,R)
lim —~—~— = oo,
Uil f(C(q, R))

since lim ,_,  ¢(g, R) = . Therefore the numerator of (4.5) approaches
infinity, so that:

lim

q—>

( [# plogpf(z(p; g, R)) dp ) _
z plogpf(z(p; g, R))dp
Therefore, for R; > R,
(ffe’, plogof(z(p; ¢, Ry)) dp)
J& plogpf(z(p;q,R))dp
J& plogpf(z(p; 4, R)) dp
(h?‘ plogpf(z(p; g, R)) dp + [£ plogpf(z(p; g, R)) dp)

lim

q— 0

= lim
g—> o0

= 1.

We have used the fact that z(p; g, R) = z(p; ¢, R,) for r > R,. This
demonstrates the asymptotic independence of [f plogpf(z(p; g, R))dp
and hence of Hz'(q).

To show that Hy(c) is asymptotically independent of R for large c,
we must verify that the hypotheses of Lemma 3.9 hold. This is done by
proving a result analogous to Lemma 3.10.

LeMMA 4.7. ¢(q, R)/(q — R)? is monotonically increasing as a function
of q for fixed R.

Proof. We use an inhomogeneous scaling which differs from that of
Lemma 3.10. Take Ag > 0 and let:

wy(r) = az(R +(r— R)(q—tqsf—_ql;—R), q+ Aq,R),

so that w,(q) = 0, w.(gq) = 0. We have that:

1( g—R )2 p
=W
alg+Agq—R

o

wa

TR+ -R)(q +1Aq - R)/(¢ - R)) (%)(‘1 +q;‘1€ R) ’
o)
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Now choose @ = ((¢ — R)/(q + Aq — R))?, so that:

., 1
Ma T R((¢—R)/(q + Ag— R)) +

Since w, < 0, it follows that:

TR = ) 2 10,

a

w) + %w; > f(w,).

I claim that w,(r) > z(r; g, R). Indeed, if this were not the case, we can
let wg(r) = w,(r — 8), so that

wi' + —};wg > f(w;).

If wy(?) = z(%#; g, R) for some 7 < g, then we can use the compari-
son principle to say that ws(q) < z(q; ¢, R) = 0, since wy(g + 8) =
z(q + 8; g, R). But this is a contradiction, because w;(g) > 0. There-
fore ws(r) > z(r; q,R) for R+ 8 < r < gq. Now let § - 0 to conclude
that w (r) = z(r; g, R). At r = R this implies:

- R 2
(m) z(R;q + Aq,R) = z(R; ¢, R),

yielding the desired result.

THEOREM 4.8. The family of functions { Hy(c)} is asymptotically in-
dependent of R as c tends to infinity.

Proof. Same proof as Theorem 3.11.

THEOREM 4.9. Let @ C R? be a bounded open set with C*** boundary.
Let w(x, y) solve Problem B, and let T', be the corresponding free boundary.
Then as ¢ — oo, I, is asymptotic to a family of concentric circles with center
in Q. The rate of growth of these circles does not depend on ).

Proof. Same as the proof of Theorem 3.12.
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