
Pacific Journal of
Mathematics

THE ABEL-JACOBI ISOMORPHISM FOR THE SEXTIC
DOUBLE SOLID

GIUSEPPE CERESA AND ALESSANDRO VERRA

Vol. 124, No. 1 May 1986



PACIFIC JOURNAL OF MATHEMATICS
Vol. 124, No. 1,1986

THE ABEL-JACOBI ISOMORPHISM
FOR THE SEXTIC DOUBLE SOLID

GIUSEPPE CERESA AND ALESSANDRO VERRA

Let X be a double cover of P3 branched along a sextic surface S.
Using a method of Gemens and Letizia, in this paper we show that, for
general X, the Abel-Jacobi map associated to the surface F of curves
contained in X which are preimages of conies "totally tangent" to S,
induces an isomorphism between the Albanese variety of F and the
intermediate jacobian of X.

0. Let / : X -» P3 be a double cover of P3 branched over a smooth
sextic surface S. Let F(X) be the Fano variety parametrizing "conies"
contained in X; i.e., rational curves C Q X such that C = /*(C) is a
reduced degree 2 plane curve, and /*/*(C) = C + /*(C), where / is the
involution associated to / . For generic 5, F( X) is an unbranched double
covering of the variety F(S) parametrizing conies which are totally
tangent to S; i.e., conies in P3 having everywhere even order contact with
the branch locus S.

After showing that, for generic X, F(X) is a smooth irreducible
surface, in §3 of this paper we prove that the Abel-Jacobi map

a: Mb(F(X))-* J(X)
between the Albanese variety of F( X) and the intermediate Jacobian of
X, is, for generic X, an isomorphism. The proof is based on Clemens'
method, as described in [3], [5], [7]; in particular see [10] p. 478. As for the
motivation for studying the map a, and all the necessary definitions, the
reader is referred to the introduction of most of the papers cited in the
references, and in particular to the survey article [4].

In §1 we study the variety F(S). In particular, using elementary
deformation theory, we show that, for generic S, F(S) is a smooth
irreducible surface. In addition, in the space P83 of all sextic surfaces, we
describe the codimension-1 locus parametrizing singular F(S). More
precisely, we show that this subset is the union of two hypersurfaces, A\
and B'; A' corresponding to special sextics (see Def. 1.2), and B'
parametrizing singular sextics. For S = generic point of A', F(S) will
only have isolated singularities. In §2 we discuss the case of a sextic
surface with one ordinary node. In this situation, for general S, F(S) is
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singular along the curve F(S)0 parametrizing totally tangent conies

passing smoothly through the node of S: here we show that F(S)0 is a

smooth irreducible curve. Also, in this Section we construct the normaliza-

tion n: F(S) -* F(S) of F(S), and in F(S) we identify the preimage

F(S)0 of F(S)0.

Finally, in order to show that a is an isomorphism, it is enough to

prove that, modulo torsion, the cylinder map γ: H1(F(X), Z) -> H3(X, Z)

is an isomorphism. Clemens' method reduces this assertion to the verifica-

tion of a series of facts concerning the rational family of Fano varieties

{F(Xt)} (t G P 1 ), associated to a general family {Xt) (t e P 1 ) of sextic

double solids (see Prop. 3.2). This is done in §3, using the results from the

previous two sections.

We end this introduction recalling a few general facts concerning

(sextic) double solids. Let F = 0 be the equation of the sextic surface S.

Then, the double solid X is nonsingular if, and only if, S is nonsingular.

Denoting with E the line bundle 0p 3(3), then / factors naturally as a

closed embedding and a bundle projection:

X <-+ E

(0.1) \ J / /

P 3

In this way X is identified with the zero scheme in E of T2 - F e

i/ o (£,/*0p 3 (3)) , where T= fibre coordinate; and S is defined inside X

by the equation T= 0 [compare 11,pp.7-9]. So, setting ΘE(n) =/*0 P 3(«),

we obtain the following identification:

(0.2) ΘE(X) = ΘE(6), ΘX(S)^&X(3)

and, for the sheaves of relative differentials:

Finally, setting H = /~ X (P 2 ) , where P 2 c P 3 is a generic plane, from the

exact sequence

(0.3) 0 -> 7*0^3 -> Q\ -> Ω /̂pa -> 0

we get Kx = cx(Ώι

x) = -AH -h 3H = -H.

This shows that X is a (hyperelliptic) Fano three-fold of index 1, and

of the first species, since, by a Lefschetz type theorem and the fact that X

can be realized alternatively as a smooth hypersurface of degree 6 in a

weighted projective space J P ( X O , . . . , X 3 , Γ ) where deg(.x,) = 1 for / =

0, . . . , 3, and deg(Γ) = 3, Pic( X) = Z [9].

Throughout this paper we work over the field of the complex num-

bers.
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1. Let 2£d be the variety parametrizing the pairs (C,H) where

H c P 3 is a plane and C c i/ is a degree d > 1 cvrve. Since ^ is a

P^-bundle over the dual space (P 3 )*, where N = (d+

2

2)-l, 2d is a non

singular irreducible variety of dimension iV H- 3.

In P 3 ( Λ : 0 : X 1 : X 2 : J C 3 ) consider the (general) sextic surface S defined

by the equation:

(1.1) h0x
6

0 + hλx
5

0 + • - +/z5x0 + g 2 g 4 + g3

2 = 0

where /z/9 / = 0,. . . , 5, resp. gj9 j = 2, 3, 4, are generic forms in xl9 x2,

x3 of degrees /', resp. j . Then, on the plane Ho = {x0 = 0} the equation

g 2 = 0 gives a conic Co which we define as totally tangent to S. By

Noether's theorem <30 = {g2g4 + g\ = 0} is the equation of a general

plane sextic with a totally tangent conic Co; moreover equation (1.1)

defines a general sextic surface, as one can also verify by counting

parameters.

DEFINITION 1.2. We say that a sextic surface is special if it admits a

totally tangent conic such that, with the above choice of coordinates,

Assume from now on that the sextic S does not contain a plane. Set

F(S) = {(C, H) e ^ 2 : C is totally tangent to 5}

= {((C, # ) , (G, if)) e ^ 2 X <T6: C is totally tangent

to the plane sextic G = H S]

If Θ c ^ 2 X «Ŝ 6 is the incidence divisor,

(1.3) S = {((C,if),(G,if)): C is totally tangent to G)

and /71? /?2 are the natural projections, then, as a scheme F(S) = 2

X Sf\ where y c ^ 6 is the variety parametrizing the plane sections

of S.

LEMMA 1.4. <© ώ a 29 dimensional irreducible variety.

Proof. We will show that all the fibres of pλ are irreducible and of the

same dimension. In fact, if (C, H) G <3Γ2, then pϊι(C9 H) = sextic curves

in H = P2(x1 : x 2 : x 3 ) totally tangent to C. Assuming C = {g2 = 0} and

choosing coordinates as in (1.3)

( + ) Gepίι(C,H) iff G=
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where, if R = C[xv x2, x3] = ®Rd, then gk<ΞRk. If (xλg29x2g29

x3g2, Wo,..., W6) is a basis for i?3, let W = vector subspace generated by
W09...9W69 then, the squaring map between W and R6 induces the
Veronese embedding υ: P(W) -> P(i?6). In P(Rβ) let N be the 14-dimen-
sional linear subspace of curves containing C as a component. Then we
have

(-I-) iff G belongs to the pencil a(g2g4) + bg\ = 0

iff G lies on the projecting cone Fof lm(υ) from N.

Finally, since Im(y) Π N = 0, V is 21 dimensional and irreducible.

REMARKS, (a) One can also check that

Sing(<@) = {(G, H) <Ξ 9: G contains a conic}

(b) Notice that Sing(K) = iV; for, the intersection of N and Sec(Im(t>))
is empty. In fact, it is known that for the Veronese embedding T of P",
dim(Sec(Γ)) = In instead of 2n + 1; moreover a pencil {ag\ + bf^ = 0}
(g3, f3 G W) cannot intersect the linear system N.

(c) From the previous remark we have that 2£2 X Sf and & are
smooth along their intersection provided S does not contain a conic. Since

X S?) + dim(^) = 2 + dim(^2 X &6), F(S) is smooth and 2-di-
mensional at P iff 2?2 X ^ and <® intersect transversally at P.

Using elementary deformation theory, we would like to compute the
dimension of the tangent space to F(S) in 0 = ((Co, Ho), (Go, Ho)).

The local deformation of 0 in 2£2 X <2Γ6 is given by:

(1.5b)

where (g2, t/^. . . , ί/5), (g4, F l 9 . . . , F14), (xλg29 x2g2, x3g2, g3, W^,..., W6)
are bases of the vector spaces i?2, i?4, and i?3 respectively, h is a generic
sextic plane curve, in particular not possessing totally tangent conies, and
(th, uh up wk9 r, s, tr

h, u\) G A38 = parameter space of the deformation.
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Now, to get linear deformations, we multiply by ε the parameters and

compute modulo ε2. Then, from (1.5a) and (1.5b) we obtain the following

linear system of curves:

(1.6)

14

+ g32 + g 2 Σ ^ + g 4 Σ **& +

6

'/Λ<o = Σ
Λ - l

The local deformation of 0 in 2) is obtained from (1.5a) and (1.5b)

setting

(1.7) r = 0, th = t'h,h = 1,2,3, and ιι, = ι*;, i = 1,...,5

Together (1.6) and (1.7) describe the tangent space T@o.

On the other hand, in «2"2 X S? the local deformation of 0 is given by

(1.5a) together with the following equations:

(1.8)
o\ Σ t'i

\Λ = 1
3

+ h<
3

= 0

Λ - l

Writing the parameters of (1.5b) as polynomial functions of (t"y tf{, t'ζ)^

with the identifications th = t^ h = 1, 2, 3, the family of curves (1.8)

becomes, in a natural way, a subfamily of (1.5b). From equations (1.5)

and (1.8) we see that 7^2χ^ i0 £ ^2x^6,o c a n be identified with the linear

system of plane sextics:

(1.9) • • > ( * * •

3

<o= Σ

Since in TF(S)S) 0 Π Γ^o we have the following:

PROPOSITION 1.10. Dim(Γ F ( 5 ) 0 ) > 3 //, and only if, either

(a) S is special, or

(b) the variety V(hS9 g2, g3, g4) defined by the ideal (A5, g2, g3, g4) w β

non-empty set.
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Proof. First, notice that dim(Γ F ( S ) 0 ) > 3 iff T& Xt9,£ ίΞ ^i,o Then,

since we are inside the linear subspace of A38 defined by uι = u\, i =

1, . . . , 5, tJ = t'j9 j = 1, 2, 3; this last condition is equivalent to the fact

that the family of plane sextics (1.9) is contained in the family (1.6) where

r = 0. Thus, h5(Σ3

h = ιthxh) c (g2,g3?g4) Case (a) follows from this (by

Macauley's theorem [8] p. 599) when {g2 = g3 = g4 = 0} = empty, and

(b) simply because S is singular in 0 e V(h5, g2, g3, g4), Λ4(0) = 0 and

(1.6) is the linear system of plane sextics passing through 0.

REMARK. If S has a node in 0, then every totally tangent conic

smooth in 0 satisfies condition (b) of the proposition. Notice that, passing

through 0 there are finitely many tritangent lines. Any two of these

tritangents give a reduced totally tangent conic singular in 0. However, for

generic S with a node, these conies do not satisfy condition (b), because in

this case one gets g4(0) Φ 0, so they correspond to smooth points of F(S).

Next, we want to show that, for generic S, F(S) is a smooth

irreducible surface.

If P 8 3 is the projective space parametrizing all sextic surfaces in P 3 ,

consider the correspondence:

9t % P 8 3

(1.11) ,A

where & = {((C, //), (G, # ) , S): H S = G}.

Set D = q\(Ώ), and let qo i = 1, 2, also denote the restriction to D

of the projections in (1.11).

LEMMA 1.12. D is an irreducible variety.

Proof. This follows from Lemma 1.4 since all fibres of q2 are

isomorphic to P 5 6 .

Now, in D consider the subset T defined as

T= { 0 e Z ) : d i m ( 7 > ( S ) f O ) > 3 }

and let A, resp. B, be the locus defined by the condition (a), resp. (b), of

Proposition 1.10.

LEMMA 1.13. (i) A is irreducible, codim(^4) = 3, codim(5) = 2 and

T = A U B\
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(ii) qx*(A) = A\ qλ*{B) = B\ where A' parametrizes the set of special

sextics, and Br the set of singular sextic surfaces',

(iii) codim(Λ' Π B') > 2.

Proof. With the same notation as in the previous lemma, set 0 =

q;ι(0) = linear system {Qx0 + t(g2g4 + g3

2) = 0} ^ P 5 6 ,

where Q e i/°(P3, 0p3(5)), and ί e C. Also,

^ ( O ) ΠΛ = linear system {x2i> + * o ϊ / + ί(g 2g 4 + g3

2) = θ},

where P e 7/°(P3, ^ ( 4 ) ) . If /5 = (g2, g3, g4) then U e /5 c i?5. Since
dim(/5) = 18, and dim i/°(i/, 0^(5)) = 21, it follows that qϊ\0) Π A ^
P 5 3 , so ̂ 4 is a codimension 3 irreducible variety. In particular, codim(yl')
> 1. Also, S e "̂HO) Π 5 iff V = K(Λ5, g2, g3, g4) # 0 . Since Singί̂ S)
2 F, <3Ί(5) = 5'. In addition, codim(5) = 2. For, on the one hand,
Y = q2(

B) Q ® is an irreducible divisor. In fact, if p = ((C, i/), (G, Jϊ))
e ί c f 2 χ j 6 , then V Φ 0 implies V(I) Φ 0 then Sing(G) # 0 and
C Π Sing(G) # 0 . So,

y = {((C,H),(G,H))<=9: Sing(G) # 0 and C Π Sing(G) ^ 0 } .

Since pλ(Y) = «2̂ 2ϊ
 a n ( ^ i n YPΐ/γ(C> H) ι s a n irreducible 20-dimensional

variety, we get that Y is an irreducible divisor on 2). On the other hand,
u5 with PM

55 = linear system {x2

0P + x0h5 +
w h e r e / € C, P ^ H\V\ ΘΨ,{A)\ hs^R5 a n d

5

To see (iii), notice that A' % B\ For, consider the linear system
{xlP + JC0Λ5 + g2g4 + g3

2 = 0}, where P varies in H°(P\ Op3(4)), h5 e
(g2, g3, g4) and {g2g4 + g3 = x0 = 0} = G is smooth. Then each surface
of the system is special and, since the cone [g2g4 + %\ = 0} is non
singular along the base locus G, by Bertini's theorem, the generic element
of the system is smooth.

PROPOSITION 1.14. If S ^ (P 8 3 - (A' U B')) then F{S) is a smooth
irreducible surface.

Proof. By Lemma 1.13 we only need to show that F(S) is connected,
and this follows from the fact that codim(yl u B) > 2. For, if D° = D -
Sing(D) and q[ = u ° c: D° -> Ŵ  -> P 8 3 is the Stein factorization of the
proper morphism q[ = qι\D°, then, W is a normal variety and u is finite.
If there exists a fibre F(S) which is not connected, then the general fibre
of u will also be disconnected. Let K c P 8 3 be the branching divisor of ι/,
and K' = (q[)'ι(K) be the corresponding divisor in D°. Since, if p e ΛΓr,
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the differential dq[ is not surjective at p [1, p. 101], we must have
άim(TF{S)p) > 3, where S = qχ(p) Hence K' Q A U B which is impossi-
ble by Zariski's Theorem on the purity of the branch locus.

2. Throughout this section we make the following assumption.

Assumption 2.1. (i) S = singular sextic surface with an ordinary node
in 0(0:0:0:1) as its only singularity;

(ii) S does not contain any conic.

REMARKS. (1) Notice that a surface S satisfying the above two
conditions is represented by a point of P83-(closed subset of codim > 2).

(2) The first assumption implies that the tangent cone to S in 0 has
rank 3. In this situation, if S is not special then F(S) is singular along the
locus parametrizing totally tangent conies through 0 and smooth there.

If σλ = blowing-up of 3£2 along the subvariety 3?\ of conies passing
through 0, and σ2 = blowing-up of iΓ6 along the subvariety <2Γ6

2 of sextics
singular in 0; then we want to use the product

n = ox X σ2

to normalize F(S).
I n P 3 X 2£2 andP 3 X 3?6 respectively, consider the "universal curve":

(2.2) 72: Λ - ^ 2 , jV Sβ^&β
where J?2 = {(*; C, H): x e C}, / 6 = {(*; G, H): x e G), and y2, j 6

are the restrictions of the natural projections. Let σ: P 3 -> P 3 be the
blowing-up of P 3 in 0. Choosing affine coordinates:

(2.3) z = XQ/X3, x = Xι/x3, y = x2/
x3

in the affine space A3 X A2 = ( c, y9 z; x\ y'), P 3 is defined by the
equations x = x'z, j = y'z. In A3 X ^ 2 X «2̂ 6 the subvariety f2 X ^ is
given by the affine form of equations (1.5a) and (1.5b). Now, in

(A3X A2)X(A3 OXA3)

= (x,y,z; x\y') x(th9ui9υj9wk,r9s; λ o , λ 1 ? λ 2 )

consider the variety^ birational to ^ , defined by the equations:

Qoo = λo^2

? Qio = λxz, βoi = λ2z

(2.4)

x = x'z, y = y'z
r \ 2 . •>! / , , / i /~\ ( , . r \ 2λ0 + λlX' + λ2y' + Q20(xf + Qnχ'y' + QO2(y')

+ Σ (*')V)V+>-2-0
3</+y<6
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where "LQijx
iyj = 0 is the first of the equations in (1.5b), written in affine

form, and Qu e C[κ,,υj9wk9r,s].
Denoting with j 6 : ββ-> A30 X A3 the restriction of the natural pro-

jection, then we have j6(J6) = && where <3?6 is locally given by the
equations:

(2.5) β o o ^ V f , βio = λi'3> βoi = λ2/3

and the restriction

σ 2 :JT 6 ^ ir 6

of the projection from A30 X A3 in A30 is a birational morphism. Also, the
following diagram commutes:

/6 -> A
(2.6) Λl iλ

ay ψ

Now, if Q G <2*6 and Q = σ2(β), set G = strict transform of
by σ. Except for the case in which the multiplicity of j^\Q) in 0 is greater
than 2, (j6)~ι(Q) is a curve and, either, if Q £ <3Γ6

2, this curve is biregular
to j^iQ), or, if Q e <2"6

2, is the sum G + #, where K = conic in the
exceptional plane σ'^O) and G Π K = G Γ) σ'\0).

In a similar way we construct β2 and i?2. There exists a commuta-
tive diagram:

(2.7) A A U
.2^ —> ^

where the t o p arrow is the blowing-up of </2 along ./2~
1(^21) I n (A3 x ^ 2 )

X (A 8 X A 1) = ( x , j , z; x ' , j ' ) X (wj, t'h\ λ ) the local equations of β2 are:

J?00 = λz, x = x'z, y=y'z

z = z(/(x' + / ^ 0 + t\

with i?/7 G C[w , ί̂ ] and ΣRijx
iyj is the first equation in (1.5a). If, as in

the previous case ]2 denotes the restriction to β2 of the canonical
projection; «#2 = j2{β2) is given by:

(2.9) Λoo = \t'v
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Again, if P G &2 and σx(P) = P, then (j2)~\P) is a curve, unless

j2

ι(P) is a conic singular in 0; and if P <£ 2£\, (j2)~ι(P) is biregular to

J2l(P)9 if P^&ϊ, (]2)-\P) = C + L. Here C = strict transform of

j2

ι(P) by σ, and L = line on the exceptional plane σ~1(0) and passing

through the point C Π σ'^O).

Set E = n~l(3?2

l x ^i) = exceptional divisor of n. For each point

β e ^ x j / , π '^β) = P1 X P3. If β = ((C, i/), (G, if)), with

multo(C) = 1, multo(G) = 2, then ft'^β) parametrizes the pair of curves

(2.10) {L,K)9

K belonging to the web of conies through G Π σ'^O), and L element of

the pencil of lines through C Π σ^O). Let

(2.11) f\S) = strict transform of F(S) by «,

and denote also with n the restriction ftJ^OS). Given g G F(S), we

would like to compute the tangent space to F(S) at Q.

By Proposition 1.10 and the remark following it, we have that for

generic S, Sing(F(S)) = {Z\ X iT6

2) F(S) - (&2

2 X ^ 6

2 ) F ^ j v h e r e

2Zj = (conies singular in 0). Set E' = (E - rc\2£l X ^ 6

2 )) F(S), then

F(S) - Ef is biregular to F(S) - Sing(F(S)). If Q G £ r and /i(β) = β

= ((C, //), (G, if)), then g E ^ x ^ 6

2 because G is a plane section

through 0.

Let 2) and SP be the strict transform of 2 by π and of ^ by σ2

respectively, then

We compute now the local equation of 3) and S2 X ^ in an open

subset of &2 X <#6 containing β. Notice that (2.9) and (2.5) are the

equations of &2 X <#6 in (A8 X A1) X (A30 X A3).

(A) Local equations of Sf.

The exceptional divisor of n\Q) is

E 2= {(L,K):L is tangent to K }

( L , K, as in (2.10)). Thus, 3) has equations:

(2.12) r = 0, M, = M;, I = 1, . . . ,5; ίΛ = ί;, A = 1 , 2 , 3 .

plus the tangency condition:

(2.13) X2(b2 - 4Q02c) + λi-lb^Rl, - λ2R0lRl0) - 4cR0lλ2)

+ (const, term) = (in short) Aλ2 + Bλ + K = 0
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between the line λ + R10x' + ROλy' = 0 and the conic

λ0 + λ^' + λ 2 / + Q20(xf + Q02(yf + Qnxy = 0.

In (2.13)

b = δ n + 2 β 0 2 i ? 1 0 , c = ^01620 "~ Gii^io + ^01602-

From now on we assume Rω = u'3, so that the hyper-surface

(2.14) u3 = λί 3

contains 2d.

(B) Equations of 2t2 X ̂ .
Writing the equations (1.5b) in the affine form:

Σ = 0, z = 'Γ* + 2̂ J + t'l

j /Γ» /£', /?], in ^ 6 ̂  is given by:

(2.15) Pij(ti,t2,h)=Qu 0+JZ6)

(after the trivial substitution th = t'^ h = 1, 2, 3). Since 5 is singular in 0,
if divides PQQ, and /3 divides P01 and P 1 0 , hence the equations:

(2.16) Poθ = λO, PO1 = λ 2 , Λθ = λ l 9 Λ y = β / y ί + 7 = 2,

define the strict transform of & in <#6.

If /ι(β) = origin of A30 X A8 and β e 5 2 χ y , then the coordinates

of Q in A38 X A4 are obtained setting λ 0 = h40, λλ = h5V λ 2 = Λ52,

λ = λ' or λ'', where

ί f = {Λ40z
2 +(A 5 1 x + Λ5 2^)z + g2lg41 + gl = 0}

is the tangent cone to S in 0, and λ', λ" are the roots of (2.13). Set:

F(S)0 = inverse image of F(S)0 in F(S).
Then, one can compute that if the coefficients A9 B, and K of (2.13) are
identically 0, either rk # < 1 or rk <€ = 2 and the conic C is tangent to the
intersection of the two components of # . Hence, by our assumption on £,
equation (2.13) defines a finite, branched double covering

n\F(SJ0 = n0: F(SJ0-> F(S)0.

PROPOSITION 2.17. Let S be a general sextic surface with one node,
then the tangent map:

is injectiυe, unless Q is a branch point for n 0 .
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Proof, To simplify notation, we write F for F{S\ Q = (Q\ Q") e «̂ 2

X <2Γ6, and use similar notation for the preimages. Consider the tangent
map

Notice that the second map in the product is an isomorphism since σ2 is
biregular in SP. For, Sf is smooth in «3Γ6, ίΓ6

2 Sf is a divisor in ^ , and
σ2 blows-up (an ideal of) <3Γ6

2. Since the fibre of σ1 is P1, dimker( JσJ^, =
1. Thus, driQ is injective unless Λ = ker^α^g, X (0) c Tp Q. NOW, inside
A38 X A4 3 Q, A can be identified with the line through Q obtained by
varying the coordinate λ (recall that λ is a local parameter on P 1 =

Since, in the above affine space, F is given by the equations (2.12),
(2.13), and (2.16); Λ c Tpg (affine tangent space) iff Λ is contained in
the tangent hyperplane in Q to the hypersurface (2.13). This happens iff
λ' = λ"; i.e. iff the two inverse images of Q by n0 coincide.

PROPOSITION 2.18. Let S be a general sextic surface with a node, then
F(S)0 is a smooth irreducible curve.

Proof. In order to prove the proposition, it suffices to produce one
sextic surface S such that F(S)0 is a smooth irreducible curve.

Take a general quartic threefold (in short q.t.) 7 c P 4 with two
nodes, say U9 V. Let F(Y) = Fano variety of conies contained in 7,
F(Y)U (resp. F(Y)V), be the closed subset of conies passing through U
(resp. V) and smooth in that point (cf. [10]). Then, applying the proof of
[10, Lemma 1] to the linear system ^{U, V) of q.t. which are singular in
U9 and V, we get, for general F, that F( Y) is a reduced surface. Moreover,
F(Y)V is a smooth connected curve (hence irreducible). To see this,
consider the linear system <&( V) of q.t. singular in V. In <&( V) there is a
divisor whose general element correspond to a q.t. with exactly two nodes
as its only singularities. If Z c <3/(V) is the subset of q.t. Y such that
F(Y)v is singular, then it follows from [10 Lemma 3] that codim(Z) > 2.
So, we can find a point V and 7 G <&(V) such that F(Y)v is smooth and
the only singularities of Y are the nodes U, V. By loc. cit. Lemma 4, and
Zariski connectedness Theorem, F(Y) v is connected for all Y e <8/(V).

Now, fix homogeneous coordinates (xo:x1:x2:t:x3) on P 4 so that
U= (0:0:0:1:0), V(0:0:0:0:1) and Y has equation

( + ) G2t
2 + G3t + G4 = 0.



THE ABEL-JACOBI ISOMORPHISM 97

Let σ = blowing-up of P 4 in f/, TΓ = projection of P 4 from U onto
P 3 = {t = 0}. If Ϋ is the strict transform of Y by σ, then π\Y extends to
a 2:1 map π: Ϋ -> P 3 branched over the sextic surface 5 = discriminant
locus of (+ ). Since Y is general in ^(U, V\ the only singularities of S are
a node in 0 = ττ( F) = (0:0:0:1) plus the 24 points defined by {G2 = G3

= G4 = 0}. We define now an embedding of F(7) in F(S) c ^ 2 . Let
W = variety of conies of P 4 which are smooth in U and let w:

TF -> W be the blowing-up of IT along the subvariety Wι of conies
passing through U. As for the case of «#2 studied in (2.7), one can show
that W parametrizes the following family of curves in P 4 :

{σ- 1 (C),forCe W - W1} u{C + L , f o r C e W1} = M UN

where C = strict transform of C by σ and L c σ~ι(U) is a line through
C Π σ~ι(U). Notice that all the curves of the above family are locally
complete intersections in P 4 .

Now, the map π induces a morphism p: W -> 3?2 such that:
(a) ί f m G M parametrizes σ~ι(C), then p{m) = π*(C);
(b) if n G N corresponds to C H- L, then p{n) = point parametrizing

the singular curve 7r(C) + Z/, where L' = π(h), h = 2-plane containing
the lines parametrized by L.
Notice that ττ(C) Π L' = π (line tangent to C)

Let F( Y) be the strict transform of F(7) in W. We claim that

is a smooth injective morphism; so pf embeds F(Y) in F(S). An
elementary computation of parameter shows that a general Y neither
contains two conies having the same image under TΓ, nor a plane section
through U and V which is a conic counted twice. This implies that p' is
injective. To see that p' is smooth, consider / G F(Y). Then, either / e M
or / G iV. Using the notation introduced in (a) and (b), let H denote
either the hyperplane containing C and C/, or the one containing U, π(C)
and ZΛ Let ^ = strict transform of H in P 4 , H2 = strict transform in IF
of the variety of conies contained in H. Since the fibre p~ι(p(f)) is
contained in H2, to show that pf is smooth we need to show that
Tfj2j Π Tμffij = (0). This is equivalent to saying that the component of
T7(γ)*f a l° nS the direction fl"2 is (0). This component is clearly identified
with H°(f9 Nf/K), where K = H 7 and / = curve corresponding to /,
and since K is a ϋ 3 surface, it is 0. Notice that / (F(Γ)) = F' = F(S) -
(lines counted twice). Also, one easily verifies that F = / ( F ( y ) ) U P 3 ,
where P 3 = projective space of all conies totally tangent to S which are
obtained intersecting each plane in P 3 with the tangent cone {G2 = 0} to
Y'mU,
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Consider now a general family { S : , Z E A = unit disc} of sextic
surfaces which are singular in 0, and such that So = S. By Proposition
1.10, we can assume dim(F(SZ)) = 2 for all z Φ 0. In 2ί{ = 2?2 - {lines
counted twice), consider the Zariski closure F of the surface Uo^μj^i
F(SZ)O - P 2 , where P 2 c P 3 is the subfamily of conies parametrized by
the above P 3 and passing through 0.

The fibre over 0 of the natural morphism q: F -> Δ is the curve
F(Y)0, which is smooth and irreducible. So, the same must hold true for
the general fibre of q.

PROPOSITION 2.19. Let S be a general sextic with a node, then:
(i) F(S) - I is smooth, where I = {Q e F(S): n(Q) is a branch

point for nQ};
(ii) j / β e F(S)0 and n'\Q) = {QVQ2} with Qx and Q2 distinct,

then Tλ Π T2 = TF{S)oQ, where Ti = dn(T^)Q), i = 1,2. In particular
Π T2) = 1. '

Proof. As in the proof of Proposition (2.17), set Q = (£>', β"), F(S)
= F, etc. Clearly, to prove the proposition, it suffices to show that F is
smooth along Fo - /. Assume Q e Fo, Q = origin in A30 X A8. Recall
that locally

and that n is the restriction to F of the linear projection onto {λ = λ 0 =
λx = λ 2 = 0}. Hence, as a linear morphism of affine tangent spaces,
dnQ \TpQi = 1, 2, is just the same projection. Also, since Qλ Φ Q2, these
two restriction maps are injective (see Proposition 2.17). Now, by (2.14), F
is contained in {u3 — λt3 = 0}; so it follows that in A30 X A3, 7\ c {u3

- λ't3 = 0}, T2 c {u3 - λ"t3 = 0}, where λ' (resp. λ") is the λ-coordi-
nate of Qλ (resp. Q2). On the other hand, it is clear from §1 that

Tχ U T2 C TF Q — (0) X TcfQ , C T^ Q C T^Q, X T^Q,,.

Moreover, TFQ c TΘQ is identified with the linear subsystem of ( + )
Tg Q = {linear system (1.6) + (1.7)} given by (in the affine coordinates
introduced in (2.3))

( + + ) SISA + U + *s(Ί* + hy + h) = °> z = tιX + t2y + t3.
Thus, 7\ (resp. T2) is the intersection of (4- + ) with the linear subsystem
M1 (resp. M2) of ( + ), obtained substituting u3 with λ73 (resp. λ"ί3).
Clearly, dim 7] = 2, ι = 1, 2, iff the above intersections are proper iff

F = Mx n τFQn{t3 = 0} = M 2 n 7> f β n{ ί 3 = 0}
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is 1-dimensional. Since locally in F, Fo = {t3 = 0}, it follows that F =
(dn)Qι(TPoQi) = (dn)Q2(TpoQ2). By Proposition 2.17, Q is a smooth point
for Fo; since «0 is unramified in g, Qx

 a n d (?2 a r e smooth for Fo and
dim(F) = 1.

As in Proposition 2.19 set

/ = (branchpoints of H 0 } , / = n~ι(l).

We show that F(S)0 has ordinary double points in /, that F(S) is
not normal along / and that each Q e / is a double point for F(S). In
particular, the normalization of F(S) in Q is smooth and Q has two
distinct preimages.

To see this consider the double covering

(2.20) /: X -> P 3

branched over S. X has an ordinary double point in V = f~\0) and no
other singularities. If C is a curve parametrized by a point c e f(S) then
/*(C) splits; i.e.,

(2.21) /*(C) = C + C"

where deg(//Cr) = deg(//C") = 1 and C, C" are connected. This de-
fines a double covering

(2.22) g:F(X)->F(S)

where

F(X)= {C\C as in 2.21}

and g sends the points corresponding to the curves C, C" to the point c.
Since no conies lie in S g is unramified.

Then consider the cartesian square

σ

X -* X

(2.23) / | 1/

where σ blows up P 3 in 0, σ blows up X in F and desingularizes it. If

(2.24) T = f-ι(σ-ι(0)) = exceptional divisor of σ

then T is a smooth quadric surface. Moreover f/T: T -> P 2 = a-1(0) is
branched over the smooth conic

B = SΠ σ-ι(0)9
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(S = strict transform of 5). Notice also that the lines of the two rulings
on T are the preimages by / of the lines tangent to B.

Take now a curve D corresponding to a point Q of F(S); f*(D)
splits again in two copies of D. We want to point out what happens when
Q e F(S)0. In this case D = C + L, (with C = strict transform of a t.t.
conic smooth in 0, L = line tangent to B, C + L connected). Since /*(C)
splits in two copies C", C" of C we have

(2.25) /*(C + L) = C' + C" + Lx + L2

where C", C" are the strict transforms of C", C", /*(L) = Lx + L2 and
L1? L 2 are the lines of T through f~\L Π B). Also:

(2.26) σnc"=0 mcπB=0 mQeϊ.

In this case there exist exactly 2 (connected) copies of C + L which can
be obtained from 2.25. On the other hand, if C Π 5 = {P}, then C Π
C" Π Lx Π L2 contains a unique point P = f~ι(P) and there exist four
copies of C + L in /*(C + L). Set now

F(X) = (curves D c X:D is connected,

there is a commutative diagram

(2.27)

where h sends I) in δ(D) and g sends I) in f(D). Consider also the
commutative diagram of curves

A

i SO

- F(S)0
n0

where the morphisms are the restrictions of the previous ones. F(S)0 is
smooth by Proposition 2.18, g0 is finite; hence g0 is flat and, being
unramified, it is an etale double covering. In particular

(2.29) F( X)o is a smooth curve.

Notice now that the cardinality of the fibre of n0 is always 2; for, if
C" e F(X)09 then h~0\C) = C + L l 5 C + L2 (with Cr, Ll9 L2 as in
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2.25). Hence, by the same argument as above

(2.30) F( X)o is a smooth curve;

(in particular, from 2.27 and 2.30, we have also that F(X) is of pure
dimension). Now consider Q e /, by the discussion after 2.25

#gol(Q) = 4.

Then, since deg(g0) = 2 and F(X)0 is smooth, Q is an ordinary double
point for F(S)0 and

(2.31) / = Sing(F(S)0) = {nodes of F(S)0].

Moreover F(S) is not normal along / because deg(g) = 2 and #g~1(Q)
= 4, VQ e /. Consider the normalization diagram

F{X) Λ F{X)

(2.32) f* ii ig

- F(S) -» F(S)

where v is the normalization morphism. Notice that v is biregular on
F(S) - v~\ϊ) and that, for all Q G /, #v~\Q) = 2. Moreover, h0 is
clearly the trivial double cover, and

(2.33) F(S)v

0 is a smooth disconnected curve.

In addition observe that

(2.34) F(S)V is a smooth surface;

indeed, F(S)P

O is smooth along v'\ϊ) and locally complete intersection
on F(SY (its equation is v*t3 = 0).

From the above discussion we deduce the following propositions

PROPOSITION 2.35. Let S be a general sextic surface with a node, then

F( X)o is a smooth, irreducible curve.

Proof. From 2.11 we know that F{X)0 is a smooth curve. Let us
show that F(X)0 is connected. Since F(S)0 is irreducible F(X)0 is not
connected iff the double covering go:F(X)o -> F(S)0 is trivial. Denote
by Z c P 3 the strict transform by σ of the union of all conies parame-
trized by F(S)0. If g0 is trivial /*(Z) = Z' + Z", where Z', Z" are two
copies of Z and /*(Z') = Z" (/ = involution interchanging the sheets of
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Notice that, by [2], [9], Pic( Jp = Ze Θ ZΛ, (e = class of Γ, h = h -
e,h = pull-back of a plane by (/° σ)).

Take a general plane H c P3, (0 £ //), and set Λ = f-\σ(H)). A is
a smooth K3 surface and f/A: A -» 7/ is a double covering of #
branched on H Π 5. It is easy to see that, for a general S with a node,
H Π S is a general sextic curve. Hence Pic(^4) = Z and, for every plane
curve C c f f , (f/A)*(C) does not split. This is a contradiction because
(f/A)*(Z ΠH) splits.

PROPOSITION 2.36. Le/ S be a general sextic surface with a node, then
(i) every point Q ^ F(X)0 is a double point of rank 2 for F(X)\

(ii) assume P e F(X) 0 am/ {Pi,P2} = *~\P), then

where Tι (i = 1,2), w /Λe /mαge 6y J« o/ the tangent space to F(X) in Pr

In particular dim(7\ Π T2) = 1.

Proo/. By 2.34 F(S)V is smooth and gv is unramified so that F(X) is
smooth. F( X) is the fibre product of the morphisms g, r = n °v and r
normalizes F(S). Hence n is the normalization morphism for F(X). This
implies that each / ) G f ( I ) is a double point and that the number of
branches at p is always 2 (the same holds for F(S)).

We want to see that rk(Cp) = 2(Cp = tangent cone in p to F{X)). At
first consider Ά e F(X)0 - g~\I) and set {Άl9Ά2} = h'\Ά\ {QVQ2}
= n'\Q), 3Tt = 7 ~ Λ , Tt = TF(S)Qι (i = 1,2). Assume also that
= Qim By 2.32 the following diagram commutes:

Tl Θ T2 V 2

where hi = dhΆ, AIZ = dnQ, gz = dg^ (/ = 1,2). Observe that g is etale at
Qt because Qt is smooth in F(S) and #g" 1 (β / ) = 2. Hence g, is
injective. By Proposition 2.19 dim(Ker(«x — n2)) = dim(Im(«1) Π
Im(n2)) = 1, so that, since gj — g2 is injective, dim(Im(«1) Π Im(h2)) < 1.
On the other hand, since both F(X)0 and F(X)0 are smooth,
H l l ' "™ " I = Y) \ I ' "* *" ' I = / H P T ! Γ*P ΓiiΓΠl IΓΠI M 1 i i I ΓΠl M Ii —

lΛ F(X\ £1 ) 2v F(XΛ £1 / F(X\ £1' AJLCIIV/C' VJ.IIII^IIH^ Ati ^ i i i iii^Λί2yy —

1. This s°hows (i) and (ii) for all J ε F ( I ) 0 - g ' V ) - In order to prove
(i), (ii) for 2, e g - 1(/) use similar notation and also set t = T^τ)ΰ, It
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suffices to show that hι — h2 is surjective. Consider from 2.34 the

diagram
«l-«2 _

~ £2 1 i

T TQ

and observe that Im(dn)Q c Im(dg)£. Hence it suffices to show that

gλ — g2 is surjective. Since dg = dv ° dgv this is equivalent to saying that

dim(Im*>1 O \mv2) = 1 (*>, = dvQV, {£>;} = v~\Q), i = 1, 2). To see this

recall that F((S)0 has a node in Q: let W be the 2 dimensional vector

space spanned by the images in f if TF{Sγ Q^ TF{Sγ Q*. Since n(Q) is

smooth for F(S)0 we have Ker(J«^) c Ŵ, (cf. Prop. 2.17). Moreover

Im vi <£ W because n ° vt is injective (Im(« °vι) = lm(n ° v2) = tangent

cone in Q to F(S)). This implies dim(Im vγ Π Im v2) = 1.

3. Let /: X -> P 3 be a double covering of P 3 branched along a sextic

surface S. As in §2, set F(X) = variety parametrizing connected curves

C Q X such that

and call F( X) the /VI/IO variety of conies contained in X. Notice that, if X

is smooth, then C - (-Kx) = 2: for this reason we call C a conic. There is

a natural 2:1 morphism

(3.1) g:F(X)^F(S)

induced by /. If S is smooth, g is an etale covering except for points of

F(S) corresponding to conies contained in S.

As we mentioned in the introduction, the main result of this paper

will be a consequence of the following proposition.

PROPOSITION 3.2. Let {St} ( / E P 1 ) be a generic pencil of sextic

surfaces, and let { Xt) (t G P 1) be the corresponding family of double solids.

Suppose Xt is smooth except for t = tl9..., / = tn. Then there exist

tn + v...,tn + m^Pιsuch that:

(i) for / G P 1 - } ^ , . , . , ^ , , , , , tn + m}> F(Xt) is a smooth irreducible

surface',

(ii) for 1 < i < m, F(Xtn+ι) has only isolated singularities;

(iii) for 1 <j < n, F(Xt) is an irreducible surface which is singular

only along the curve F(Xt)Q of conies passing smoothly through the ordinary

double point of Xt. F(Xt)0 is irreducible, and along this curve F(Xt) is

analytically reducible in two smooth components meeting transversally.
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Proof. We can assume, for all t, that St does not contain any conic.
The smoothness of F(Xt) in (i) follows from (3.1) by Proposition 1.10.
Applying to a general curve of F(S) the argument used in the proof of
Proposition 2.35, one easily gets the irreducibility of F(Xt). To see (ii),
recall from Proposition 1.10 that the variety A parametrizing special
sextics, is of codimension 3 in the incidence correspondence. Thus, the
threefold swept out by the F(St) (/ e P1) will intersect A in at most a
finite number of points. Finally, (iii) is a direct consequence of Proposi-
tions 2.35 and 2.36.

THEOREM. 3.3. // X is a generic sextίc double solid, and F(X) is the
Fano surface of conies contained in X, then the Abel-Jacobi mapping a:
A\b(F(X)) -> J(X) is an isomorphism.

Proof. By [10 Prop. 2], the only thing that is left to show is that the
map a is not constant on F( X). For this, if C c X is a conic represented
by a smooth point of F( X), we will show that the codifferential a! of the
Abel-Jacobi map a: F(X) -> J(X), is not the zero map.

By [11 pp. 24-27], we have a commutative diagram:

H°{X,NX/E®KX) - Hι{X,Q2

x) = ίl

( + ) ri !«'

H°(C, Nc/E 9 Kx) -» H°{C, Nc/X)* =
P

where R is the residue homomorphism, r the restriction map, and βc fits
in the following exact sequence:

( + + ) o - Hι(Nc/x)* - H°(NC/E ® Kx) - H°(NX/E Θ Kx Θ Θc)

- H°(NC/X)* - Hι(Nc/E β Kx) -» Hι(Nx/E ®Kx®Θc)->0
βc

In our case, from (+) we get:

^ H21(X)

H°(C,ΘC(5)) -» H°{C,NC/X)*
PC

and, since Nc/E = 0C(1) Θ Θc(2) Θ 0C(3), we obtain from (+ + ) the
exact sequence

0 -+ H°(Θc(0) θ &c(l) θ Θc(2)) -> H°(ΘC(5))

7 H°{NC/X)* - 0
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Since r is clearly onto, it follows that a! o R is onto. From the isomor-
phism if °(P3, 0p3(5))// -> H2\X), where / = jacobian ideal generated
by the partial derivatives of the equation defining in P 3 the branch locus
5, it follows that a' is onto.

REFERENCES

[I] W. Barth and A. Van de Ven, Fano varieties of lines on hypersurfaces, Arch. Math.,
31 (1978), 96-104.

[2] C. H. Clemens, Double solids, Adv. Math., 47 (1983), 107-230.
[3] , On the surjectiυity of the Abel-Jacobi mapping, Ann. of Math.
[4] , Some results about Abel-Jacobi mappings, Transcendental topics in Algebraic

Geometry, Annals of Math. Studies, 1983.
[5] , Degeneration Techniques in the Study of Threefolds, in Algebraic Threefolds,

Varenna 1981, Springer-Verlag 1982.
[6] H. Clemens and P. Griffiths, The intermediate Jacobian of the cubic threefold, Ann. of

Math., 95 (1982), 281-356.
[7] A. Collino, The Abel-Jacobi isomorphism for the cubic fivefold, to appear in Pacific J.

Math.
[8] P. Griffiths, Complex analysis and algebraic geometry, Bull. Amer. Math. Soc, 1

(1979), 595-626.
[9] V. A. Iskovskih, Fano threefolds I and II, Math USSR, 11 (no. 3) (1977), 485-527;

12 (no.3) (1978), 469-506.
[10] M. Letizia, The Abel-Jacobi mapping for the quartic threefold, Inven. Math., 75

(1984), 477-492.
[II] G. Welters, Abel-Jacobi isogenies for certain types of Fano threefolds, Mathematisch

Centrum Amsterdam, 1981.

Received November 30, 1984. Both authors are partially supported by a grant from the
Italian Ministry of Public Education and the C.N.R. of Italy.

UNIVERSITA DI TORINO

VIA PRINCIPE AMEDEO, 8

10123 TORINO, ITALY





PACIFIC JOURNAL OF MATHEMATICS

EDITORS
V. S. VARADARAJAN HERMANN FLASCHKA C. C. MOORE

(Managing Editor) University of Arizona University of California
University of California Tucson, AZ 85721 Berkeley, CA 94720
Los Angeles, CA 90024 RAMESH A. GANGOLLI H. SAMELSON
HERBERT CLEMENS University of Washington Stanford University
University of Utah Seattle, WA 98195 Stanford, CA 94305
Salt Lake City, UT 84112 VAUGHAN F. R. JONES HAROLD STARK
R. FINN University of California University of California, San Diego
Stanford University Berkeley, CA 94720 La Jolla, CA 92093
Stanford, CA 94305 ROBION KlRBY

University of California
Berkeley, CA 94720

ASSOCIATE EDITORS
R. ARENS E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSHIDA

(1906-1982)

SUPPORTING INSTITUTIONS
UNIVERSITY OF ARIZONA UNIVERSITY OF OREGON
UNIVERSITY OF BRITISH COLUMBIA UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY STANFORD UNIVERSITY
UNIVERSITY OF CALIFORNIA UNIVERSITY OF HAWAII
MONTANA STATE UNIVERSITY UNIVERSITY OF TOKYO
UNIVERSITY OF NEVADA, RENO UNIVERSITY OF UTAH
NEW MEXICO STATE UNIVERSITY WASHINGTON STATE UNIVERSITY
OREGON STATE UNIVERSITY UNIVERSITY OF WASHINGTON



Pacific Journal of Mathematics
Vol. 124, No. 1 May, 1986

Kinetsu Abe and Martin Andrew Magid, Relative nullity foliations and
indefinite isometric immersions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

Erik P. van den Ban, A convexity theorem for semisimple symmetric
spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Bo Berndtsson and Thomas Joseph Ransford, Analytic multifunctions, the
∂-equation, and a proof of the corona theorem . . . . . . . . . . . . . . . . . . . . . . . . . 57

Brian Boe and David H. Collingwood, Intertwining operators between
holomorphically induced modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Giuseppe Ceresa and Alessandro Verra, The Abel-Jacobi isomorphism for
the sextic double solid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Kun Soo Chang, Jae Moon Ahn and Joo Sup Chang, An evaluation of the
conditional Yeh-Wiener integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Charles Dale Frohman, Minimal surfaces and Heegaard splittings of the
three-torus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Robert M. Guralnick, Power cancellation of modules . . . . . . . . . . . . . . . . . . . . 131
Kenneth Hardy and Kenneth S. Williams, On the solvability of the

Diophantine equation dV 2
− 2eV W − dW 2

= 1 . . . . . . . . . . . . . . . . . . . . . . 145
Ray Alden Kunze and Stephen Scheinberg, Alternative algebras having

scalar involutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
W. B. Raymond Lickorish and Kenneth Millett, The reversing result for

the Jones polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Guido Lupacciolu, A theorem on holomorphic extension of

CR-functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
William Schumacher Massey and Lorenzo Traldi, On a conjecture of K.

Murasugi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Dinakar Ramakrishnan, Spectral decomposition of L2(N\GL(2), η) . . . . . . 215
Steven L. Sperber, On solutions of differential equations which satisfy

certain algebraic relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .249

Pacific
JournalofM

athem
atics

1986
Vol.124,N

o.1

http://dx.doi.org/10.2140/pjm.1986.124.1
http://dx.doi.org/10.2140/pjm.1986.124.1
http://dx.doi.org/10.2140/pjm.1986.124.21
http://dx.doi.org/10.2140/pjm.1986.124.21
http://dx.doi.org/10.2140/pjm.1986.124.57
http://dx.doi.org/10.2140/pjm.1986.124.57
http://dx.doi.org/10.2140/pjm.1986.124.73
http://dx.doi.org/10.2140/pjm.1986.124.73
http://dx.doi.org/10.2140/pjm.1986.124.107
http://dx.doi.org/10.2140/pjm.1986.124.107
http://dx.doi.org/10.2140/pjm.1986.124.119
http://dx.doi.org/10.2140/pjm.1986.124.119
http://dx.doi.org/10.2140/pjm.1986.124.131
http://dx.doi.org/10.2140/pjm.1986.124.145
http://dx.doi.org/10.2140/pjm.1986.124.145
http://dx.doi.org/10.2140/pjm.1986.124.159
http://dx.doi.org/10.2140/pjm.1986.124.159
http://dx.doi.org/10.2140/pjm.1986.124.173
http://dx.doi.org/10.2140/pjm.1986.124.173
http://dx.doi.org/10.2140/pjm.1986.124.177
http://dx.doi.org/10.2140/pjm.1986.124.177
http://dx.doi.org/10.2140/pjm.1986.124.193
http://dx.doi.org/10.2140/pjm.1986.124.193
http://dx.doi.org/10.2140/pjm.1986.124.215
http://dx.doi.org/10.2140/pjm.1986.124.249
http://dx.doi.org/10.2140/pjm.1986.124.249

	
	
	

