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This paper treats the diophantine equation dV? — 2eVW — dW? =
1, where d and e are positive integers, by methods using the arithmetic
of the ring of the gaussian integers.

1. Introduction. We denote the integral binary quadratic form ax?
+ 2bxy + cy? by (a, b, c), and its determinant b?> — ac by m. We con-
sider only forms which are properly primitive, that is for which
GCD(a,2b,c) = 1, and indefinite, that is for which m > 0. Two forms
(a, b, c) and (A4, B, C) of determinant m are said to be equivalent if there
exist integers p, q, r, s with ps — gr = 1 such that

a( px + qy)2 +2b(px + qv)(rx + sy) + c(rx + sy)2
= Ax? + 2Bxy + Cy>.

If (a, b, ¢) and (A, B, C) are equivalent we write (a, b,c) ~ (A4, B,C). The
relation ~ 1is an equivalence relationship and the equivalence class
containing (a, b, ¢) is denoted by [a, b, c]. Composition of these classes is
defined by [a, b, a’c]*[a’, b, ac] = [aa’, b, c]. The set of equivalence classes
of forms of determinant m under composition is a finite abelian group.
The identity element of this group is the principal class [1,0, —-m] and the
inverse of the class [a, b, c] is given by [a, b, c]™! = [a, -b, c].

If m is of the form m = d? + e2, where d and e are positive integers
such that GCD(d,2e) = 1, the form (d, —e, -d) has determinant m and
the class [d, —e, —d] is such that [d, —e, -d]* = [d?, —e, -1] = [-1,0, m] [3,
Proposition 1]. If the equation x? — my? = -1 is insolvable in integers x
and y then [-1,0,m]# [1,0,-m] [3, p. 599] and so [d,-e,-d]#
[1,0, —m], showing that the equation dV'? — 2eVW — dW? = 1 is insolva-
ble in integers V and W. On the other hand, if the equation x2 — my? = -1
is solvable [3, p. 599], then [-1,0, m] = [1,0, -m], so that [d, —e, -d]*> =
[1,0, —m], in which case it may be possible that [d, —e,-d] = [1,0, -m].
Kaplan [4, Chapitre VIII] has shown that among all the representations of
m in the form m = d? + e?, GCD(d, 2¢) = 1, there is exactly one such
pair (d, e) for which [d, —e, -d] = [1,0, -m] holds, in which case dV? —
2¢eVW — dW? = 1is solvable in integers ¥ and W.
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In this paper we give a complete treatment of the solvability of the
diophantine equation

(1.1) AV —2eVW — dW? =1,

where d and e are positive integers. Our method uses the arithmetic of the
ring of gaussian integers rather than the theory of binary quadratic forms.

The equation (1.1) is clearly insolvable if d is even or if d and e have
a common factor > 1. Hence we may assume that d and e are positive
coprime integers with d odd. We note that d odd implies that m = d* + e?
satisfies m = 1 (mod4) or m = 2 (mod 8). In §2 we show that if m = d?
+ e? is a square then the equation (1.1) is insolvable (Theorem 1). When
m is nonsquare two cases arise according as the pellian equation

(1.2) x? = my? = -1

is solvable or not. In §3 we show that the insolvability of (1.2) implies
insolvability of (1.1) (Theorem 2). Assuming the solvability of (1.2), we
give in §4 a necessary and sufficient condition for (1.1) to be solvable in
terms of the minimal solution (x,, y,) of (1.2), that is the solution in
positive integers x and y with y least (Theorem 3). In §5 we show that
among all the pairs of positive coprime integers (d,e) with d odd
satisfying d* + e?> = m, where m is a fixed nonsquare positive integer for
which (1.2) is solvable, there is exactly one pair for which (1.1) is solvable
(Theorem 4). In the remainder of §5 it is shown how this unique pair can
be obtained as the solution of a linear congruence (Theorem 5). In §6 we
show how one solution of (1.1) can be used to give all the solutions. The
paper is concluded in §7 with some numerical examples.

2. m square. We begin by treating the case when m = d?> + e’ isa
square and prove the following theorem.

THEOREM 1. If d and e are positive coprime integers with d odd such
that m = d* + e*> =n* (n>0), then the diophantine equation (1.1) is
insolvable.

Proof. We suppose that (1.1) is solvable in integers ¥V and W.
Multiplyng (1.1) by 4 and completing the square, we obtain
(2.1) (dV — eW)’ — n?W? = d.
Factoring (2.1) we see that there exists a divisor ¢ of d such that
(2.2) dVv —(e+ n)W =1, dV —(e—n)W =d/t.
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Eliminating V" in (2.2), we obtain
(2.3) 2nW = —‘t-l— - L.

If W =0, from (1.1) we obtain dV? =1, so that d = 1. Hence 1 + 2 =
n?, which implies e = 0, contrary to assumption. Thus we have |W| > 1
and 1% # d, and so from (2.3) we obtain

(2.9) 2n <

: ’

— — .

t

If Vd <t < d then (2.4) implies
2nst—%<tsd<n.

which is impossible.
If 0 < ¢t < Vd then (2.4) implies

g—t<gsd<n,
t t

2n

IA

which is impossible.
If — Vd <t < 0 then (2.4) implies
2n<t— Et]_ < —?gd<n,

which is impossible.
If —d <t < — d then (2.4) implies

d
2ns7——t<—tsd<n,

which is impossible.
This completes the proof of Theorem 1.

3. m nonsquare and x> — my? = —1 insolvable. In the case m = d?
+ e? nonsquare and such that (1.2) is insolvable, we prove the following
result.

THEOREM 2. If d and e are positive coprime integers with d odd such
that m = d* + e? is a nonsquare for which the pellian equation (1.2) is
insolvable, then the diophantine equation (1.1) is insolvable.

Proof. Suppose that (1.1) is solvable in integers V' and W. We define
integers x and y by

(3.1) x=eV:+2dVW — eW?,  y=V?+ W2
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Then, from the identity
(3.2) (dV? = 2eVW — dW?)* +(eV?2 + 2dVW — eW?)’
= (d*>+ X)) (V: + w?)?,
we obtain 1 + x2 = my?, contradicting the insolvability of (1.2).
This completes the proof of Theorem 2.

4. m nonsquare and x> — my? = -1 solvable. We define the nor-
malized greatest common divisor NGCD(a, 8) of two nonzero gaussian
integers « and B to be the unique associate a + bi, among the four
associated GCD’s of « and 8, which satisfies

aodd,a>0, ifl1+i+ta+bi
{a>0,b20, ifl1 +i|a+ bi.

We prove the following theorem.

(4.1)

THEOREM 3. Let d and e be positive coprime integers with d odd such
that m = d* + e” is a nonsquare for which (1.2) is solvable. Let (x,, y,) be
the minimal solution of (1.2), that is the solution in positive integers with y,,
least. Then (1.1) is solvable if and only if

d + ei = NGCD(x, + i,m) or NGCD(x, — i, m),
when m = 1 (mod 4),
d + ei = NGCD(x, + i, m),
when m = 2 (mod 8) and x, = —de (mod 4),
d + ei = NGCD(x, — i, m),
when m = 2 (mod 8) and x, = de (mod 4).

(4.2)

Proof. We begin by showing that if (4.2) holds then (1.1) is solvable.
We may suppose without loss of generality that d + ei divides x, + i,
written d + ei|x, + i, as the case d + ei|x, — i is similar. From the
equation x2 — my? = -1 we obtain

Xo+i\[xo—10)

(43) (d+ei)(d——ei)—y°’
where the gaussian integers (x, + i)/(d + ei) and (x, — i)/(d — ei) are
coprime. Hence for some unit ¢ (= +1, +/) and integers V' and W we
have (as y, > 0)

Xgt+i
d+ ei

4.4 =e(V+ Wi)’, y,=V*+ W
0
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Clearly as -1 = i? we may suppose that e = 1 or i by replacing V and W
by ~ W and V respectively if necessary.
We first treat the case m = 1 (mod 4). In this case we have

d=y,=1(mod2), e= x,=0(mod2).

From y, = V2 + W? we see that V and W are of opposite parity, so that
(V + Wi)? =1 (mod?2). Taking x, + i = e(d + ei)}(V + Wi)? modulo 2
we obtain i = ¢ (mod 2), so that ¢ = i, giving

(4.5) xo+i=i(d+ ei)(V+ Wi).
Equating coefficients of i on both sides of (4.5) we obtain
1=dV?—2eVW — dw?,

showing that (1.1) is solvable.
Next we consider the remaining case when m = 2 (mod 8). In this
case we have

d=e=x,=y,=1(mod?2).

From y, = V> + W? we see that V and W are of opposite parity and so

(V+ Wi =vVi-w?=2V*—1=2V—1(mod4).
Taking x, + i = &(d + ei)(V + Wi)? modulo 4 we obtain
Xo+ i=¢e(d+ ei)2V — 1) (mod4).
Squaring this congruence we deduce that
2x0i = £*2dei (mod 8),
so that
X, = e’de (mod 4).
Hence we have

e=1 ifx,=de (mod4),

4.
(4.6) e=1i, if xo= —-de (mod4).

As we have assumed that d + ei|x, + i, from (4.2), we see that x, = —de
(mod 4), and so by (4.6) we deduce that ¢ = i. Thus

xo+i=i(d+ ei)(V+ Wi)
and equating coefficients of i we obtain

1=dV?—-2eVW — dW?2
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Conversely we now show that if (1.1) is solvable then d + ei satisfies
(4.2). Let (V, W) be a solution in integers of (1.1).
Define integers x and y by

(4.7) x = —eV?—=2dVW + eW?, y=Vi+ W2
Then we have
x+i=(-eV?=2dVW + eW?) +(dV? = 2eVW — dW?)i
so that
(4.8) x+i=i(d+e)(V+ Wi),
giving
x2+1=(d*>+ e)(V2+ W2 = my?,

so that (x, y) is a solution of (1.2).
Next we calculate the GCD of x + i and m. From (4.8) we have

GCD(x + i, m) = (d + ei)GCD((V + Wi)’,d ~ ei).

Now we show that GCD((V + Wi)?, d — ei) = 1, otherwise there exists a
gaussian prime 7 such that

m|\V+ Wi, «|d- e,
in which case, from (4.7), we have
x=2W?(e+di)=0(mod7), y = 0(modw),
contradicting that GCD(x, y) = 1 as (x, y) is a solution of (1.2). Thus, as
d and e are positive with d odd, we have
(4.9 NGCD(x + i,m) =d + ei,
in accordance with (4.1).

Further, we note that in the case m = 2 (mod 8), we can deduce from
(4.8) that

(4.10) x = —de (mod 4)

exactly as we proved x, = —de (mod4) above.
Now, as (x, y) is a solution of (1.2), we have by the theory of the
pellian equation

(xo + ym )1 ifx >0,

(4.11) x + y/m = ,
—(xo —yO\/n‘a)MH, if x <0,
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for some non negative integer k. From (4.11) we obtain

xgket +<2k2+ 1)x§k’1y02m +ee, x>0,
(412) x = e
gt = (g hgm = ifx <,
where the higher terms are all divisible by m?. Hence as x3 = —1 (mod m)
we have
-1)*x, (modm),  if x>0,
(4.13) o= )H? ( )
(-1)"""xy (mod m), if x <0.

In the case m = 2 (mod 8), we will also need x (mod4). As x, and y,
are both odd, (4.12) gives

X + 2(2";r 1)x0 (mod4), x>0,
X =
—Xg — 2( 2k2+ l)xo (mod4), x <0,
that is
-1)* (mod4), ifx >0,
(4.14) g = | ol )k+(1 ) o
xo(-1)""" (mod4), ifx <0,
because
2k + 1) _ _ . _1 k
( 5 )— k(2k +1) =k = 5((—1) — 1) (mod 2).

The proof will now be completed by considering three cases.
If m = 1 (mod 4) we have by (4.9) and (4.13)

d + ei = NGCD(x + i,m) = NGCD(+x, + i, m)
= NGCD(x, + i, m)

as required.
If m=2 (mod8) and x,= -de (mod4) then by (4.10) we have
x = x, (mod 4) and so by (4.14) we obtain

k=0(mod2), ifx>0,
k=1(mod2), ifx <0,

and thus by (4.13) we have

x = x, (mod m),
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and so appealing to (4.9) we get
d + ei = NGCD(x + i,m) = NGCD(x, + i,m),

as required.
If m=2 (mod8) and x, =de (mod4) then by (4.10) we have
x = —X, (mod4) and so by (4.14) we obtain

k=1(mod2), ifx>0,
k=0(mod2), ifx<0,

which gives by (4.13)
x = ~x, (mod m),
so that appealing to (4.9) we get
d + ei = NGCD(x + i, m) = NGCD(-x, + i, m)
= NGCD(x, — i,m),

as required.
This completes the proof of Theorem 3.

5. Uniqueness. Up to this point our focus has been on a given pair
of positive integers d and e, with d odd, in terms of which the integer m
is defined by m = d” + e. We will now shift the emphasis by assuming
that the positive integer m is given and considering all its decompositions
as the sum of two squares.

In view of Theorems 1 and 2, in order for (1.1) to be solvable, it
suffices to consider only those positive nonsquare integers m for which
(1.2) is solvable. In this case every odd prime divisor of m 1s congruent to
1 modulo 4 and m contains at most one factor of 2. Thus m is expressible
in the form d? + e with d and e positive coprime integers and d odd.
We now use Theorem 3 to show that among such pairs of integers (d, e),
there is exactly one pair for which (1.1) is solvable.

THEOREM 4. Let m be a nonsquare positive integer for which (1.2) is
solvable. Then among all the pairs of positive coprime integers (d,e)
satisfying m = d? + e? with d odd there is exactly one pair (d,e) = (D, E)
such that (1.1) is solvable.

Proof. We begin by showing that there is at least one decomposition
of m in the form d?+ e? for which (1.1) is solvable. Recalling that
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(xg> ¥o) denotes the minimal solution of (1.2) and setting r + si =
NGCD(x, + i, m) we define positive integers D and E as follows:
if m = 1 (mod 4), we let
._Jr+si ifs>0,
(5.1) D+El—{r—si, if s <0;
if m = 2 (mod 8),
r+si, ifrs= —x,(mod4),
(5.2) D+Ei= A o (mod4)
s+ri, ifrs=x,(mod4).
Clearly we have D odd and GCD(D, E) = 1.

Next we show that D2 + E? = m. From the definition of D and E
we see that D + Ei|x, + i or D + Ei|x, — i. Without loss of generality
we may suppose that D + Ei|x, + i. From the equation x2 — my} = -1,
we see that

Xqti R m 2
(5:3) (D+Ei)(x° D= 5rE Yo
where the gaussian integers (x, + i)/(D + Ei) and m/(D + Ei) are

coprime. The equation (5.3) shows that m/(D + Ei)|x, — i. But
m/(D + Ei)|m so we must have

m : .
DT E |GCD(x, — i,m) = D — Ei,

and so
(5.4) m|D? + E2.
On the other hand, as D + Ei|m, taking conjugates we obtain D — Ei|m.
Hence we have
LCM(D + Ei,D — Ei)|m,
that is
D? + E?

(5-5) GCD(D + Ei,D—E) ™

Next we note that
GCD(D + Ei,D — Ei) = GCD(xo + i, x, — i,m)
= GCD(x, + i,2i,m),
so that
1, if m=1(mod4),
1+i, if m=2(mod8).

(56) GCD(D + Ei, D — Ei) = {

From (5.5) and (5.6) we see that
(5.7) D?+ E*|\m, if m=1(mod4),
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and

D? + E?
5-8) T
From (5.8) we deduce that (D2 + E?)/2|m, and as (D? + E?)/2 is odd,
this gives (D2 + E?)/2|m/2, that is

(5.9) D?*+ E*|\m, if m=2(mod8).

Then the result m = D? + E? now follows from (5.4), (5.7) and (5.9).

Thus m = D? + E? is a decomposition of m as a sum of two squares
which satisfies (4.2). Hence, by Theorem 3, the equation DV? — 2EVW
— DW? = 1 is solvable.

Finally, it is clear that m = D? + E? is the only decomposition of m
for which (1.1) is solvable, for if there were another such decomposition,
say m = d* + e?, then we would have, by Theorem 3, d + ei = D + Ei,
giving d = D, e = E, completing the proof.

[m, if m =2 (mod38).

COROLLARY. If p = 1 (mod 4) is a prime then the diophantine equation
aV? —2bVW — aWw? =1
is solvable, where a and b are the unique positive integers with

p=a*+b’>, a=1(mod2).

In the next theorem we go on to show how the pair (D, E) can be
constructed.

THEOREM 5. Let m be a nonsquare positive integer such that (1.2) is
solvable with minimal solution (x, y,). Then there exists a unique pair of
coprime integers (d, e) # (0,0) satisfying
d — x,e = 0 (mod m),
|d| <Vm, |e| <Vm,
dodd, d> 0, if m=1(mod4),
d>0,e>0, ifm=2(mod8).

(5.10)

Then the unique pair (D, E) specified in Theorem 4 for which the
equation (1.1) is solvable is given by

(d,e), ifm=1(mod4
(d,-e), if m=1(mod4
(d,e), ifm=2(mod8
(e,d), ifm=2(mod8

e> 0,

e <0,

Xy = —de (mod 4),
Xy = de (mod4).

),
(5.11) (D,E)= ;
),
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Proof. The following result was proved by Aubrey [1] (see also [2]) in
1913: if a, b and m are integers satisfying

m >0, GCD(a,m)=1, b/Vm not an integer,
then there exist integers x and y not both zero such that
ax — by = 0 (mod m)
and
x| <Vm, |yl <Vm.

Taking a = 1 and b = x,, we see that there are integers d and e (not
both zero) such that
(5.12) d—xe=0(modm), |d|<Vm,|e|<Vm.

It is clear that d> + e?=m as 0 <d?+ e?<2m and d* + e’ =
x2e?+ e’ = —e>+ e? = 0(mod m).

Next we show that GCD(d,e) =1. Let g = GCD(d,e¢), and set
d=gd, e=ge,. From d?+ e*=m we obtain d} + e} = m,, where
m, = m/g?. From (5.12) there exists an integer k such that d — x,e = km
and hence d, = x,e; + kgm,. Thus, from (x,e, + kgm,)> + e} = m; we
use x2 + 1 = my¢ to deduce that

g(gyle? + 2kxge, + kgm;) =1,

proving that g = 1.
Next we show that if (d,, e;) is another solution of (5.12) with d; and
e, not both zero, then

(5.13) (dy,e;) = +(d,e), +(e,-d).
From d — xye = d, — x,e, = 0 (mod m), we see that
de, — die = 0 (mod m)
and
dd, + ee, = 0 (mod m).
In view of
(a’d1 + ee, )2 +( de, — dle)2 _ (d*+ e?)(d? + e?)

m m?

=1’
m

we must have
dd, + ee, = +m, de, —de=0,
or

dd, +ee, =0, de,—die= tm
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from which (5.13) follows. Thus there is a unique solution of (5.12)
satisfying

dodd,d>0 if m=1(mod4),

d>0,e>0, ifm=2(mod8).

Finally we show that (D, E) defined by (5.11) satisfies (4.2) and so is
the unique pair specified in Theorem 4. It suffices to treat the case

m=2(mod8), x,=de(mod4),
as the others are similar. We must show that e + di = NGCD(x,, — i, m)

in this case.
As d — x,e = 0 (mod m), we have x,d + e = 0 (mod m), and so

X — i _(xoe—d)_‘(xodi—e)

e+di m : m
is a gaussian integer. Thus e + di|x, — i and, as e + di|m, we have
(5.14) e + di|GCD(x, — i, m)

Next we show that GCD(x, — i, m) |e + di. To do this let 7 denote
any prime factor of GCD(x, — i, m). Then, as 7 |m, we see from d — x,e
=0 (modm) that d=x,e (modw). But x, =i (modw), so d=ie
(mod =), giving e + di = 0 (mod 7). Thus we have

(5.15) GCD(x, — i,m)|e + di.

From (5.14) and (5.15) we see that e + di is a GCD of x, — i and m.
However d and e are positive integers so that NGCD(x, — i, m) = e + di,
which completes the proof.

6. Complete set of solutions of (1.1). In this section d and e are
positive integers for which (1.1) is solvable. We let (¥, W) be a particular
solution of (1.1) and show how all solutions (¥, W) of (1.1) may be
obtained in terms of V,, W, and the minimal solution (x,, y,) of (1.2).

Let (V, W) be any solution of (1.1) and set

oz (dV — eW) + WWm
(dVy — eWy) + Wylm -

The norm of a is

(dV — eW)' — mW? _ d(dV?—2eVW — dW?) _ )

(dVy — eW,)’ — mwg  d(dVi — 2eV W, — dW7)
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Moreover a is of the form A4 + Bym, where 4 and B are integers given
by
A=dvVy— e(VW,+ WV,) — dWW,,
B=—-VW,+ WYV,.
Hence, by the theory of the pellian equation, we have
a= i(xo + yoM)Zk’

where k is an integer. Thus we have shown the existence of an integer k
such that

(6.1) (dV — eW) + Wim = +(xo + yo/m )>“((dV, — eW,) + Wo/m ).

Conversely let ¥V and W be defined by (6.1) for some integer k.
Taking norms of both sides of (6.1), we see that (V, W) satisfies (1.1). It
remains to show that ¥ and W are both integers.

Define integers T and U by

T+ Um = +(xo + yo/m )*".
Then equating coefficients in (6.1) we obtain
AV — eW = T(dV, — eW,) + mUW,,
W =TW, + U(dV, — eW,).
Clearly W is an integer. Solving for ¥ we obtain (using d*> + e¢* = m)
V=(T+ eU)V, + dUW,
so that V' is also an integer.

It now follows that all solutions of (1.1) may be obtained from (6.1) in
terms of the particular solutions (¥, W;) and (x, y,)-

7. Numerical examples. If d = 11 and e = 8 then m = 185 = 112
+ 82 =1 (mod 4) is nonsquare and such that (1.2) has minimal solution
xo =68, y,=15. In this case NGCD(68 + i,185) = 11 — 8/, while
NGCD(68 — i,185) = 11 + 8i, so that Theorem 3 applies to show (1.1) is
solvable ((V, W) = (2,1) is a solution.) We note that 185 = 13% + 42 so
that (1.1) is insolvable for d = 13 and e = 4 by Theorem 4.

In case m = 130 = 32 + 11> = 72 + 92 we have m = 2 (mod 8), non-
square, and such that (1.2) has minimal solution x, = 57, y, = 5. Now
NGCD(57 + i,130) = 9 + 7i and as 57 = -9.7 (mod 4) we see by Theo-
rems 3 and 4 that (1.1) is solvable only in the case when d = 9and e = 7
((V,W) = (-1, 2) is a solution).
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To illustrate the use of Theorem 5, take m = 845. Then m =1
(mod 4) is nonsquare and x, = 12238, y, = 421 is the required minimal
solution of (1.2). The candidates for the unique pair (d, e) satisfying (5.10)
must be solutions of m = d? + e?, that is, (d, e) = (13, +26), (19, +22),
(29, +2). The only pair satisfying d — xpe =0 (modm) is (d,e) =
(29, -2), so that (D, E) = (29,2) is the unique pair for which (1.1) is
solvable ((V, W) = (15,14) is a solution).

REFERENCES

[1] L. Aubry, Un théoréme d’ arithmétique, Mathesis (4), 3 (1913).

[2] A. Brauer and R. L. Reynolds, On a theorem of Aubry-Thue, Canad. J. Math., 3
(1951), 367-374.

[3] Pierre Kaplan, Divisibilité par 8 du nombre des classes de corps quadratiques dont le
2-groupe des classes est cyclique, et réciprocité biquadratique, J. Math. Soc. Japan, 25
(1973), 596-608.

[4] , Cours d’arithmétique, Université de Nancy L.

Received April 21, 1985 and in revised form August 19, 1985. First author’s research
supported by Natural Sciences and Engineering Research Council Canada Grant A-8049.
Second author’s research suported by Natural Sciences and Engineering Research Council
Canada Grant A-7233.

CARLETON UNIVERSITY
OTTAWA, ONTARIO, CANADA K18 5B6



PACIFIC JOURNAL OF MATHEMATICS

EDITORS

V. S. VARADARAJAN HERMANN FLASCHKA C. C. MOORE

(Managing Editor) University of Arizona University of California
University of California Tucson, AZ 85721 Berkeley, CA 94720
Los Angeles, CA 90024 RAMESH A. GANGOLLI H. SAMELSON
HERBERT CLEMENS University of Washington Stanford University
University of Utah Seattle, WA 98195 Stanford, CA 94305
Salt Lake City, UT 84112 VAUGHAN F. R. JONES HAROLD STARK
R. FINN University of California University of California, San Diego
Stanford University Berkeley, CA 94720 La Jolla, CA 92093
Stanford, CA 94305 ROBION KIRBY

University of California
Berkeley, CA 94720

ASSOCIATE EDITORS

R. ARENS E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSHIDA
(1906-1982)
SUPPORTING INSTITUTIONS

UNIVERSITY OF ARIZONA UNIVERSITY OF OREGON
UNIVERSITY OF BRITISH COLUMBIA UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY STANFORD UNIVERSITY
UNIVERSITY OF CALIFORNIA UNIVERSITY OF HAWAII
MONTANA STATE UNIVERSITY UNIVERSITY OF TOKYO
UNIVERSITY OF NEVADA, RENO UNIVERSITY OF UTAH
NEW MEXICO STATE UNIVERSITY WASHINGTON STATE UNIVERSITY

OREGON STATE UNIVERSITY UNIVERSITY OF WASHINGTON



Pacific Journal of Mathematics

Vol. 124, No. 1 May, 1986

Kinetsu Abe and Martin Andrew Magid, Relative nullity foliations and

indefinite ISOMELric IMMETISIONS ... ......eututtt et 1
Erik P. van den Ban, A convexity theorem for semisimple symmetric

SPACES ettt et e e e e e e e e e e e e e 21
Bo Berndtsson and Thomas Joseph Ransford, Analytic multifunctions, the

d-equation, and a proof of the corona theorem ......................... 57
Brian Boe and David H. Collingwood, Intertwining operators between

holomorphically induced modules ..................... ..., 73
Giuseppe Ceresa and Alessandro Verra, The Abel-Jacobi isomorphism for

the sextic double solid ........ ... i 85
Kun Soo Chang, Jae Moon Ahn and Joo Sup Chang, An evaluation of the

conditional Yeh-Wiener integral ............ .. ... i L. 107
Charles Dale Frohman, Minimal surfaces and Heegaard splittings of the

tATEE-TOTUS ..ttt ettt e e e e e 119
Robert M. Guralnick, Power cancellation of modules .................... 131
Kenneth Hardy and Kenneth S. Williams, On the solvability of the

Diophantine equation dV2 —2eVW —dW? =1 ...................... 145

Ray Alden Kunze and Stephen Scheinberg, Alternative algebras having
scalar INVOIULIONS ... ..o ot e
W. B. Raymond Lickorish and Kenneth Millett, The re
the Jones polynomial .............................
Guido Lupacciolu, A theorem on holomorphic extension
CR-functions .......... ...,
William Schumacher Massey and Lorenzo Traldi, On
MUrasugi ....oooveiiiei e
Dinakar Ramakrishnan, Spectral decomposition of L2(
Steven L. Sperber, On solutions of differential equations
certain algebraic relations .........................



http://dx.doi.org/10.2140/pjm.1986.124.1
http://dx.doi.org/10.2140/pjm.1986.124.1
http://dx.doi.org/10.2140/pjm.1986.124.21
http://dx.doi.org/10.2140/pjm.1986.124.21
http://dx.doi.org/10.2140/pjm.1986.124.57
http://dx.doi.org/10.2140/pjm.1986.124.57
http://dx.doi.org/10.2140/pjm.1986.124.73
http://dx.doi.org/10.2140/pjm.1986.124.73
http://dx.doi.org/10.2140/pjm.1986.124.85
http://dx.doi.org/10.2140/pjm.1986.124.85
http://dx.doi.org/10.2140/pjm.1986.124.107
http://dx.doi.org/10.2140/pjm.1986.124.107
http://dx.doi.org/10.2140/pjm.1986.124.119
http://dx.doi.org/10.2140/pjm.1986.124.119
http://dx.doi.org/10.2140/pjm.1986.124.131
http://dx.doi.org/10.2140/pjm.1986.124.159
http://dx.doi.org/10.2140/pjm.1986.124.159
http://dx.doi.org/10.2140/pjm.1986.124.173
http://dx.doi.org/10.2140/pjm.1986.124.173
http://dx.doi.org/10.2140/pjm.1986.124.177
http://dx.doi.org/10.2140/pjm.1986.124.177
http://dx.doi.org/10.2140/pjm.1986.124.193
http://dx.doi.org/10.2140/pjm.1986.124.193
http://dx.doi.org/10.2140/pjm.1986.124.215
http://dx.doi.org/10.2140/pjm.1986.124.249
http://dx.doi.org/10.2140/pjm.1986.124.249

	
	
	

