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An involution of an algebra over a field of characteristic different
from two is called scalar if the sum of each element and its involute is a
scalar (multiple of the unit). Certain algebras having scalar involutions
have played an important role in the construction of metaplectic repre-
sentations and the applications of that theory to problems in number
theory and automorphic forms. They also arise in an analytic context
related to homomorphic discrete series and in questions about invariants
of classical groups. This paper deals with determining the structure of the
most general algebras having scalar involutions.

1. Non-singular subalgebras and the radical.

1.1. Singular composition algebras. We shall classify all algebras,
including the infinite-dimensional ones, that admit a particularly restric-
tive type of involution. By “algebra” we mean an alternative algebra A
with unit 1 over a commutative field F of characteristic different from 2.
An F-linear involution a — a’ of A4 is called scalar if a + a’ € F1 for
every a € A. This is equivalent to the condition: a = a’ precisely for
a € F1. 1t is also equivalent to the condition: aa’ € F1 for all a € 4; a
is invertible if and only if aa’ # 0, in which case a™! = (aa’)'a’. We
normally abuse the notation to the extent of identifying F1 with F. With
this convention, the formula

(1) (a|b) = 5(ab’ + ba’)

a — a’ being a scalar involution, defines a symmetric bilinear form an 4
which satisfies the law of composition

) (ablab) = (a|a)(b|b).

In [7], Jacobson defines a composition algebra as an algebra with
scalar involution for which the associated form (1) is nondegenerate. We
shall call such algebras non-singular composition algebras. Their structure
has been the subject of many investigations, e.g., [1], [2], [6], [9], and is
well known. They are necessarily semisimple and finite dimensional, in
fact, of diffeomorphism 1, 2, 4 or 8 over the ground field. Here we drop
the nondegeneracy condition and study the possibly singular case, i.e.,
arbitrary algebras with scalar involutions.
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Some comments on our assumptions are in order. The classical
Hurwitz problem was to determine all finite dimensional algebras (not
necessarily alternative) with a non-singular symmetric form satisfying (2).
Such an algebra is necessarily alternative and is in fact a non-singular
composition algebra as defined above. In [8] Kaplansky proved that there
are no infinite dimensional algebras, alternative or not, with non-singular
symmetric forms admitting composition. If one drops the non-singularity
assumption in the context considered by Kaplansky, it cannot be con-
cluded that the algebra is alternative. We have constructed a non-alterna-
tive algebra of infinite dimension with a non-zero singular quadratic form
that satisfies (2).

In contrast to the non-singular case, the more general composition
algebras that we study need not be semisimple and may well have a
radical of infinite dimension, the radical being the union of all 2-sided
nilpotent ideals. The radical may also be characterized as the radical of
the associated form and also as the orthogonal complement of any
maximal non-singular subalgebra.

THEOREM 1.2. Let A be an algebra with scalar involution, R the radical
of the associated form, and B a maximal non-singular subalgebra of A. Then
B+=A4*= R, A = B ® R a vector space direct sum, R is a 2-sided ideal
of skew-symmetric elements of A and B is isomorphic to A/R.

Proof. Much of the proof can be lifted from [7, Chap. IV, Sect. 3] and
will only be sketched.

Standard arguments show that the form (1.1.1) associated with A is
such that

(1) (alb) = (b']a’)

(2) (ablc) = (b|a'c) = (b|ca’)

(3) (aclbe) = (a}b)(c|c)

for all a, b, ¢ in A. Since B is finite dimensional, 4 = B & B+ where
(4) B*={c€A:bc+ cb’=0forall b € B}.

Taking b = 1 in (4), one sees that B is a linear space of skew-symmetric
elements. By (2)

(5) BB*C B*.

If there is no non-isotropic vector in B+, then the form is trivial on B+,
and this implies B+ = A+ = R. On the contrary, assume B* contains a
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non-isotropic vector ¢. Then by (5), Bc € B+ . Hence, B + Bc = B & Bc.
By (3)
(ac|be) = (a]b)(c|c)

for all a, b in B. Because the form is non-singular on B, it follows that Bc
is a non-isotropic subspace of B+ of the same dimension as B. At this
point, more complicated arguments in [7] which involve the alternative
assumption and the Moufang identities imply that B & Bc is a non-singu-
lar subalgebra of 4 and that B is necessarily associative. But since B is
already maximal, it follows that every element of B+ is isotropic and
hence that B+ = 4+ = R. Now (2) and the observation after (4) imply
that R is a 2-sided ideal of skew-symmetric elements. Hence, 4/R is
again an algebra with scalar involution, and from the decomposition
A = B ® R it follows that B and 4/R are isomorphic as algebras with
scalar involutions.

Next we turn to the problem of showing that the geometric radical R
in (1.2) is the radical of the algebra.

THEOREM 1.3. If A is an algebra with scalar involution, then the radical
of the associated form is the union of the nilpotent ideals of A.

Proof. Let A be an algebra with scalar involution and R = A+ . Then
for r in R, r’ = —r, and

’

(1) ar =ra
for all a € A. In particular, for all r € R
(2) r:=0.

Consider a nilpotent element b; b is not invertible; therefore bb’ =
b’b = 0. Thus, b> = (b + b')b, and by induction b" = (b + b')" " 'b.
Since b" = 0 for large n, and b + b’ € F1, we conclude that b + b" = 0
for nilpotent b. Now if every element of a left ideal A4b is nilpotent, then
for every a we have 0 = ab + (ab)’ = ab + b’a’ = ab — ba’. That is,
2(a|b) = ab’ + ba’ = —ab + ba’ = 0. Therefore, b € A+ = R. In partic-
ular, if Ab is a nilpotent left ideal, Ab C R. It follows that R contains the
union of all nilpotent (left) ideals of 4.

Next we observe, as in [7], that the alternative law and a + a’ € F1
imply a(a’b) = (a|a)b. Thus, by linearization,

(3) a(c’b) + c(a’b) =2(a|c)b = (ba)c’ +(bc)a’

for all a, b,c in A.
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Now suppose ¢ € R. Then ¢’ = —¢ and (3) implies (bc)a’ = (ba)c
for all a, b in A. Because bc € R, it follows from (1) that
(4) a(bc) = (ba)c
for all a, b in A. Hence, Ac is a left (and automatically right) ideal in 4.
Moreover, by (4), the alternative law, and (2), (ac)(bc) = (b(ac))c =
((ab)c)c = (ab)c? = 0 for arbitrary a, b in A. Thus, (4¢c)?> = 0 and R is
the union of the nilpotent ideals of A4.

COROLLARY 1.4. For each r € R , Ar is a 2-sided ideal in A such that
(Ar)* =0.

The results obtained and used in the proof of (1.3) may be extended
to show that the radical R is itself a nilpotent ideal; in fact, R* = 0. But
the exponent 4 is best possible only when 4/R = F1 and A is not
associative. For example, R = 0, at the opposite extreme, when
dim( A4 /R) = 8. In qualitative terms, the exponent required to annihilate
R decreases as the dimension of A4 /R increases. The precise result is the
following:

THEOREM 1.5. Let A be an algebra with scalar involution and R the
radical of A. The dimension of A/R is 2" where 0 < n < 3. For this n,
R*~" = (0}. In the case that A is associative, 0 < n < 2, and R*~" = {0}.

To prove this it is convenient to proceed in relatively easy stages with
some preparatory results.

LeMMA 1.6. Let B be a subalgebra of A and ¢ an element of A
orthogonal to B. Then B is orthogonal to Bc, B + Bc is a subalgebra of A
and multiplication in B + Bc is such that

(byc)b, = (b,b})c
b,(b,c) = (b,b,)c
(bic)(byc) = c*(byb,)
forall by, b, in B.

Proof. This follows from (1.3.3), the alternative law, and the Moufang
identities just as in the non-singular case [7].

The following is an immediate Corollary of (1.6).
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COROLLARY 1.7. Let x and y be elements of A such that 1, x, and y are
mutually orthogonal. Then x and y anticommute in the sense that xy = — yx;
the elements 1, x, y, xy are mutually orthogonal, and their linear span is the
subalgebra F|x, y] generated by x and y.

The next result is a direct consequence of (1.6) and (1.7).

COROLLARY 1.8. Let x and y be as in (1.7) and z orthogonal to F|x, y].
Then

1,x,y,%p,2,%xz, yz,(xy)z

are mutually orthogonal, and their linear span is the subalgebra F[x, y, z]
generated by x, y and z.

LemMA 1.9. If 1, a, b, ab and c are mutually orthogonal elements of A,
then a, b and ¢ anti-associate; that is

a(bc) = —(ab)c.

Proof. By (1.3.3), a(cb) + c(ab) = 0. By (1.7), ¢cb = —bc and c(ab)
= —(ab)c. Hence, a(bc) = —(ab)c.

Now we can prove the key combinatorial lemma required for the
proof of (1.5)

LEMMA 1.10. Let x,y and z be as in (1.8) and w orthogonal to
Flx, y, z). Then every product of the four elements x, y, z,w in any order
and any grouping by parentheses is 0.

Proof. By (1.8), if a, b, ¢ are any three of x, y, z, w, then the elements
(1) 1,a,b,c,ab,ac, bc,(ab)c

are mutually orthogonal. Hence, by (1.7) any two of (1) other than 1
anti-commute. Therefore, any product of the four elements equals + a
product in which, reading from left to right and ignoring parentheses w is
last. Thus, since x, y, and z are interchangeable, it is enough to show that

x(y(zw)) = x((yz)w) = (x)(zw) = ((x)z)w = 0.

For this we shall use anti-associativity repeatedly. By assumption w is
orthogonal to F[x, y, z]. Hence, by (1.6), (1.7), and (1.8) the elements

1,x,y,xp,z,xz,yz,(xy)z,w, zw
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are mutually orthogonal. Thus, by (1.9),

x(y(zw)) = = () (zw) = ((w)z)w = —(x(yz))w
= x((yz)w) = —x(y(zw)) = 0.

Proof of 1.5. Let x,y,z, and w be skew elements selected sequen-
tially, starting with x, to satisfy the hypotheses of (1.10) and with as many
as possible non-isotropic, as in (1.2). The non-isotropic vectors (if any)
generate a maximal non-singular subalgebra B, and since R = A+ = B+,
the remainder of the list belong to R. From (1.10) we have that the
product of x,y,z, and w in any order and with any grouping by
parentheses in 0.

In case B = F, all of x, y, z,w belong to R and any product of the
four elements is 0; if A is associative, (1.9) implies that any product of
three of them is 0.

In case dim B = 2, B = F[x] and y, z, and w belong to R. Let p be

any product of y, x and w. Then xp = 0. Since xx’ = —x? # 0 and A4 is
alternative, we can cancel x to find that p = 0. That is, R® = {0}. By
(1.9) x(yz) = —(xy)z; so if A4 is associative, x(yz) = 0 and, cancelling

x, we have yz = 0. That is, when 4 is associative, R? = {0}.

When dim B = 4, B = F[x, y], and z and w belong to R. x(y(zw))
= 0. Cancel x, then y (since y* # 0) to obtain zw = 0. Thus, R> = {0}.
As earlier anti-associativity of x, y, z and associativity of 4 would imply
x(yz) = 0; hence z = 0. So in this case, if 4 is associative, R = {0}.

Finally, if dimB =38, B = F[x,y,z] and w € R. x(y(zw)) = 0;
cancelling x, then y, then z (since z2 # 0), we obtain w = 0. That is,
R = {0} when dim B = 8. 4 = B, which is not associative.

2. Structure analysis. At this point we have shown that A = B & R,
with B a maximal non-singular subalgebra and R the radical. As in the
proof of Theorem (1.5) B has the form F (= F1), F[x], F[x,y], or
F[x, y, z], according to the dimension of 4 /R, which is 2" for n = 0,1, 2,
or 3, respectively. We have seen that R*™" = {0} (R*" = {0} in case 4
is associative.) The structure of A4 is, of course, determined by the
structure of B, the structure of R, and the interaction of B and R. In this
section we make these things more explicit and thereby complete the
classification of A4.

The structure of the non-singular algebra B is known; the following
summary will suffice for the moment.
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THEOREM 2.1. Let B be a non-singular alternative algebra with scalar
involution over a field F (commutative of characteristic # 2). Then dim B
= 1,2,4, or 8, and we have the following

(@) If dim B =1, then B = F.

(b) If dim B = 2, either B is a (commutative) field or else B is
isomorphic to the algebra F* = F & F with coordinate-wise algebraic opera-
tions and involution (a, B)’ = (B, a).

(c) If dim B = 4, either B is a (non-commutative) division ring (a
so-called quaternion ring) or else B is isomorphic to the algebra F?*? of
2 X 2 matrices over F, with (¢ %) = (4 }).

(d) If dim B = 8, either B has no divisors of zero or else B is isomorphic
to the Cayley extension of F**? by an element whose square is 1.

Next, let us consider the possible algebraic structures on R, the
radical.

PROPOSITION 2.2. Let R be an alternative algebra (without unit) over F
in which r> = 0 for every r. Then multiplication in R is anti-commutative
and anti-associative. The map r = —r is an F-linear involution of R, and
every product of four elements of R is 0.

Proof. Because all squares are 0, 0 = (r + s)2=r2+rs + sr + s> =
rs + sr; so multiplication is anti-commutative. Then for r, s, and ¢ in R,
because R is alternative,

0=(r+t)s=(r+0)[(r+0)s]=(r+)(rs +15)
=r(rs) +r(ts) +t(rs) + t(ts) = r2s + r(ts) + t(rs) + t3s
=r(ts) + t(rs) = —r(st) —(rs)t;
so multiplication is anti-associative. The F-linear map r — —-r is an
involution by anti-commutativity. The proof of (1.10) shows that in an

algebra with anti-commutative anti-associative multiplication every prod-
uct of four elements vanishes.

COROLLARY 2.3. Let R be an alternative algebra over F in which r*> = 0
for every r. Then R is associative if and only if every product of three
elements is 0.

The most general R in Proposition (2.2) can be analyzed as follows.
Let W= {r: rR={0}}, let V be any vector space complement to
R? + W in R?, and let U be any vector space complement to V' + W in
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R. Select a basis {u;i€ I} for U, and for i, j,k in I let v, €V,
w,, € Wand w, , € W be determined by the equations;

(1) wu;=v,,+w,;and u,v, =w,,. Because R* = {0}, we have

(2) V V R W = {0}, by definition of V" and W. Because multi-
plication in R is anti-commutative and anti-associative,
(3) v,,, w;,, and w, , are anti-symmetric as functions of the indices
i, j, k. For example,

Wi = uj(vik) = “,(“;“k — W) = “.,(”;“k)

I

—(uluk)uj = ui(uku/) = —ul(ujuk)

ul(ujuk - w/k) = _—Wl/k

From the definitions of U, ¥V and W and the fact that ¥V € R? and
U -V C W itis easy to verify that

(4) the collection { u,;} spans V, and

(5) for A, € F, whenever XA 0, = 0, we have XA yw, , = 0 for all i.
Finally, by defmmon of W,if re U+ V and r # 0 there is u € U so
that ru + 0.

Conversely, if U,V, and W are any three vector spaces, possibly
including {0}, with elements u,, collectively a basis for U, v,, in V, and
w,, and w,, in W, define the vector space R as U & V & W If (3), (4),
and (5) are satisfied, we can define a multiplication in R by (1) and (2)
and their anticommutative analogues and the linear extensions of all of
them. Because of (4) and (5) the multiplication is well-defined, and
because of (1), (2), and (3) all squares r? are 0.

An immediate consequence is this portion of the structure theorem.

THEOREM 2.4(a). An alternative algebra with scalar involution and F as

its maximal non-singular subalgebra is precisely an algebra F ® R, in which

2=0 forallrin R and r' = —r. Such an R has a description in terms of

subspaces U,V, and W as given above, and R* = {0}. The algebra is
associative if and only if R® = {0}.

REMARKS.

(1) R is associative if and only if V' = {0}, i.e., W 2 R

(2) The simplest R for which R® # {0} is the 7-dimensional algebra
in which U is spanned by {r,r,r}, V is spanned by {rnr, rr, rr},
and W is spanned by {r(r,r;)}, with the obvious anti-commutative,
anti-associative multiplication.
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Next consider dim B = 2. R’ = {0}; so the algebraic structure of R
is determined by an anti-commutative pairing U X U —» W, where W is
the multiplicative annihilator of R and U is a vector space complement to
W in R. However, the action of B on R must be taken into account. As
in Theorem 2.1b there are two cases. First consider the case that B is a
degree 2 field extension of F. B = F|[x], where x is a skew element; let
x? = a € F. Because B is field, a is not a square in F. Recall that if r
and s are elements of R, the elements x, r, and s anti-commute in pairs
and anti-associate as a triple (in any order).

Observe that if S is any subspace of R which is invariant under (left)
multiplication by x, and if r & S, the span of {r, xr} meets S in {0}. For
if Ar + uxr € S we could conclude r € § if A + px were invertible; so
0=+ px)A+ px) =+ px)A — px) =N — p’x? = N — pa.
Since a is not a square in F, u2 = 0. Thus, A2 = 0 also; so Ar + pxr = 0.

The equation r(xr,) = —(xry)r, = x(r,r;) = —x(rr,) shows that
the subspace W defined earlier is invariant under multiplication by x. By
the observation in the preceding paragraph and an argument based on
Zorn’s Lemma we can select a maximal linearly independent set of the
form { r,, xr;: i € 1} with span disjoint from W, except for {0}. Call U the
span of the set {r,xr: i€ I)}). Define w,; by rr,=w, €W, as a
function of i and j w,; is anti-symmetric. (xr,)r, = —x(r,;r;}) = —xw,j,
(xr)(xr)) = —(xr)(r;x) = —x(rr)x = x*(r,r,) = aw,, where the sec-
ond equality is a Moufang law; this can also be seen as in the proof of
Theorem 1.3.

Conversely, let U and W be arbitrary vector spaces, each of which
has an automorphism X (for convenience we use the same symbol) such
that X? is «a times the identity. Select a basis for U of the form {u,, Xu;:
i € I} and choose any elements w,; € W, subject to the condition w;, =
—w,;,. The vector space 4 = F[x]® U ® W becomes an alternative
algebra with radical R = U ® W if we define multiplication by these
rules and their linear extensions: wu;=w;, xu= —ux = Xu for
ue U, xw= —wx=2Xw for we W, (Xu)u, = —u(Xu;) = —Xw,,
(Xu,)(Xu;) = aw,;;, RW = WR = {0}. Note that W is the multiplicative
annihilator of R if and only if the multiplication U X U — W is nonsin-
gular in the sense that for every u # 0 there is a u* so that uu* # 0.

Next, suppose « is a square in F. Replacing x by x/Va we may
suppose x2 = 1. Then left multiplication by x has two (potential) eigen-
values, +1 and —1, it is completely diagonalizable on every invariant
subspace, and every invariant subspace has a complementary invariant
subspace. If xS C S for a space S, then S =S_,.® S_, where S = {s:
s€Sand xs=s} and S_= {s5: s € § and xs = —s}. Therefore, if we
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select W as before and U an x-invariant complement to W in R, we can
write R=U,® U_® W_® W_. Consider the equation (xr))r, =
—x(rry) = x(ryry) = —(xry)ry = ri(xry). Let ry € U, and r, € U_ and
compare the first and last terms; we obtain r,7, =0. So U,- U_= U_-
U,= {0}. Let r, and r, both belong to U ; (xr,)r, = —x(rr,) shows
that r,r, € W_.ThatisU - U, C W_; similarly, U_- U_C W .

Conversely if U, W, are any four vector spacesand U, X U, — W_
and U_X U_— W, are arbitrary anti-commutative multiplications, de-
fine R=U,® U_® W,_® W_and 4 = F[x]® R as vector spaces. A
becomes an alternative algebra with radical R if we define multiplication
on A by utilizing the given multiplications U, X U,— W_and U_X U_
- W, by putting R(W_+ W_)=(W_+ W_)R = 0, and by defining
U, U=U_U,={0},rx=—xrforallr, xu = tuforue U, and
xw = tw for w€ W,. The vector spaces U= U, ,+ U_and W= W _+
W _ have the roles assigned in the preceding paragraph if and only if the
multiplications on U, and on U_ are non-singular.

Summarizing the foregoing we have the next portion of the structure
theorem.

THEOREM 2.4(b). An alternative algebra with scalar involution and
maximal non-singular subalgebra of the form F[x] is precisely an algebra
F[x] ® R, where the description is one of those given just above. The algebra
is associative if and only if R* = {0} (i.e., U = {0}).

Now consider the case that B is of the form F[x, y], where x and y
are orthogonal skew elements. In this case R? = {0}; so we need only
describe the vector space structure of R and the endomorphisms given by
left multiplication by elements of B. Recall 1.3(4): a(br) = (ba)r for a
and b in B and r in R. Thus a’(b’r) = (b’a’)r = (ab)’r. In other words
b — left multiplication by b’ is a representation of B by endomorphisms
of R.

In the case that B is a division ring, it is well known that every
representation ¢ of B on a vector space R (# 0) can be decomposed: R is
a direct sum of copies of the vector space B, and on each copy of B each
@(b) acts by left multiplication by b. Thus, 4 =B & X, @ B, (each

. = B), where multiplication in ¥, @ B; is trivial and b(X; ® b)) =
Y, @& bb=—(X; ® b)b. Conversely, if we define R =X & B, each
B, = B, and we let 4 = B ® R with the multiplication just given, we
easily verify that the result is an alternative algebra with radical R and
maximal non-singular subalgebra B.
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In the other case for dim B = 4 B is isomorphic to F2*?, the algebra
of 2 X 2 matrices over F. As is well known, every representation ¢ of B
by endomorphisms of a vector space R decomposes: R =X @ W, (each
W,=F 2X1 = the 2 X 1 column vectors over F), and on each W, each
@(b) is left multiplication by b. This means that 4 = F>**> @ X @ W,
(each W, = F?*!), where multiplication on LW, is trivial and b(X & w))
=Y @ b'w;= —(X ® w))b € F¥. Conversely, any such 4 = F?** @
L & W,, with the above multiplication, is clearly an alternative algebra
with B = F?*? as maximal non-singular subalgebra and ¥ @ W, as
radical.

Summarizing this, we have

THEOREM 2.3(c). An alternative algebra A with scalar involution and
maximal non-singular subalgebra B of diffeomorphism 4 is one of the
following:

(i) B is a division algebra; A = B & (X & B) with multiplication as
given above, or

(il) B has divisors of zero; A = F**? & (¥ @ F**Y), with multipli-

cation as given above.
In either case A is associative if and only if A = B (i.e., R = {0}).

The last portion of the structure theorem needs no further elabora-
tion.

THEOREM 2.3(d). An alternative algebra with maximal non-singular
subalgebra B of diffeomorphism 8 is simply B itself. R = {0}, and the
algebra is not associative.

As we have seen in Theorem 2.1 and Theorem 2.3 there is a dichot-
omy in the description of the structure of a non-singular composition
algebra B (and of any A = B & R), according to whether B has divisors
of zero. This can be characterized by whether a certain quadratic form
represents 0 or 1 in F. The case B = F is completely trivial; so assume
dim B = 2,4, or 8. As in the proof of Theorem 1.5, let B = F[x], F[x, y],
or F[x,y,z], where the elements x, y,z are chosen successively, each
orthogonal to the algebra generated by the preceding ones and each
nonisotropic. That is, x2, y2, and z? (as many as exist) are nonzero
elements of F.

For completeness we state the next, well-known proposition.
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PROPOSITION 2.4. Let B = F[x] be a non-singular composition algebra,
and define a = x> # 0. Then B is a (commutative) field if and only if
aX? + 1 forall X in F.

The essential features of the next proposition are known. We include
a proof because we need certain details later.

PROPOSITION 2.5. Let B = F[x, y] be a 4-dimensional non-singular
composition algebra, with a = x* + 0 and B = y* + 0 The following are
equivalent.

(a) B is a division algebra

(b) aX?*+ BY?*+# 1 forall Xand Y in F

(c) aX?+ BY? # 0,1 for all X and Y in F other than X = Y = 0.

Proof.

(a) — (b): If (b) fails, then a X*> + BY? = 1; so

1+ Xx+ Yy)(1-Xx—-Yy)=0.

(b) = (c): If (b) holds while (c) fails, then a X* + BY? = 0 for some
(X,Y) # (0,0). Since B8 # 0, X cannot be 0, for that would imply ¥ = 0.
Now a(XA)? + B(Yp)? = aX*(A\?> — u?). This will equal 1 if A=
(1 +a'X"?)/2and p = A — 1, contradicting (b).

(c) = (a): If (c) holds while (a) fails, we shall obtain a contradiction
as follows. There z € F|[x, y] for which zz’ =0 while z # 0. Write
z=A+px+rvy+axyand w=A—axy. Nowif w=0,0 = zz' = au?
+ Bv?, contrary to (c¢). Thus, w # 0. Now aww’ = a(A> + afi7?) = al?
+ B(am)?, which is not zero, by (c). Therefore, w™! exists. Put u = zw;
u # 0, while uu’ = 0. We calculate u = (N> + af7?) +8x + ey =y +
8x + ey, for y,8, ein F, withy # 0. However, 0 = uu’ = y?> — ad? — Be?,
or a(8/v)? + B(e/y)* = 1, contrary to (c).

PROPOSITION 2.6. Let B = F|x, y, z] be an 8-dimensional non-singular
composition algebra with a = x>+ 0, B =y>+ 0, and y=z>+ 0. The
following are equivalent:

(a) B has no divisors of zero;

(b) aX?®+ BY? + yZ* + aByW? + 1if X, Y, Z, and W belong to F;

(c) aX?+ BY?+ yZ? + aByW? = 0,1 forall X,Y, Z, W in F except
X=Y=Z=W=0.

Proof.
a— b: If (b) fails, put u =1+ Xx + Yy + Zz + W(xy)z; then uu’
= 0.
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b - c: If (b) is true while (c) fails, then aX? + BY? + yZ? +
afyW? = —uu’ =0 for some u= Xx + Yy + Zz + W(xy)z # 0.
We may assume W # 0. (If not, we could replace u by v = u(yz),
u(xz), or u(xy), a linear combination of x, y, z, and (xy)z with coefficient
of (xy)z not zero, and v’ = 0.) Note that a(Xu)? + B(Yp)? +
Y(Zp)? + aBy(WA)? = aByW?*(A* — p?). This will be 1 if A =
1+ (afy)y'W-2)/2andp=A—- 1.

¢ — a: Suppose (c) holds and yet (a) fails. Then there is w in B with
0 # w but ww’ = 0. Write w = a + bz, with a and b in F[x, y]. b cannot
be 0, because of (c¢) and Proposition 2.5, which show that a cannot be a
zero divisor (in F[x, y]). Now because of Proposition 2.5 and the fact that
b # 0, we have b7! exists. b'w = b~la + z is then also a zero divisor.
b~la #+ 0, since z is not a zero divisor. Write b'a = A + px + vy + 7xy
and c=A—axy. If ¢ were 0, v=>b"'a+z=px+ vy +z is a zero
divisor. However, 0 = vv’ leads to ap®> + B2 + y1? = 0, contrary to (c).
So ¢ # 0; as in the proof of Proposition 2.5 we obtain c¢’ = § # 0. Let
d = ¢(b™'a + z), which is another zero divisor. Direct computation yields
d=38+¢ex + py + oz + 7(xy)z, where 6, ¢, p, o, 7 are elements of F
and & = cc’ # 0. Finally, 0 = dd’ = 8> — ae? — Bp> — yo? — (aBy) 73
so a(7/8)% + B(p/8)* + v(0/8)* + aBy(7/8)* = 1, contrary to (c).

REMARKS. (1) The condition bb” # 0 for a (variable) element of a
non-singular non-commutative composition algebra B leads to a condi-
tion on a quadratic form in 4 or 8 variables, according to the dimension of
B. Propositions 2.5 and 2.6 reduce the number of variables and simplify
the form.

(2) One might expect by analogy with the cases of dimension 2 and 4,
where the forms are aX? and aX? + BY?, that a valid test form for
dimension 8 might be aX? + BY? + yZ?2 However, this is not the case.
Consider the algebra A = Q[x, y, z], formed over the rationals Q in the
canonical fashion by adjoining elements x, y, z, each orthogonal to the
algebra generated by the preceding elements and 1, with x? =2, y? =5,
and z2 = 10. Because [(xy)z]* = 100, (10 + (xy)z)(10 — (xy)z) = 0; so
A has divisors of zero. However, we can see that 2 X2 + 5Y2 4+ 10Z2 # 1
for rational X, Y and Z.

If we assume that 1 is represented by this form, we obtain

(*) 2X*+5Y2+10Z>=T? forintegers X,Y,Z, T, with T > 0.

Let T;, be the smallest T > 0 for which (*) has a solution. For any integer
S, $2=0,1, or -1 (mod 5) and 252 = 0,2, or —2 (mod 5). From (*) we
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obtain 2 X? = T (mod 5), which by the preceding sentence means X =
T, = 0 (mod 5). Put X = 5X,, and T, = 57;. Then (*) becomes 50 X} +
5Y2 + 10Z% = 25T2, or 10X? + Y2 + 2Z% = 5T, which modulo 5 is
Y2 +2Z?=0. Thus Y = Z = 0 (mod5). Write Y = 5Y, and Z = 5Z,.
(%) then becomes 10 X2 + 25Y? + 50Z% = 5T7?, or 2 X2 + 5Y?2 + 1022 =
T2. This contradicts the definition of T,; so (*) has no non-zero solution
after all.

(1]
(2]
(3]
[4]
(5]
(6]
(7
(8]
(9]

(10]
1)
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