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A short proof is given, using linear skein theory, of the theorem of
V.F.R. Jones that the one variable “Jones” polynomial associated to an
oriented link is independent of the choice of strand orientations, up to a
multiple of the variable.

The Jones polynomial of an oriented link K is the element V(K) of

Z[t *1/2] defined by
tV(K,) =t W(K_)+(? - t7V2)V(K,) =0
Vu)=1,

where U is the unknot and K, K_, and K, are oriented links identical
except in a small ball where they have positive, negative and null crossings
respectively. Details are to be found in [J], [F-Y-H-L-M-O)] or [L-M]. This
note gives a short proof of the following theorem of V. F. R. Jones which
states, inter alia, that, up to multiplication by a unit of Z[t *'/2], V(K) is
independent of the orientation of K. The original proof used the theory of
braids and plaits; the proof here is a simple induction together with a neat
illustration of linear skein theory. The proof fails (as it must) for the
general two-variable oriented link polynomial only at the start of the
induction.

THEOREM (V. F. R. Jones). Suppose that a component y of an oriented
link K has linking number \ with the union of the other components. Let K
be K with the direction of y reversed. Then t**V(K) = V(K).

Proof. The proof is in five sections.

(1) The theorem is true for the two links of Figure 1. This is an easy
exercise in computation.

(2) It is well known that if the orientation of every component of K is
reversed then V(K) is unchanged. Further, V(K ,#K,) = V(K)V(K,)
where K,#K, is any connected sum of oriented links K, and K,, and
also V(K) = V(K) where K is the obverse (reflection) of K and () =
f(¢7). Thus if the Theorem is true for K; and K, it is true for K, and for
K, #K,.
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FIGURE 1

(3) Consider the self-crossings of the component y in some presenta-
tion of K. Induction (as repeatedly used in section three of [L-M])on the
number of these crossings and on the number of them that have to be
switched to unknot y shows that y may be assumed to be unknotted.

(4) Let the unknotted component y bound a disc that meets the
remainder of K in n points. Proceed by induction on x. The start of the
induction will be given in (5); for the moment assume that » > 4. Figure 2
depicts a skein triple in which K is K,. The disc bounded by y is shown
meeting the remainder of K in »n points shown as crosses. In K _, y has
become two unlinked curves y; and y, that bound discs that meet the
remainder of K_ in n, and n, points and that link the remainder of K _
with linking numbers A, and A, respectively. The situation of K, is
exactly similar except that y;" and vy, are linked as shown.
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FIGURE 2

Thus n, + n, = n and A; + A, = A. Choose n, and n, so that each is at
most n — 2 (recall n > 4). Let K, K_, and K, be the same links but
with the y,* and y all reversed. Then

tV(K,) =t W(K_) + ("2 = t7V*)V(K,) = 0,
V(R,) =t W(K) + (£ = /) (K,) = 0.
But, by the induction on n, reversing y, and then y, gives
MK ) = V(K,)
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and reversing y," and then v, gives
PR DEMNEDY (K ) = Y(R ).

It follows immediately that £**V(K) = V(K).

This argument extends a little further when n = 3. If X is also 3,
choose n; = 1 and n, = 2, then the above argument holds if the theorem
1s known for n =3 and A =1 and for n > 2. Similarly when n = 3,
A= -3

(5) Suppose that n =3 and A = +1. It is required to show that
whatevery tangle is inserted into the room (the rectangle) of Figure 3 to
give K, the Theorem holds true and #°V(K) = V(K). However, the
module over Z[r*!/?] of the linearised skein of this room is generated by
the six inhabitants shown in Figure 4.

FIGURE 3
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Thus all that is required is to check that whichever of these generators is
inserted into the room to give K the theorem holds. This follows at once
from (1) and (2). A simplified version of this proof works when n = 2
there then being only two generators of the analogous rooms (see [L-M]).
The case n = 1 is immediate from (1) and (2) and » = 0 is trivial.

This completes the proof; only step (1) fails to generalise to the
general (two-variable) link polynomial.
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