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We prove the holomorphic extendabilty on a domain D § C",
n > 2, of the continuous CR-functions on a relatively open connected
subset of d/>, provided the complementary subset of dl> is Θ(D)-con-
vex.

Introduction. Let D be a relatively compact open domain in Cw,
n > 2, with boundary 3D, and K a compact subset of 3D. We require D
and K to be such that dD\K is a real hypersurface of class C1 in
C"\K.

The purpose of this paper is to give a sufficient condition on D and
K guaranteeing the holomorphic extendability on all of D of the CR-func-
tions on 3D \ K. Our theorem, which states the condition, improves and
generalizes previous results in this direction obtained in Lupacciolu-
Tomassini [6] and in Tomassini [10].1

Let Θ{D) be the algebra of complex-valued functions on D each of
which is holomorphic on an open neighborhood of D, and Kp the
0(D)-hullof #.i.e.,

K~D= Π_ {zGD;|φ(z)|<max|φ|}.
φ<=Φ(D)

Our main result is the following theorem on holomorphic extension of
CR-functions.

THEOREM 1. Assume that K is Θ(D)-convex, i.e., Kp = K, and
dD\K is connected. Then every continuous CR-function f on dD\K has a
unique extension F continuous on D\K and holomorphic on D.

A seemingly more general theorem is the following one.

THEOREM 2. Assume that 3D \ K# is a connected real hypersurface of
class Cι in Cn\K-p. Then every continuous CR-function f on dD\K^ has
a unique extension F continuous on D\ K^ and holomorphic on D\ K^.

λAdded in proof. Recently Edgar Lee Stout kindly informed me of his paper [12], where the
same condition is already recognized to be sufficient, when D is a domain of holomorphy,
for a parallel extendability's property in the setting of holomorphic functions.
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However, if we set Df = D\K^ and K' = Dr Π K-p, it is an easy
matter to see that Theorem 2 is equivalent to Theorem 1 with Όf and Kf

in place of D and K.
Before going into the proof of Theorem 1, let us discuss a nontrivial

situation where it applies.
Observe that, since plainly

where U ranges over the open neighbourhoods of D, it suffices, in order
that K-p = K, that, for some U9 KUΠ D = K, i.e. A^ does not meet
D\K. Suppose, then, that the following holds: there is an upper semicon-
tinuous plurisubharmonic function p on a Stein open neighbourhood U of D,

so that K c {p = 0} andD\K c (p > 0}. Since Kυ coincides with K%9

the hull of K with respect to the plurisubharmonic functions on U (cf.
Hόrmander [5], p. 91), it follows that Kυ is contained in {p < 0}, and
hence Ku Π D = K. In the case p is pluriharmonic, U may be required to
be simply connected, instead that Stein; for p has then a unique pluri-
harmonic extension p to the envelope of holomorphy ΐf of £/, and hence
^ c ^ = £ £ c { p < 0 } .

1. Preliminary facts, (a) We denote by ω(ξ) the Martinelli form
relative to a point ξ = (fl9..., ξn) e CΛ, that is

Λ

(where CΛ = (-l)" ("- 1 ) / 2(n - l)\/(2πi)n).
Given a holomoφhic function <p on an open set U c C" and a point

f e {/, we denote by Lζ(φ) the level set of φ through ζ, that is

L f ( φ ) = { z e tf;φ(z) = φ t t ) } .

It is known that for any φ e Θ(U) there exist holomorphic maps h =
(h1,...,hn)e Φ"(U X U) such that, for each (z, f ) ε ί / X ί / ,

(cf. Harvey [3], Lemma 2.3). Then we set:

(1.1) Θφ(UX U)= {Λ e (Pn(£/χ ί/); (•) holds}.

Any A e Φ£(U X ί/) allows one to define canonically, for f ε ί / , a
3-primitive of ω(^) on U\L^(φ), that is (n,n — 2)-form Φ/jίO on



A THEOREM ON HOLOMORPHIC EXTENSION OF CR-FUNCTIONS 179

U\Lζ(φ) such that

As a matter of fact, consider, for every α = l , . . . , « , the following
(/i, n - 2)-form on C " \ {za = ξa] = C " \ L f ( z β ) :

a ( n (-D+

Γβ-i

A Σ ( - l ) ^ ( ^ - y ^ Λ ••• j8 ••• &••• Λdzn

( - l j ' - ^ - y ^ Λ ...&••• β - - Λdzn

One verifies that, on C" \ Lξ(za), ω(ξ) = aΩΛ(Π 2 Then set

(1.2) φA(j)«__?

It is plain that ΦΛ(f) is indeed a real analytic 3-primitive of ω(ζ) on

Such 9-primitives of the Martinelli form will play a fundamental role
in the proof of our extension theorem. Now we derive the properties of
them that will be needed.

Let there be given open sets U9 U' c Cn such that U Π Uf Φ
0 , functions φ e 0(1/), φ' e 0(1/0 and maps A e O$(U X t/), Λr e
Φy>(U' X ί/0, and let f be a point in U Π IT. Suppose first that
n > 3, and consider, for every a, β = 1,..., n with a Φ β, the (n, n — 3)-
form Aaβ(ξ) on C Λ \(L ζ {z a ) U Lf(z^)) defined as follows: for a < β

Λ

(n - ΐ)(n - 2) " ( Z a _ ξj(z _ f ) | z _ ^-|2"-4

α - l

L γ - 1

+ Σ (- !) Y ^ γ - L) < î Λ ά γ i§ Λ ί/zn

Σ (-l

2 The forms Ωα(f) were considered first by Martinelli [7], to give a proof of Hartogs'
theorem.
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and for a > β Aa β(ζ) = -Λ^ a(ζ). One can verify that Ωα(£) - Ώβ(ξ) =

3Λα/β(f). Then, consider the following (n, n - 3)-form on (U\Lζ(ψ)) Π

1<a<β<n

It is easily seen that, on (U\ Lζ(φ)) Π (£/' \ L^φ')),

(1.3) Φ (ζ) — Φ >(ζ) = 3X /(?).

In case n = 2 we simply have:

Λ / #. \ Λ / t . \ -1 C*Zi / \ Ciiί

and hence we find, on (ί/\ Z^(φ)) Pi (U'\ Lς(φ')):

{hιh'2-h2h\)dzι/\dz2

Next, we observe that all the above differential forms depend in a real

analytic fashion also on the point ζ, so that we may perform any

derivative of these with respect to the parameters Re ξa9 Im ζα, a = 1,. . . , n

(by taking the derivative of each coefficient). In particular we may

consider the forms 9ω/3fα, 3Ω^/3fα, etc., obtained by applying the

Wirtinger operator 3 -/dξa. We first note that, for every a = 1,...,«, the

(n,n - 2)-form 3Ωα/3fft satisfies

and hence is defined (and real analytic) on Cπ\f, instead that only on

C" \ L f(zβ) as Ωβ({). It follows that, on Cw \ f,

(α = l,. . . ,w).

Similarly, if Λ > 3, for every a,β = l,...9n with a Φ β, the («, w — 3)-

form 3Λα^/3fα satisfies
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and hence is defined on Cn\Lζ(zβ), instead that only on C " \ ( L ζ ( z a ) U
Lζ{zβ)) as Aa β(ξ). It follows that, on Cn \ Lζ{zβ),

If n = 2 we simply have, for a = 1,2:

Now, let there be given an open set U c CΛ, a function φ ^ 0(U) and a
map A ^ $φ(t/ X £/), and let ξ be a point in U. In case π > 3 consider,
for every a = 1,...,«, the following («, « - 3)-form on ί/\ Lς(φ):

Then we find, on ί/\

On the other hand, if n — 2, we have:

(1.7) ^ ) = | r α ) (« = 1,2).

(b) It is well known that, given an oriented real hypersurface Σ of
class C1 in Cn (without boundary, not necessarily closed) and a complex-
valued function / in Lι

loc(Σ), one may say that / is a CR-function on Σ
in case it satisfies the tangential Cauchy-Riemann equation in the weak
form, that is

(1.8) ί

for every (n,n — 2)-form λ of class C1 on an open neighbourhood of Σ,
such that Σ Π Supp(λ) is compact. However we need for our purposes a
sharper characterization of continuous CR-functions on Σ than (1.8) is.
This is provided by the following proposition.

PROPOSITION 1.9. Let f be a complex-valued continuous function on Σ.
Then f is a CR-function if and only if it satisfies

(1.10)
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for every singular (n + q)-chain cn + q of Σ of class C1 and every (n,q — 1)-

form μ of class C 1 on an open neighbourhood of Σ (1 < q < n — I ) . 3

Proof. This proposition asserts that (1.8) and (1.10) are equivalent for

a continuous / (which would be quite immediate if / were of class C1).

We shall prove only that (1.8) implies (1.10), the converse being trivial.

For every differential form μ of class C 1 on an open neighbourhood

V of Σ, we denote by μ | Σ the restriction of μ to Σ (i.e. the pull-back of μ

by the inclusion map Σ <-» F) . Then μ | Σ is a continuous regular form on

Σ. 4

Consider the continuous n-ϊoim on Σ

u=f(dzιΛ ••• Λdzn)\Σ.

We claim that (1.10) is equivalent to the following assertion:

(*) u is regular on Σ and du = 0.

As a matter of fact, taking in particular q = 1 and μ = dzx A Λdz,7,

(1.10) gives:

0= ί fdzx A - Adzn= f u,

for every singular (n + l)-chain cn+ι of Σ of class C 1; and this is just as

to say that (*) holds. Conversely, assume that (*) holds. Any (n,q — 1)-

form μ as in the statement can be written as μ = dzx A Λ dzn A μ,

where μ is a (0, q — l)-form of class C 1 on an open neighbourhood of Σ.

Then u A μ \ Σ is a continuous regular (n + q - l)-form on Σ and, since

du = 0, d(μ I Σ ) = (dμ) | Σ, we have:

d( U A μ\Σ) = {-l)nu A (dμ)\Σ = f (dμ)\Σ = f (dμ)\Σ.

It follows that

ί fdμ= [ u A μ\Σ = ί /μ,

that is, (1.1) holds. Next, we claim that (*) is equivalent to:

(**) u is weakly closed on Σ, that is I u A dv = 0

for every (n — Ί)-form v on Σ of class C 1 and with compact support.

3 The same result is proved in Lupacciolu-Tomassini [6] under the additional assumption
that / is locally Lipschitz, but the argument used there does not work without that
assumption.
4 For the definition and basic properties of continuous regular forms we refer to Whitney
[11] pp. 103-108. We denote, as usual, by d the differential acting on such forms (defined
by means of Stokes' formula), as the ordinary exterior differential.
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This latter equivalence is a straightforward consequence of the follow-
ing general facts about continuous differential forms on a manifold of
class C1:

(i) The differential acting on continuous regular forms may be
understood in the strong sense. This means that, if η, θ are continuous
forms, then η, θ are regular and dη = θ in the sense of regular forms if
and only if there exists a sequence {ηs}™=ι of forms of class C1 such that
ηs -» η and dηs -> θ as s -* oo, both uniformly on compact sets (cf.
Whitney [11]);

(ii) The differential in the strong sense coincides with the differential
in the weak sense. This means that, if η, θ are continuous forms, then
dη = θ in the strong sense if and only if / η A dζ = (_l) d e ^ + 1 / θ A £,
for every form £ of class C1 and with compact support (cf. Friedrichs [2],
or Fichera [I]).5

Now we show that (1.8) implies (**), which will conclude the proof.
We shall use the following fact: there exists an open neighbourhood W of
Σ in Cw and a retraction r: W -> Σ of class C1 (which means that
r(z) = z for each z e Σ ) . This is a special case of a standard theorem in
Differential Topology (cf. Munkres [8], p. 51, or Whitney [11], p. 121).6 If
υ is any (n - 2)-form on Σ of class C1 and with compact support,
consider its pull-back r*v to W. r*v is a continuous regular (n — 2)-form
on W, and hence we can find a sequence {ηs}f=ιoΐ(n — 2)-forms of class
C1 on W such that

lim ηs = r*ϋ, lim dηs = r*dv,
s—»oo s-* oo

both uniformly on compact subsets of W. Moreover, since Σ Π
Supp(r*ί;) = Supp(t ) is compact, we can arrange that so too is Σ Π
Supp(η5), for every s. It follows that

/ u A do = lim / u A(dηs)\Σ

= lim / /dzx A —- A dzn A dηs
s—>oo •'2

= ( - 1 ) " lim / fd(dz1 Λ ••• AdznAVs),
s-* oo •'Σ

and hence (1.8) implies /Σ u A dv = 0.

5 Clearly, the interest of this fact is in the "if, the "only i f being trivial.
6If Σ were of class C2, we could use the more elementary "tubular neighbourhood
theorem".
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2. Proof of Theorem 1. Let V be an open neighbourhood of K in
C" and σ: C" -> R a C°° function such that 0 < σ(z) < 1 for all z,
σ(z) = 1 for z e ί , Supp(σ) is compact and contained in V. For a
generic small ε > 0, set Dε = D Π (1 - σ > ε}, Γε = dD Π {1 - σ > ε}
and Kε = Ί) Π (1 - σ = ε}. Then Z>ε is a subdomain of Z), 3Z>ε = Γε U
Kε, Γε and Kε are compact real hypersurfaces with boundary, of class C1,
such that Γε Π Kε = 9Γε = 3ίΓε, and Γε is connected. Clearly, D is
exhaustible by an increasing sequence of subdomains of this sort, {Ds}™=v

say, so that

with obvious meaning of Γ̂ , Ks, and

We assume that the sequence {Ds}faBl has been chosen once for all.
Now, let U be an open neighbourhood of D and let φ e 0(£/). For

every positive integer s we set:

D\DS

Then Us(φ) is an open subset of U\D\DS such that, if ξ e Lζ(φ), the
level set Lζ(φ) of φ through f is all contained in Us(φ). Moreover we set:

Since {D \ Ds}%1 is a decreasing sequence of compact neighbourhoods of
K in 5 such that K = n~= 12>V^, it follows that U^φ) c U2(φ) • • •,
and

(2.1) U(φ) = U Us(φ).
5 = 1

Moreover, since A^ = C\υ^^Kυ (where U ranges over the open
neighbourhoods of D), the assumption of Theorem 1 implies:

(2.2) D\Kc U U U(φ).

Next, for every U,φ,s as above and h e 0^(i7 X ί7) (cf. (1.1)), consider
the complex-valued function F£ on Us(ψ) \ dD given by

(2-3) FUS) - [ MS) ~ f
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where Φh(ζ) is the 3-primitive (1.2) of the Martinelli form ω(ξ), Ts is
oriented as a part of 3D and 3ΓS as the boundary of Γ5.

7 Since, for
ζ e Us(ψ) and z e 3Γ5, \ψ(ξ)\ > |φ(z)| (because dTs c D\DS), the sin-
gular set Lς(φ) of Φh(ξ) does not meet 3Γ5, so that FA

5 is indeed defined,
and real analytic, on Us(<p) \ Ts = Us(<ρ) \ dD.

PROPOSITION 2.4. Suppose there exists at least a function F as in the
statement of Theorem 1. Then, for every U, φ, h, s as above,

F= F£ onDΠ Us(φ).

As a consequence, on account of (2.1) and (2.2), if such a F actually exists,
it is necessarily unique.

Proof. Clearly D Π Us(φ) c Ds, and, by assumption, F e C°(DS) Π
Θ{DS) and F = / on Γ̂ . Therefore, since, by the Martinelli formula, for
f G ΰ s , we have:

F(ξ)=ίfω(ξ)+[

we are required to show that, for ξ e D Π Lζ(φ), we also have:

Fω(ζ) = -

Since F is continuous on Z) \ K and holomorphic on D, the forms Fω(ζ),
FΦh(ζ) are both continuous on (D\K)\L^(ψ), real analytic on
D\Lξ(φ), and on D\L^(φ) satisfy_ Fω(f) = d(FΦh(ζ)). Moreover,
since f e i/5(φ), it follows that Ksc(D\K)\L^(ψ). Then consider the
restrictions (Fω(ζ)) \ κ, (FΦh(ξ)) \ κ these are continuous on J^, regular
on Ks\dKs and on Ks\dKs satisfy (Fωtf)) \ Kg = d[(FΦh(ξ)) | Kg].
Hence Stokes' theorem for regular forms on a manifold with boundary (cf.
Whitney [11], p. 109) implies:

Finally, since dKs = -dTs (= dTs with the opposite orientation), (*)
follows.

The above proposition disposes of the uniqueness' assertion in Theo-
rem 1 and, further, implies that the proof of the existence of a holomor-

7 In this paper we take as the canonical orientation of C" and of D the one given by the
volume-form (i/2) Λ dzλ Λ dzλ A Λdzn A dzn.
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phic continuation of / on D shall be a matter of showing that the F^ 's do
in fact define a holomorphic function F on D such that, for each
z° e dD \ K, F(ξ) -> /(z°) as ξ -> z° in Zλ In the first place we have:

PROPOSITION 2.5. 77ze functions F£'s are each other coherent and
holomorphic. Hence there is a unique holomorphic function F on

( U U U(φ))\dD

such that, for every U,φ,h,s,

F=Fί onUs(φ)\dD.

Proof. We first prove the coherence. This means that, for every
£/, φ, h,s and U\ φ', h\ s\ we have:

(*) F£ = rf onUs(φ)nUs:(φ')\dD.

We may assume that s > s'. Then (*) will be a consequence of the
following two equalities:

(i) Fi = F£ on U;,(φ')\ZD\
(ii) F£ = Fξ. on Us(φ) Π Us'(φ')\dD

(recall that Us,(φ) c i75(φ) and ί#(φθ c t//(φθ). To prove (i) (in case
^ > s'), consider the (2π — l)-chain of dD \ K, of class C1, c2 w_1 = Γ5 -
Γ .̂ If f is any point in Us',(φ') \ dD, it is plain that

^ 1

moreover, since Supp(c2w_!) c DS\DS, c D\DS, and L^(φr) c Us',(φ')
c U'\D\Ds,, it follows that Supp(c2n_1) is contained in U'\Lζ(φ'),
where co(f), Φh,(ξ) are both defined and satisfy ω(f) = 9ΦΛ,(f). Then, if
we take a («, n — 2)-form μ of class C°° on all of Cn and equal to ΦA^(f)
on an open neighbourhood of Supp(c2π_1), we may replace ω(£), ΦΛ/(f )>
in the right side of the above equality, respectively by 3μ, μ. Hence
Proposition 1.9 gives at once that F£,(ζ) = F£',(ξ).

Next we prove (ii). On account of (1.3), (1.4), we have, for each

«/ατ

(hιh'2-h2h[)dz1Adz2 =
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In case n > 3, we may replace Xhh,(ζ), in the integral on the right side,
by any (n,n - 3)-form X of class C°° on all of C and equal to XΛA<(£)
on an open neighbourhood of dTs. Hence Proposition 1.9 (for q = n — 1,
cn+q = Ts and μ = dX) implies that F^(ξ) = J £ ( p .

In case n — 2, we have to argue differently. Since f e tζ(φ) Π U/(φ')

and 3ΓS c ^XZ)^ it follows that, for each z e 3Γ5, |φ(f)| > max^^ |φ|
> |φ(z)|, and hence |φ(z)/φ(?)l < l Similarly, |φ'(z)/φ'(f)| < 1.
Therefore we may write, for z e 9Γ,:

1

6U U
with the double series absolutely uniformly convergent on ΘΓS. It follows
that

ft \ {h1h'2-h2h[)dzιΛdz2

0,00

where

M JI = ( M i - h2h[){<p{z))aW{z))βdzx Λ Jz2

(α,j8 = 0,l ,2, . . .) .

Now, since every μaβ is a holomoφhic 2-form on U Γ\ U', so that
9μβ 0 = 0, Proposition 1.9 implies:

/ faφ ( )

Therefore also for « = 2 we have: F%(ξ) = F£,(ζ).
It remains to show that every i^ is holomorphic, i.e. that, for each

Clearly, we have:
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further, on account of (1.5), (1.6), (1.7), we may rewrite the right side of
this equality as:

where

r If
10 if n = 2.

Since [9Ωα/3£J(f) is defined on all of C" \ ξ, Proposition 1.9 implies that
the difference of integrals in (*) is zero. Moreover, by Proposition 1.9
again, / is zero also in case n > 3, since ΨΛ

α(f) may be replaced by any
(Λ, n - 3)-form Ψa of class C°° on all of Cn and equal to Ψ"(f) on an
open neighbourhood of dTs. Hence [dF£/dξa](ξ) = 0.

The proof of Proposition 2.5 is then completed.

Next, we have:

PROPOSITION 2.6. Let V be an open neighbourhood of dD \ K, con-
tained in Uυz>DVφec>(U)U(φ)> such that V\(3D\K)= V+U V_, where
V+, V_ are connected separated open sets and V_c Cn\ Z).8 Then F = 0 on

Proof. We first point out that, given an open neighbourhood U of D
and a function φ G Θ(U)9 if ζ is a point in U such that |φ(f )l > max^|φ|
(which obviously implies that f G (^(φ) \Z)), then F(ζ) = 0. As a matter
of fact, if Λ G Θ"(U X £/), we have:

=ί fω(ξ)-f

and, since D c ί/\L^(φ), on an open neighbourhood of i) ω(£), ΦΛ(O
are both defined and satisfy ω(ξ) = dΦh(ξ). Hence Proposition 1.9 im-
plies that F(ζ) = 0.

Now, take £/ and φ such that U(ψ) Π D Φ 0 ; then max^|φ| >
max^|φ|, so that φ is not constant on the connected component of U
containing D and, further, any point ξ° G dD where |φ| attains the value

8 Such a V does exist, because dD\K is connected. For example, we may take as F a
small tubular neighbourhood of dD\K in C"\K.
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max^|φ| must belong to dD \ K. One can actually find such a point ξ° by
the well known "maximum principle". Then ξ° is a limit point of the
open set W = {ζ e U;\φ(ξ)\ > max^|φ|} (by the maximum principle
again), and, since ζ° e dD\K, this obviously implies that W Π V_Φ 0 .
But we already know that F is zero on W Π V_\ it follows that F is zero
on all of F_, because V_ is connected.

Finally, we are in a position to prove that F is a continuous extension
of / to D \ K, i.e., the following holds:

PROPOSITION 2.7. For every point z° e dD\Kwe have:

the limit being evaluated for ζ e D.

Proof. For every w e dD\K, denote by v(w) the unit vector per-
pendicular to dD\K at w, inward pointing with respect to 2λ We first
prove that

(*) lim F(w 4- tv(w)) =/(w),
0 +

with the limit uniform on compact subsets of 3D \ K . Given W E 3
we can find an open neighbourhood U of Z), a function φ e Θ(U) and a
positive integer s such that w e U5(φ) Π ( Γ 5 \ 3Γ5). Then, for / > 0 small
enough, we have:

w + tv(w) e C/S(φ) Π D, w - tv(w) G ί/5(φ) Π F_,

with F_ as in Proposition 2.6, and hence, if h ^ Θ£(U X U), it follows
that

F(w + tv(w)) = JFΛ

5(w + tv{w)),

F(w - r?(w)) = Fs

h(w - tv(w)) = 0.

Therefore we may write:

F(w + tv(w)) = F£(w + ί?(w)) - FΛ

5(w - tv{w))

where

,0= f f[ω(w + tv(w))-ω(w-tv(w))]9Jrs
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Now, it can be shown that, for any / e C°(TS) (not necessarily a CR-
function) and w e Γ,\ 3Γ5,

with the limit uniform on compact subsets of Γ 5 \3Γ 5 . A similar result

can be found in Harvey-Lawson [4], pp. 251-252, and the proof given

there (based on a suitable estimate for \\ω(w + tv(w)) - ω(w — tv(w))\\)

works essentially for the present case as well.9 Next, since the function

ξ —> / 9 Γ fΦh(ζ) is defined and real analytic on all of Us(φ), it is plain

that, for w e Us(φ) Π (Γ 5 \9Γ 5 ),

lim / 2(w,/) = 0,

with the limit uniform on compact subsets of Us(φ) Π ( Γ 5 \ 3ΓJ. Hence

(*) follows.

After that, it is easy to prove Proposition 2.7. Given ε > 0, let Nzo be

an open neighbourhood of z° in dD\K such that |/(w) — f(z°)\ < ε/2,

for every w e N2o, and Nzo <s dD\K. Further, let t0 > 0 be such that

\F(w + tv(w)) — f(w)\ < ε/2, for every t < tQ and w G N2O. Clearly, if ξ

is a point of D close enough to z°, there exist exactly a point w e 7Vzo and

a positive number t < t0 such that f = w + /?(w). It follows that

which proves Proposition 2.7.

Now the proof of Theorem 1 is completed.

REFERENCES

[1] G. Fichera, Teoria delle funzioni analitiche di piii υariabili complesse, Istituto Mate-
matico " G . Castelnuovo", Univ. di Roma, notes, 1982-83.

[2] K. O. Friedrichs, The identity of weak and strong extensions of differential operators,
Trans. Amer. Math. Soc, 55 (1944), 132-151.

[3] F. R. Harvey, Integral Formulae Connected by DoϊbeauWs Isomorphism, Rice Univ.
Studies, 56 (1969), 77-97.

[4] F. R. Harvey and H. B. Lawson, On boundaries of complex analytic varieties, I, Ann.
Math., 102(1975), 223-290.

[5] L. Hδrmander, An Introduction to Complex Analysis in Several Variables, North-Hol-
land Publishing Company, 1973.

[6] G. Lupacciolu and G. Tomassini, Un teorema di estensίone per le CR-funzioni, Ann.
Mat. pura appl., 137 (1984), 257-263.

9 The parallel result for n = 1 and ω(?) = (1/2πi) • dz/(z - ζ) (the Cauchy kernel) goes
back to Plemelj (cf. Muskhelishvili [9], pp. 43-45).



A THEOREM ON HOLOMORPHIC EXTENSION OF CR-FUNCTIONS 191

[7] E. Martinelli, Sopra una dimostrazione di R. Fueter per un teorema di Hartogs,
Comment. Math. Helv., 15 (1942), 340-349.

[8] J. R. Munkres, Elementary Differential Topology, Annals of Math. Studies 54,
Princeton Univ. Press, Princeton, N. J., 1966.

[9] N.I. Muskhelishvili, Singular Integral Equations, Wolters-Noordhoff Publishing,
Gronigen the Netherlands, 1958.

[10] G. Tomassini, Extension of CR-functions , to appear in Lecture Notes in Math.,
Springer-Verlag, New York.

[11] H. Whitney, Geometric Integration Theory, Princeton Univ. Press, Princeton, N. J.,
1957.

[12] E. L. Stout, Analytic continuation and boundary continuity of functions of several
complex variables, Proc. Edinburgh Royal Soc, 89A (1981), 63-74.10

Received October 22,1984.

ISTITUTO MATEMATICO " G U I D O CASTELNUOVO"

UNIVERSITA DI ROMA " L A SAPIENZA"

00185 ROMA

10'Added in proof.





PACIFIC JOURNAL OF MATHEMATICS

EDITORS
V. S. VARADARAJAN HERMANN FLASCHKA C. C. MOORE

(Managing Editor) University of Arizona University of California
University of California Tucson, AZ 85721 Berkeley, CA 94720
Los Angeles, CA 90024 RAMESH A. GANGOLLI H. SAMELSON
HERBERT CLEMENS University of Washington Stanford University
University of Utah Seattle, WA 98195 Stanford, CA 94305
Salt Lake City, UT 84112 VAUGHAN F. R. JONES HAROLD STARK
R. FINN University of California University of California, San Diego
Stanford University Berkeley, CA 94720 La Jolla, CA 92093
Stanford, CA 94305 ROBION KlRBY

University of California
Berkeley, CA 94720

ASSOCIATE EDITORS
R. ARENS E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSHIDA

(1906-1982)

SUPPORTING INSTITUTIONS
UNIVERSITY OF ARIZONA UNIVERSITY OF OREGON
UNIVERSITY OF BRITISH COLUMBIA UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY STANFORD UNIVERSITY
UNIVERSITY OF CALIFORNIA UNIVERSITY OF HAWAII
MONTANA STATE UNIVERSITY UNIVERSITY OF TOKYO
UNIVERSITY OF NEVADA, RENO UNIVERSITY OF UTAH
NEW MEXICO STATE UNIVERSITY WASHINGTON STATE UNIVERSITY
OREGON STATE UNIVERSITY UNIVERSITY OF WASHINGTON



Pacific Journal of Mathematics
Vol. 124, No. 1 May, 1986

Kinetsu Abe and Martin Andrew Magid, Relative nullity foliations and
indefinite isometric immersions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

Erik P. van den Ban, A convexity theorem for semisimple symmetric
spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Bo Berndtsson and Thomas Joseph Ransford, Analytic multifunctions, the
∂-equation, and a proof of the corona theorem . . . . . . . . . . . . . . . . . . . . . . . . . 57

Brian Boe and David H. Collingwood, Intertwining operators between
holomorphically induced modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Giuseppe Ceresa and Alessandro Verra, The Abel-Jacobi isomorphism for
the sextic double solid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Kun Soo Chang, Jae Moon Ahn and Joo Sup Chang, An evaluation of the
conditional Yeh-Wiener integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Charles Dale Frohman, Minimal surfaces and Heegaard splittings of the
three-torus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Robert M. Guralnick, Power cancellation of modules . . . . . . . . . . . . . . . . . . . . 131
Kenneth Hardy and Kenneth S. Williams, On the solvability of the

Diophantine equation dV 2
− 2eV W − dW 2

= 1 . . . . . . . . . . . . . . . . . . . . . . 145
Ray Alden Kunze and Stephen Scheinberg, Alternative algebras having

scalar involutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
W. B. Raymond Lickorish and Kenneth Millett, The reversing result for

the Jones polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Guido Lupacciolu, A theorem on holomorphic extension of

CR-functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
William Schumacher Massey and Lorenzo Traldi, On a conjecture of K.

Murasugi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Dinakar Ramakrishnan, Spectral decomposition of L2(N\GL(2), η) . . . . . . 215
Steven L. Sperber, On solutions of differential equations which satisfy

certain algebraic relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .249

Pacific
JournalofM

athem
atics

1986
Vol.124,N

o.1

http://dx.doi.org/10.2140/pjm.1986.124.1
http://dx.doi.org/10.2140/pjm.1986.124.1
http://dx.doi.org/10.2140/pjm.1986.124.21
http://dx.doi.org/10.2140/pjm.1986.124.21
http://dx.doi.org/10.2140/pjm.1986.124.57
http://dx.doi.org/10.2140/pjm.1986.124.57
http://dx.doi.org/10.2140/pjm.1986.124.73
http://dx.doi.org/10.2140/pjm.1986.124.73
http://dx.doi.org/10.2140/pjm.1986.124.85
http://dx.doi.org/10.2140/pjm.1986.124.85
http://dx.doi.org/10.2140/pjm.1986.124.107
http://dx.doi.org/10.2140/pjm.1986.124.107
http://dx.doi.org/10.2140/pjm.1986.124.119
http://dx.doi.org/10.2140/pjm.1986.124.119
http://dx.doi.org/10.2140/pjm.1986.124.131
http://dx.doi.org/10.2140/pjm.1986.124.145
http://dx.doi.org/10.2140/pjm.1986.124.145
http://dx.doi.org/10.2140/pjm.1986.124.159
http://dx.doi.org/10.2140/pjm.1986.124.159
http://dx.doi.org/10.2140/pjm.1986.124.173
http://dx.doi.org/10.2140/pjm.1986.124.173
http://dx.doi.org/10.2140/pjm.1986.124.193
http://dx.doi.org/10.2140/pjm.1986.124.193
http://dx.doi.org/10.2140/pjm.1986.124.215
http://dx.doi.org/10.2140/pjm.1986.124.249
http://dx.doi.org/10.2140/pjm.1986.124.249

	
	
	

