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In the following, we provide another proof (Theorem 3.1 below) of
recent results of Harris-Sibuya, using some elementary commutative
algebra. Our purpose is to give a uniform treatment for their results
which also permits some generalization. We note that the study of
differential equations under the hypothesis that the solutions satisfy an
algebraic relation is not new. Fano, among others, made a systematic
study of this situation in the last century. Also Lamé equations in which
two solutions have a rational function as their product have proved to be
a good source of examples for unusual arithmetic behavior. But in the
case of Harris-Sibuya, as well as the present paper, the solutions need
not be solutions of the same linear equation. In the treatment below the
differential equation only enters in dilineating a type of recursion.

1. Let R = K[{A;}X,] be a polynomial ring over a field K. Assume
that it is graded by assigning to each variable A, a natural number,
w(A,) = w, € N, and then assigning
N

N
I1 A'f') =2 pw,.
i=1

i=1

w

The following result makes use of some elementary commutative algebra.

(1.1) THEOREM. Let I be the ideal of R generated by a collection of
polynomials, { fg(A)}ger © R. Let f;g(A) be the leading homogeneous form
of fs(N) with respect to the above grading; let J be the homogeneous ideal
generated by { fo(M)}ger- If Z(J) = {(0,...,0)}, then Z(I) is a zero-di-
mensional variety.

Proof. Since Z(J) = {(0,...,0)}, the Nullstellansatz implies that VT,
the radical of J, satisfies

VT =(Ap..., Ay).

Thus, foreach i € {1,2,..., N}, there exists an m; € N such that A7 € J.
The sequence { AT, ..., A%} forms a regular sequence (in any order). Let

249



250 STEVEN SPERBER
us denote % ,(A) = A™ and write

hi(A)= 1 A 5(A)fp(A)

BeTl
where 4 . p(7A) is homogeneous of weight equal to m;w, — w( fB).
Define
= X 4 5(A)fs(D).
BeT

Clearly the leading form of 4,(A)is #,(A) so that
hi(A) =h,(A) +h,(A)

with w(h,(A)) < mw, We assert that {h(A),..., hy(A)} is a regular
sequence (in any order). Suppose

_gl §(A)h(A) =

Let w be the weight of the highest weighted terms that appear on the
left-side (before cancellation). We write

£(A)=E(A) +£(0)

where w(£,) = w(£,) =w — mw, > w(£,). We claim there exists a skew-
symmetric set &, ;(A) € R such that
k

£(A) = Z aij(A)hj(A)

J=1

for each i, 1 < i < k. We proceed by induction on w. Since
k ~ o~
X &b, =

there is a skew-symmetric set of homogeneous polynomials {#,;},<; <«
C R such that

We may rewrite

k k
gi(A) = Z 'hijhj_ Z ﬁjhj
j=1
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so that

If we write,

k
{[ = gl - Z 7ll‘jll_[’
j=1
then w({,;) < w(§,) so thatin
k
Z §ihi =0

the highest weight term appearing on the left is strictly less than w. By
induction

k k
§$i=§ — Z ’Tiijhj= Z Yijhj
j=1 j=1
so that
A k k ~
§ = Z Yijhj+ Z ﬁijhj
j=1 j=1
and
k
§ = Z (ﬁij + Yij)hj

Jj=1

as required.
In a similar manner, we can show that

(h(A),...,hy(A)) # R.

For suppose a relation 1 =X ah, exists with ¢;€ R and M =
max, _, .y { w(a,;) + mw,}. As before we write o, = &; + &, with w(a,) =
w(a,) > w(@&;) and & homogeneous. We may assume the a,’s chosen so
that M is minimal. Clearly ¥Y., &%, = 0 where &,(A) is the leading form
of a,(A). This implies the existence of a skew-symmetric set of homoge-
neous polynomials { ¥, j}fv ;=1 € R satisfying

N

N ~
a; = Z ?ijhj =
Jj=1
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Using this
N N
1= (&, - 7,jhj)h
i=1 j=1
and
N ~
1rsnlast{w(og - j§1 Yihi| + miwl} <M.
This contradicts the choice of {a,}¥ ; C R.
The point of this is to establish that
depth(I) = N

so that, since we are in a Cohen-Macauley ring,
height(I) = depth(I) = N.

Since I is an ideal in a polynomial ring, this implies that dimension
(1) = 0 which completes the proof of the theorem.

2. We now apply this algebraic result to differential equations. Let K
be a field of characteristic zero.

(2.1) DEfFINITION. Let (N,,...,N,) be an r-tuple of non-negative
integers. Let F be a field extension of K. A polynomial G(Y;,...,Y)) €
K[Y,,Y,,...,Y,] is called (N,,...,N,)-PF (“polynomial-free”’) over F
provided that G(y,,...,y,) =0 with y, € F[¢], (¢ transcendental over
F), deg,(y,) < N,, implies y, € F.

(2.2) Examples. (1) Y"Y;"2 --- Y™ =1; m;>1is (N,,..., N)-PF
over F for arbitrary (N,,...,N,) € (Z.,)", F/K.

(i) Y, =Yy --- Y"™; m, =21 1is (Ny,...,N,)-PF over F pro-
vided N, < min(m,, ms,...,m,).

In both of these examples, the verification is a trivial observation
concerning degrees. Other examples can easily be constructed.

(2.3) THEOREM. Assume for eachi € {1,2,...,r},
yi(1) = X AP e Fl[4]]
j=1

is a formal power series solution of a differential equation L,y = 0 where
L, € K|[[t)ld/dt] is a linear differential operator of order N, + 1 with an
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ordinary point at t = 0. Assume also that G(y,,...,y,) = 0 where G(Y) €
K[Y,,...,Y.]is (Ny..., N,)-PF over K, where K is the algebraic closure of
K({AQ}7_1). Then }\(J’) € K for all i and all j.

Proof. Replacing K by K({A{}i_,) if necessary, we may assume
{ND}i_; € K and are fixed. Let {_/\(j")}ls,.'S r, j=1 be algebraically inde-
pendent over K(t). Let Z, = Ap + X%, AVt/. We view (AP}, _,_,. ..,
as a solution of the system of polynomials

(2‘4) {fk({A(ji)}jzl;lsiSr) R K [{A(l)}jzl;lsisr]}

where these polynomials are defined as follows

G(Zy,..,2,) = G(AD, ..., AD) + ka({ ADY)ek

(Of course, G(AY,...,A) = 0). The hypothesis that y,(¢) satisfies a
linear differential equation of order N, + 1 with coefficients in K[[¢]] and
an ordinary point at ¢ = 0 means the {A(’},, satisfy a recursion of the
form

(2.5) AR, =vP(AQ, AP, AL ) 121

where v/? is a linear form in N, + 1 variables defined over K.

Substituting (2.5) into (2.4), N = ({AP}[1 <j < N; 1 <i < r) satis-
fies an infinite system of polynomials in a finite number N = ¥]_, N,
variables:

(26) F(A)eR=K|{AP 1 <j<N;1<i<r], k=1

In particular N is a point on the algebraic variety Z(/) where I C R is the
ideal generated by the F,(A), k > 1. It suffices then to show Z([) is zero
dimensional.

We give R and R a grading by assigning w(A(’)) =j, for all i,
1<i<r, and all j, j>1. Then f, is a homogeneous polynomial of
weight k. Let f,(A) € R be the image of F,(A) under the ring-homomor-
phism ¢: R — R defined by sending A}’ - 0, whenever j > N, + 1 and
AP — A whenever j < N,. Then, since the substitution (2.5) involves
replacing A}, by a polynomial of strictly smaller weight, it follows that
f(A)eT where J is the homogeneous ideal generated by the leading
forms F,(A) of the polynomials F,(A), (2.6).

Since

9G(Z,,..., Z,) = G(9Z,,....9Z,) = X fil(A)t¥,
k=1
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the hypothesis that G is (N,,..., N,) — PF over K, the algebraic closure
of K, implies that

Z(J) = {(0,...,0)}

where J is the ideal of R generated by the f,(A). Clearly then Z(J) =
{(0,...,0)} and Z([I) is zero-dimensional.

3. As in the case of Harris-Sibuya [3], [4], we utilize a homomorphism
of differential rings to obtain our main result.

(3.1) THEOREM. Let K be a differential field of characteristic zero. Let
F/K be an extension of differential fields. Assume for each i, 1 <i <,
y, € Fis annihilated by a linear differential operator L, € K[D],

N+1

L= a,D/), a,€K,

1
j=0

order L, = N, + 1. Assume also that

m

» =Yyt y

where Ny + 1 < min{m,,...,m,}. Then Dy,/y, is algebraic over K, for
eachi,1 <i<r.

Remarks. (i) The result above includes both Harris-Sibuya theorems
as special cases. In particular, the case y,y, =1 is the case r =3,
m,=m;=1,y =1

(ii) We are indebted to M. Singer for pointing out that the case
1y, = 1 follows immediately from a result of S. Morrison which appears
in [1, Theorem 3].

Proof of Theorem. The map
6: F—> F[[¢]]
defined by

& Do
0(0[) = Z —l—!‘-‘tl

has been studied by Robba [5]. It is an injective homomorphism of
differential rings:
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Since y, satisfies an (N, + 1)st order linear differential equation defined
over K, it follows easily that 6(y,) € F[[t]] is a power-series solution of
an (N, + 1)-st order linear differential equation with coefficients in K[[¢]]
having an ordinary point at ¢t = 0. Since y, € F is a constant with respect
to the derivation d/dt of F|[[¢]] it follows that

u=005)/y=1+% 2 T LASAN
=1 yl
is also a solution of an (N, + 1)-st order linear differential equation with
coefficients in K|[[¢]] having an ordinary point at ¢ = 0. In addition, the
relation y; =y, ...,y yields 6(y,) = 6(y,)™ --- 8(y,)™ and there-
fore u; = uy> --- u. As a consequence of the previous section, the
coefficients of the u, are algebraic over K as required.

4. The method above has wider applications than those given above
although in most cases the conclusions that can be immediately drawn are
significantly weaker than the conclusions of Harris-Sibuya.

(4.1) THEOREM. Let K be a differential field of characteristic zero. Let
F /K be an extension of differential fields. Assume for eachi = 1,2, y, € F
is annihilated by a linear differential operator L, € K[D] of order N, + 1.
Let K, = constants of K = {a € K|D(a) = 0}. Assume that G(y,, y,) =0
where G(Y,, Y,) € K,[Y,, Y] is (N,, N,) — PF over K, the algebraic closure
of K. Then y, satisfies a first-order algebraic differential equation with
coefficients in K.

Proof. We proceed as in (3.1) working with 6(y,) = X7, A ¢/ (with
A} = D/(y,)/j!) instead of 6(y,)/y,. The conclusion in thls case is that
the coefficients of @(y,) (including A’ = Dy,) are algebraic over
KAQ,X2) = K(y,, y,). Since y; and y, are algebraically dependent, the
desired conclusion follows.

It is clear that in the above treatment, the role played by the linear
differential operator is to provide recursions (as in (2.5)) having the
properties that they are polynomial in nature and they reduce the given
weight (the weight being dictated by the algebraic relation satisfied by the
solutions). In particular, no special use was made of the linearity of the
recursion in (2.5).

(4.2) DErFINITION. Let X~ be a differential ring. Let % be a differen-
tial extension ring of . We say y € # is weighted monic over )~ if y
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satisfies an algebraic differential equation of the following type

y(n) = H(y’”.’y(n—l))

where H(z,,...,z,) € X|zy,...,z,] and where the monomials z* =
z{r - - z3n of H satisfy

Y (i—1)a, <n.
i-1

The importance for us of this definition is that when y is weighted
monic over K then 8(y) = X3 _oA,t* is a power series in ¢ which is
weighted monic over K[[¢]] and the recursion satisfied by the coefficients
has the form

Ak+n = Qk(>\0’>‘1w--’}‘n~1)

where Q, € K[Ag, Aq,...,A,_;], and if AP = ABAB ... AR s a
monomial of Q, then

w(ABAS, . AB) <k +n.

(4.3) REMARK. It follows from the above discussion that the hypothe-
sis of (3.1) and (4.1) that y, satisfies a linear differential equation over K
can be replaced by the weaker hypothesis that the y, are weighted monic
over K.

Finally, it is not difficult to extend the above results to solutions of
certain overdetermined systems of partial differential equations.

We thank W. A. Harris, Jr. and Y. Sibuya, for their encouragement.
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