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Let C be a convex compact set in a normed space E and let ske^ C
be the subset of C that contains those boundary points of C which are
not centres of 2-dimensional balls in C. When / is a continuous func-
tional on E, we say that the path P = g([ct,β]) is /-strictly increasing if
Kg(h)) < '(#('2)) f o r e v e r y h>h s u c h Hurt oί<tι<t1<β. D. G.
Larman proved the existence of an /-strictly increasing path on the one
skeleton of C with l(g(a)) = m i n x e C l(x) and l(g(β)) =

In this paper we prove a theorem concerning the number of /-strictly
increasing paths on the one-skeleton of C, that are mutually disjoint and
along each of which / assumes values in a range arbitrarily close to its
range on C.

1. The results. We quote and prove the following theorem

THEOREM 1. Let C be a compact convex set of infinite dimension in a

normed space E and I be a continuous linear functional on E, which is non

constant on C. Let ε > 0 be given, M = m a x x G C / ( x ) and m =
min^ € c l ( x ) . Then, for every n = 1,2,3, . . . there exist n Ustrictly increas-
ing paths, Pk = gk([a, /?]), k = 1,2,... , n on the one-skeleton of C, such
that relintP, Π relintP, = 0 with i Φj, l(gk(a)) = m + ε and l(gk(β))

— M — ε for k = 1,2,...,«.

Proof. Consider the sets Ko = {x G C: l(x) = M - ε} and Kx = {x

e C: l(x) = m — ε}. These sets are of infinite dimension and lie on two

parallel hyperplanes. We define

A = C Π{x e E: l(x) >m + ε}n{x<ΞE: l{x) < M - ε)

Then we may select n linearly independent vectors el9e2,...,en and n

linear functionals lλ = /, / 2 , . . . , ln on E such that the following properties
hold:

(i) lx{eλ) = 1, /,.(*,) ¥= 0 for 1 = 2 ,3 , . . . , n and /,.(*,.) = 0 for i * 7
(ii) Let En = [el9e2,...,en] be the w-dimensional subspace of E

spanned by el9e29.-..9en and π0 be the projection map on E,

defined by TΓO(JC) = lι(x)e1 4- +ln(x)en. Then dim770(^Γ0) =
Ki) = n - 1.

289



290 LEONI DALLA

From the previous, it follows that Cn = πo(A) is a convex body in En,
πo(Ko) = {x e Cn: l(x) = M-e} and πQ(Kλ) = {x G Cn: l(x) =
m 4- ε}.

Let u G En be a unit vector peφendicular to ex. Then according to
the results proved in [3] we may choose a unit vector u' ^ En orthogonal
to el9 as close as we please to u and such that there are no line segments
in the direction u' on the boundary of Cn — relint iτo(Ko) — relint π^K^.
Then the projection σn_λ of En onto the hyperplane En_λ peφendicular
to u' has an inverse function from bdσn_ι(Cn) — relintσn_1(πo(Ko)) —
relint σn_1(π0(K1)) back to Cn.

If {el9 ι/2> - > un_l9u) is an orthogonal system in En then we can
choose, using induction, unit vectors u'n_l9...9u'3 orthogonal to ex and as
close as we please in direction to the projections of the vectors un_l9...9u3

onto the subspaces En_λ c [u'] -1, En_2 c [u\ u'n_λ]
± , . . . , E3 c

[u\ u'n_λ,..., u'4] -
1 and in such a way the projections σk: Ek -> £^_ 1 , k =

« — 2, . . . , 3 have unique inverses from

b d σ ^ σ o . . . o an^(Cn) - relint σk ° ok+1 o . . . o σ M _ 1 ( 7 Γ o (ϋ: o ))

back to ^ + i ° '•• oσM-i(CJ. We complete the orthonormal system
u\ u'n_l9 ...,u'l9u[ by taking u[ = ex and W2 t o be the unit vector per-
pendicular to u\ u'n_l9 ...,u'3,u[ = e1 and closest to u2.

Write now ωM/ = σ2 ° ° σΛ - 1 for the projection of En on the two
dimensional subspace E2. For each t such that m + ε < t < M — ε, we
define by ξo(ί) the point on the line segment {x e coM,(CM): /x(x) = ί}
whose second coordinate attains its maximum value. On the other hand
we may suppose, by making appropriate transformation of C, that
there exists a cylinder B in the convex body Cn of En such that B =
con(50 U SΊ), where SO and Sλ are (w - l)-dimensional balls of diameter
8 with the property Si c relint 7ro(^), / = 0,1 and the axis of 5 in the
direction of ev

Let ε0 be such that 0 < ε0 < min{ d(bd πo(Ko), So)9 d(bd πo(Kλ)9 Sx)}
where d is the usual distance between two sets. The convexity of Cn

implies d(bdCn - πo(^o) ~ ^0(^1)'^) > εo Then there exist a linear
functional lu, on En such that /M>(w') = 0, lu>(ui) = 1 a n d '«'(€o(O) >.^o
+ 8/2 > 0.

Now let lό(0 ^ e ^ e point on the Une segment {x G ωM/(CΛ):
/1(JC) = /} whose second coordinate attains its minimum value, then
MίόίO) < ~(εo + V 2 ) < 0. Because of the choice of u\ u'n_λ,..., u3 the
inverse function ω"/1 is uniquely defined from the curves ξo(t) and ξ'0(t)
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back to the one-skeleton of Cn. Consider now xo(t) = ω~}(ί;0(t)) and

x'0(t) = ω~>(£o(O) where m + ε<t<M-ε. Then xo(/) and x'0{t)

where m + ε < ί < M - ε are paths on the one-skeleton of Cn. By

construction /χ(xo(O) = U lλ{xo(t)) = /,

for m 4- ε < / < M - ε.

W e say t h e n that {xo(t)9 m + ε<t<M-ε) a n d {x'0(t\ m + ε < t <

M — ε) are paths on the one-skeleton of Cn "in the direction near w".

Following the methods developed in Theorem 1 in [2] we construct two

/-strictly increasing paths zo(t) and z'0(t), m 4- ε < t < M — ε on the

one-skeleton of A such that

(2) /i(*o(')) = *, Φ'o(t)) = t and

where m + ε<t<M— ε.

From relations (1) and (2) it follows that

(3) lΛ«oM*))) > f*o + f, iΛΦoi*))) < -(f*o + f)

πo{zo(t): m + ε<t<M-ε}r\B= 0 ,
and

As (2) holds we may say that zo(t), z'0{t) are paths on the one-skeleton of

A in the direction near u and we write z 0 = zu and z'o = z'u.

Let S be the unit ball in En, lying on the hyperplane lλ(x) = 0 and

let θ be a positive number such that 0 < 0 < (l/2rf)(δ/2 4- εo/3) where

<i = d i a m Q . The compactness of S implies the existence of unit vectors

ul9 u2,..., um such that for every unit vector u in S> there exists i0 G

{1,2,..., m) with||w - κ j | < 0. Let Z w { z M ( 0 , w + ε < t < M - ε] and

ZUm+l

 == {zw,(0> /w + ε < / < M — ε } where / = l ,2, . . . ,/n be paths on

the one-skeleton of A in the direction near u{. Let j(ZUι, Z W 2 , . . . , Zu) be

the junction set of the paths ZMi, Z M 2 , . . . , Zu. Suppose now that

card y(ZM i, Z M 2 , . . . , ZUχι) < + oo and card y(ZMi, Z M 2 , . . . , ZMχ) = 4- oo for

some λ such that 1 < λ < 2m. Renaming, if necessary, the paths

ZM i, Z M 2 , . . . , ZUχ we consider the greatest integer k such that 1 < k < λ -

1, 'card j(ZUι, ZUχ) < oo for i = 1,2,..., k - 1 and card j(ZM., ZUχ) =

4- oo for i = /:, fc 4- 1,. . . , λ — 1.
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Let

α = inf{ί: t e [m 4 ε, M - ε] and zUk(t) ^j(ZUk, Z j )

and

β = sup{ί: t e [m + ε, M - ε] and z j ί ) <M z*v ZMJ}.

As zu and zw are continuous functions, there is a finite number of closed
subintervals [ai9 bt\ i = 1,2,..., v, of [m 4- ε, M — ε] with the following
properties:

(i) Z^fl. ) = ZUλ(Ω,), Zu/6,) = Z w χ (^)

(ii) zuμ) Φ zUk(t), α, < / < Z),
(iii) maxα i < t < b i\\zU k(t) - zUχ(OII > V 3 for i = 1,2,..., v.

Then

z j w + ε, a) U 2Λ(β, fll) U U 2U λ(^, *,)
i - l

U U z^a^Uz^^Uz^M - e)

is an /-increasing path, Z*λ say, on the one-skeleton of C that is different

from ZUχ on the set
v-l

By construction the set Γ is within distance εo/3 from ZMχ, hence we have

(4) | | z M λ ( / ) - z * ( 0 | < β ( / 3 for every/e [m + e9λf-e]

As card y(ZM , Z*λ) < + oo for i = 1,2,..., k, we can replace ZUχ by ZM*
for every λ = 1,2,..., 2m with card j(ZUι,..., ZUχ_χ) < 4- oo and
cardy(Z M i , . . . ,Z M λ )= 4 oo. Then card j(Z *, . . ! , Z* ) < 4 oo and using
(3) and (4) we get |/M,(7r0(z*(/)))| > 8/2 4 εo/3 where u' e 5, H^ - n λ | |
< θ.

Now we can define the graph G with vertex set V = {ΛΓ0} U {Kx} U
7*( Z *, . . . , Z *2 ), where an ordered pair of these nodes is said to form a
directed subgraph of G if they are joined by an /-increasing arc from
UfΓiZ*, which contains no other node of G. The required result now
follows from Menger-Whitney theorem for the finite graph G, if we are
able to show that the removal of (n — 1) vertices from y'(Z*,..., Z*2 )
still allows an /-increasing path running from Ko to Kv
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Let yl9y29..., JV-i b e ( n ~ 1) vertices from j(Z*9..., ZM*J. For the
points πo( JΊ)> ̂ 0(^2)' > ^oίJw-i) °f ^> there exists a linear functional /'
on En such that /'(πo( >;,.)) > 0, z = 1,2,...,« - 1, l\eλ) = 0 and l'(υ) = 1
for some υ ^ S. Let now w e S be an arbitrary vector such that Γ(u) = 0
and lι(u) = 0. For the vector w there exists a vector uk e S such that
IIw - !iΛ | | < 0. Let Z£m+k be the path on the one-skeleton of C in the
direction near uk, with

—ε

We can also select u in such a way that /'(w) = 0 and l^u) = 0 for which
the corresponding lUk has the property lUk(v') = 1 for some » ' e S with
\\v - v'\\ < θ.

Now, we may suppose that

lUk(*o(y,)) ^ 0 for i = 1,2,..., μ and

Relations (5) and (6) imply that

(7) vo(yι) * πo(z:mJ for ι = l ,2, . . . ,μ

We have that l'(v) = 1, lUk(v') = 1 with ||ι; - o'|| < 9 and /'(wo(^.)) > 0,
LjίMyi)) < 0 for / = μ + 1,...,« - 1. Hence

(8) / M >

From (5) and (8) we have that πo( >>,) £ 7ro(Z*^) for Ϊ = μ + 1,..., w -
1. Hence, from (7) and (8) follows that y. i+Z^ i = 1,2,..., n - 1
which completes the proof of the theorem.

From the above theorem one can deduce the following corollaries
whose proofs are omitted as obvious.

COROLLARY 1. Suppose that C and I are defined as in Theorem 1, the
faces

Fo = (x e C: l(x) = min /(y)} and Fλ = [x e C: /(x) = max /(^)J

are such that the dimension of FQ Π JF/ W infinite, where FQ and F{ are the
corresponding subspaces translates of Fo and Fx correspondingly. Then for
every n = 1,2,... there are n l-strictly increasing paths on the one-skeleton
of C mutually disjoint that join Fo to Fv
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COROLLARY 2. Suppose that C a compact convex set of infinite dimen-
sion in a normed space E. Then the one-dimensional Hausdorff measure of
the one-skeleton is infinite.

We may remark that the ^-dimensional Hausdorff measure of the
^-skeleton of a set C as in Corollary 2 is infinite for every n = 1,2,
For a direct proof of this result see [1].
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