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It is known that if L is a separable, finite dimensional extension of
a field K and if υ is a proper valuation (absolute value) on K, then each
ring topology on L whose restriction to K is the topology $1 defined on
A by i' is the supremum of a finite family of valuation (absolute valued)
topologies. We give a characterization of the fields K and L and the
valuations (absolute values) υ on K for which each ring topology on L
extending 3ΓV is the supremum of a family of valuation (absolute valued)
topologies on K when L is an arbitrary finite dimensional extension of
K.

Let R be a ring and let J b e a ring topology on R, that is, 2Γ is a
topology on R making (x, y) -> x — y and (x, y) -> xy continuous from
R X R to R. A subset A of R is bounded for 3~ if given any neighbor-
hood Uof zero, there exists a neighborhood Vof zero such that VA U AV
c U. 2Γ is a locally bounded topology on i? if there exists a fundamental
system of neighborhoods of zero for 2Γ consisting of bounded sets.

Recall that a norm N on a ring R is a function from R to the
nonnegative reals satisfying N(x) = 0 if and only if x = 0, N(x — y) <
N(x) + N(y) and N(xy) < N(x)N(y) for all x and y in /?. Each norm
N on R defines a locally bounded topology &~N on i? in a natural way. In
particular, if | | is a proper absolute value on a field K, then there
exists a locally bounded topology ^j . . | on K defined by | |. We note
further that if TV is a nontrivial norm on a field K, that is, yΉ is
nondiscrete, then a subset A of K is bounded in norm if and only if A is a
^-bounded subset of K.

Each proper valuation u on a field K defines a locally bounded
topology SΓυ on K as well. If each of v and w is a valuation or an absolute
value on AT, then v and w are independent \ί 2ΓυΦ £ΓW.

In [11], Rigo and Warner proved that if L is a separable, finite
dimensional extension of a field K and if ϋ is a proper valuation (absolute
value) on K, then each ring topology on L inducing SΓυ on K is the
supremum of a finite family of valuation (absolute valued) topologies on
L (Theorem 2). In this paper we characterize the fields K and L and
valuations (absolute values) v on K for which each ring topology on L
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extending 3~v is the supremum of a finite family of valuation (absolute

valued) topologies on L when L is an arbitrary finite dimensional

extension of K.

THEOREM 1. Let K be a field, v a proper valuation (absolute value) on

K, K the completion of K for 3~υ, L a purely inseparable, finite dimensional

extension of K, w the unique extension of v to L and L the completion of L

for 3^. The following are equivalent.

Γ.[L:K] = [L:K].

2°. 3^ is the only ring topology on L whose restriction to K is 3~υ.

3°. 3~w is the only locally bounded topology on L whose restriction to K

is 3[r[r

Proof. We first consider the case when [L: K]= p where p is the

characteristic of K.

Suppose [L: K] = p. Then there exists a in L\K. Hence L = K(a)

and the minimal polynomial of a over K is irreducible in it[X]. Thus by

[11, Corollary 2 of Theorem 1], 3^ is the only ring topology on L whose

restriction to K is 3~υ.

Clearly 2° implies 3°. So it suffices to prove that if 3~w is the only

locally bounded topology on L whose restriction to K is 3[^ then

[L:K] = p. If [L: K] = 1, let a e L \ # and let /(AT) be the minimal

polynomial of a over # . Then /(JSQ = (X - a)p and X - a e £ [ * ] .

Hence by [11, Theorem 1], there are /? ring topologies 3'1,..., 3~p on L

inducing ^ on ί and the completion Li of L for 3] is a finite

dimensional ^-algebra for each / e [1, /?]. If y is a valuation on 7ί, let v

be its extension to K, let G be the order group of v and let {xv...,xn}

be a basis for Li over Â  where xx = 1. Then {Fα: α G G j i s a fundamen-

tal system of neighborhoods of zero for a Hausdorff topology on L}

compatible with the vector space structure of L, where for each a e G,

^=(Σ^/^^^inf{β(α7):l<7<«}>

Hence by [8, Theorem 7], {Va: a e G} is a fundamental system of

neighborhoods of zero for the completion 3] of L for ^ . It follows that

the restriction of 3^ to K is the topology defined on K by v. Thus as

L c K, 3]\L is a locally bounded topology on L, that is, each 3~, is a

locally bounded topology on L, a contradiction. If v is an absolute value

on K, then each 3'1 is normable and hence locally bounded. Indeed, by

[2, Theorem 2, p. 27; 3, Proposition 10, p. 69 and Theorem 1, p. 70], there

exist a vector space norm N on Li and a positive number c such that
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N{xy) < cN{x)N{y) for all x and y in Lr Therefore the function || ||

defined on Li by, ||JC|| = cN{x), is an algebra norm on Li defining the

topology on Lf . So [L: A] = p by [11, Corollary 1 of Theorem 1].

Now let L be an arbitrary, purely inseparable, finite dimensional

extension of A.

Suppose that [L: A] = [L: A] and let 2Γ be a ring topology on L

whose restriction to A is Tυ. Let Kλ be a maximal subfield of L

containing A such that ^\Kχ is defined by a valuation (absolute value) vx

extending v to Ax. If Ax Φ L, let a e L \ Ax be such that [ A ^ α ) : AJ =

/?. Denote A^α) by A2, let ϋ2 be the unique extension of v to A2, let Ax

be the completion of Ax for 3Γυχ and let A2 be the completion of A2 for

^ 2 . If α £ A l9 then by the previous argument, ^ 1 ^ = ̂ , contradicting

the maximality of Kv If a e JK̂ 1, then [A2: KJ = l / So [ L : £ ] =

[L: J^2][ A : A"] < [L: K2][KX: A] < [L: A], a contradiction. Hence Kλ

= L.

Assume 3° holds. Let [L: K] = /?" and let al9 a2,...,an£;Lbe such

that L = K{av...,an), [K{a1):K]=p and for all i e [1, π - 1],

[ΛXtfl9..., Λ / + 1 ) : A(^i , . . . , #/)] = /?. Denote A by Ko. For each / ̂  [1, n]

let A^ = K(al9...9 at), let y7 be the unique extension of υ to Kt and let A^

be the completion of A, for ^ . If / ? " > [ ! : A], then as [L:K] =

Π?Io[Ki+1: AJ, there exists an / such that [A / + 1: AJ = 1. So by the

previous argument there exists a locally bounded topology £Γr on A / + 1

whose restriction to A, is ^ but y Φ ̂ + i . By [12, Satz 1.6], SΓf

extends to a locally bounded topology SΓ on L. Clearly ^ ^ = ̂  but

&Φ j ς , a contradiction. So [L: K]= pn = [L: A].

THEOREM 2. Le/ L be a finite dimensional extension of a field A, let D

be the separable closure of A in L, to v be a proper valuation {absolute

value) on A and let {vf. 1 < i < m) be a complete family of pairwise

independent valuations {absolute values) on D extending v. For each

i e [1, m]9 let wt be the unique extension of vt to L, let Lt denote the

completion of L for SΓ and let Di denote the completion of D for SΓυ The

following are equivalent.

1°. Each ring topology on L whose restriction to A is SΓV is the

supremum of a finite family of valuation {absolute valued) topologies on L.

2°. Each locally bounded topology on L whose restriction to A is 2Γυ is

the supremum of a finite family of valuation {absolute valued) topologies on

L.

3°. There are 2m — 1 locally bounded topologies on L inducing 2Γυ on

A, namely the topologies sup, e M & where M runs through all nonempty

subsets of [l9m].
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4°. [ 1 . : Z)J = [^ D] for all i e= [1, m].

Proo/. Clearly 1° implies 2° and 3° implies 2°. We first show that 2°
implies 3°. Suppose that J is a locally bounded topology on L and
^ " = supj < , < „ S' where each w, is a proper valuation (absolute value) on
L and ^ # ^ for /*y. Then iΓ = SΓ\K = s u p ^ ^ ^ J ^ . As the
completion of K for ^ is a field, the Approximation Theorem [7,
Theorem 3.4, p. 292] yields that each ut\κ is equivalent to v. Hence for
each i ^ [1, n]9 there exists j(i) e [1, m] such that ^ = ^ .

We next show that 3° implies 4°. Let J be a locally bounded
topology on L whose restriction to D is ^ and let M be a nonempty
subset of [1, m] such that y = sup j G Λ / J^. Note that for t, y e M, t #y,
&*W\DΦ ^WJ\D

 τ h e n ^ = y\D = s u p y G Λ / ^ | D and so the Approximation
Theorem implies that the cardinality of M is one. Thus M = {/} by the
definition of w , that is, ^ = ^ . As L is a purely inseparable extension of
A 4° follows from Theorem 1.'

Finally suppose that 4° holds. Let J b e a ring topology on L whose
restriction to K is ^ . By Theorems 2 and 4 of [11], there exist a
nonempty subset M of [1, m] and ring topologies 5J on L for each
/ e M such that ^7|D = ^ and y = s u ρ / e M ^ . Hence ^ = ^ for all
i: e M by Theorem 1 and so 1° holds.

COROLLARY. Leί ΛΓ be the field F(X) of rational functions over the field

F, let Lbe a finite dimensional extension of K and let v be a proper valuation

or absolute value on K, improper on F. Define D, Lt and Dt as in Theorem

2. Then [Li: Z)J = [L: D] for all i and each ring topology on L inducing SΓυ

on K is a locally bounded topology.

Proof. First note that if v is a proper valuation on K improper on i7,
then v is equivalent to a real-valued valuation [1, Example 4, p. 106]. It
suffices to establish 2° of Theorem 2. Let J be a locally bounded
topology on L whose restriction to K is $"v. Then there exists a nonzero
topological nilpotent for ^ and hence for &*. So by [5, Theorem 6.1],
there exists a norm N on L such that ^~= SΓΉ. As F is a bounded subset
of K for 3Γυ and as ^ 1 ^ = ^ , F is bounded in norm (for N).
Consequently, F is a Abounded subset of L as well. Thus by [6, Theorem
4] and the argument used to establish Theorem 3 of [4], & is the
supremum of a finite family of valuation topologies on L.

In [9], Nagata gave an example of fields L and K, each of prime
characteristic /?, and a discrete valuation v on K such that K = L is a
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purely inseparable extension of K of degree p over K (p. 56). Thus L = K

and so conditions l°-4° of Theorem 2 need not hold in general.

THEOREM 3. Let K be a field and let SΓ^ denote supx < 7 < m ^ where

each vt is a proper valuation or absolute value on K and for i Φ j , 3~υΦ£Γυ.

Let L be a finite dimensional extension of K and let D be the separable

closure of K in L. For each i e [1, m], let {v^: 1 <j < M(i)} be a

complete family ofpairwise independent valuations or absolute values extend-

ing vi to D. For each i e [1, m]9 j G [1, M(i)\ let wtj denote the unique

extension of vtj to L, let Lt- denote the completion of L for 3Γ^ and let D^

denote the completion of D for SΓυ . The following are equivalent.

1°. Each ring topology on L whose restriction to K is SΓ^ is the

supremum of a finite family { &\9..., SΓn } of topologies on L where for each

i, 3r{ is defined by a proper valuation or absolute value on L.

2°. Each locally bounded topology on L whose restriction to K is SΓ^ is

the supremum of a finite family {&\9..., ̂ } of topologies on L where for

each /, ^ is defined by a proper valuation or absolute value on L.

3°. There are Πjlx (2M(ι) — 1) locally bounded topologies on L inducing

2ΓQ on K, namely the topologies s u p 1 < / < m ( s u p / e S ( / ) ^ ) where S(i) runs

through all nonempty subsets of [1, M(i)].

4°. [L,. : 1>I7] = [L:D] for all i e [1, m], j e [1, M(i)].

Proof. Clearly 1° implies 2° and 3° implies 2°. We first prove that 2°

implies 3°. Let SΓ be a locally bounded topology on L inducing 3Γ^ on

K. Then ^ " = sup 1^ I ^ Λ ^ < where each ut is a proper valuation or

absolute value on L and s u p l 5 Ξ 7 < m J ^ = s u p ^ ^ ^ ^ J ^ . Suppose that

there exists an i, I < i < n, such that for all j 9 1 <j < m, SΓu \κ Φ ZΓυ.

Without loss of generality assume that υl9...9υr are valuations on K,

vr+ι9...9υm are absolute values on K and / = 1. If ux is an absolute value

on L, let a e K be such that uλ(a) > 1? Vj(a) > 0 for j G [l ,r] and

Vj(a) < 1 for j E: [r + 1, m]. (The existence of a is guaranteed by [7,

Theorem 3.4, p. 292].) Then [a1: ί = l,2,. . .} is a bounded set for
s u P i < 7 < m ^ b u t n o t f°Γ

 ^UJA-J
 a contradiction. (Indeed, if {a*: t =

1,2,...} is bounded for sapι^ι^n^i\K9 then there exists a nonzero

element x in If such that x{ au. t = 1,2,...} c {y G ϋΓ: w^^) < 1}. But

wx(xzr) -> oc as / -> oo, a contradiction.) If uλ is a valuation on L, let G

be the order group of uλ\κ and for each a G G, let ^ α G A" be such that

^(tf«) > Ofory = l ,2 , . . . , r , ϋ.(flβ) < 1 for j = r + 1,. . . , m and w ^ α j

= a. Then ( α ; α G G j i s a bounded set for s u p 1 < y < m ^ but not for

£ΓUι\κ, a contradiction. Thus for each / G [1,«] there exists y(/) G [1, m]
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and t(i) e [1, M(j(i))] such that ^1,=^, φ Furthermore a similar

argument establishes that for each j e [1, m], there exists an / e [ l , / i ]

such that 3ru\K = yVj.

Assume 3° holds. Suppose that there exist / e [1, m] and j e [1, Λf(/)]
with [L / y: Z),y] < [L: D]. By Theorem 2 there exists a locally bounded
topology 3Γ on L whose restriction to ^ is ^ but 3Γ is not the
supremum of a finite family of valuation or absolute valued topologies on
L. Let SΓr = s u p ^ s u p ^ , ^ ) . Then f'\κ = &*0 but 3Γr is not the
supremum of a finite family of topologies on L of the appropriate type.
Indeed, if &*' is such a supremum, then as «̂ "c ^ ' , Theorem 4.4 of [10]
yields that IT is as well. Thus 4° holds.

Finally the proof that 4° implies 1° is the same as that used in
Theorem 2.
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