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It is shown that a space X is a stratifiable μ-space if and only if
X has a topology induced by the collection (JJ=1Φ,, of [0,1]-valued
continuous functions of X such that each Φn satisfies the conditions (a),
(β) and (γ) stated below.

1. Introduction. Throughout, all spaces are assumed to be regular
Hausdorff. N always denotes the positive integers. For a space X,
C(X,I) denotes the collection of all continuous functions /: X -> / =
[0,1]. For / <Ξ C(X, I) we denote by coz/ the cozero set of / in X We
are assumed to be familiar with the class of stratifiable spaces in the sense
of [1]. For a stratifiable space X, every closed subset F oί X has a
stratification {On(F):n e N) in X. As is well-known, every stratifiable
space X is monotonically normal, that is, X has a monotonically normal
operator D(M, N) for each disjoint pair (Af, N) of closed subsets of X.

J. Guthrie and M. Henry characterized metrizable spaces X in terms
of collections of continuous functions with continuous sup and inf as
follows: A space X is metrizable if and only if X has the weak topology
induced by a σ-relatively complete collection Φ c C ( I , /), that is, Φ =
U£LiΦw, where for each w, each subcollection of Φn has both continuous
sup and inf, [3]. On the other hand, C. R. Borges and G. Gruenhage
obtained the characterization of stratifiable spaces as follows: A space X
is stratifiable if and only if for each open set U of X there exists
fυ e C( X, I) such that cozfυ = U and such that for each family <% of
open subsets of X, supf/^: U e <%} e C(X, /), [2, Theorem 2.1]. In the
discussion below, we also give a characterization of the class of stratifiable
μ-spaces in terms of collections of continuous functions with continuous
sups with an additional condition. This is the main purpose of this paper.

In an earlier paper [6], the author introduced the notion of M-struc-
tures and studied the class Jί of all stratifiable spaces having an M-struc-
ture. This class Jί is shown to coincide with that of stratifiable μ-spaces,
[5]. The kernel of ^/-structures is the term "^preserving in both sides".
Therefore, first we state the definition. For the definition of Λf-structures,
we refer the reader to [6].

Let °U, $C be families of subsets of a space X. Then we call that ^l is
inside ^preserving at a point p e X if for each % c <2f,
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implies p G H c Π^o

 f o r s o m e H G ^ W e c a l 1 t h a t Φ is
^preserving at /? if for each Φ o c Φ,/? G I - U Φ 0 implies p <Ξ H a X
— U ̂ o f°Γ s o m e # G ^ If *% is both inside and outside ̂ preserving at
p, then °U is called ^preserving in both sides at p.

2. Continuous functions and stratifiable μ-spaces.

LEMMA 2.1. For a stratif iable space X, the following are equivalent:

(1) X e ΛT.

(2) Every closed subset F of X has an open neighborhood base % in X

such that °ll is ^preserving in both sides at each point of X for some

σ-discrete family Jίf of closed subsets of X.

(3) Every closed subset F of X has an open neighborhood base °lί in X

such that % is inside ^preserving at each point of X for some σ-discrete

family Jf of closed subsets of X.

(4) Every closed subset F of X has an open neighborhood base °ll in X

such that for each U' G °U there exists a sequence {Fn(U):n e N] of closed

subsets of X satisfying the following:

(a) U = UJLi Fπ(t7) for each U e Φ.

(b) For each n, {Fn(U): U e <%} is a closure-preserving family in X.

(c) For each <%0 c ^ 9 if p e Γi%, then p e Π{ Fn{U): U e ^ 0 } /or

some «.

. (1) ^ (2) is given in [6]. (2) -> (3) is trivial. (3) -> (4): Let F be
a closed subset of X and Φ, J?7 be families given by (3). Write J f=
U ^ = 1 ^ , where each ^ is a discrete family of closed subsets of X For
each U & °U and each n, set

Then it is easy to see that {Fn(U):n e N}9 U ^ °ll, satisfy the required
conditons. (4) -> (1): Let F be a closed subset of X and let °U= {Uλ:λ
G A) be an open neighborhood base of F in X such that for each
λ e Λ, there exists a sequence [Fλn:n ^ N} of closed subsets of X
satisfying the conditions (a), (b) and (c) with FJJJ) = Fλn and U = Uλ

for each λ e Λ. Define an equivalence relation R on X as follows: For
JC,J> G X, xi?y if and only if Λ(x) = Λ(j ), where Λ(x) = (λ G Λ:
x <= Uλ). Let ^ be the disjoint partition of X with respect to R. 0> is
written as follows: # = { P ( δ ) : δ e A } , where for each 8 G Δ C 2 Λ
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For each n, k e N and ί e A , set

F(n,k9Λ)-[n{FλΛ:λei}-Ok(\J{FλΛ:λ€-A-δ})]

n[l-U{ί/λ:λeΛ-ί}].

Then we can show that

is a discrete family of closed subsets of X. To see it, let p be an arbitrary
point and let δ0 = {λ e A:p e Fλn}. Then, we easily see that if we
define

when δ0 Φ 0 and

= X-\J{FλΛ:λ€ A}

when δ0 = 0, then N(p) is an open neighborhood of /? in X such that
iV(/?) Π F(tt, fc, δ) = 0 for each δ e Δ - {δ0}. This shows that ^(n9 k)
is a discrete family in X. It is easily seen that each F(n,k,δ) is closed in
X. Let

JP=\J{&r(n9k):n9k e N).

To see that ^ is ̂ preserving in both sides at each point of X, it suffices
to see that if p e P(δ), then there exists F(n9k9δ) GJί? such that
/? e F(/i, /:, δ) c P(δ). But this is obvious from the construction of Jίf.
This completes the proof.

LEMMA 2.2. For a stratifiable space X, the following are equivalent:
(1) lei,
(2) X has a base % such that °ll is σ-Jίβpreserυing in both sides at each

point of X for some σ-discrete family 3^ of closed subsets of X.
(3) X has a base °U such that °U is σ-inside ̂ preserving at each point of

Xfor some σ-discrete family Jίf of closed subsets of X.

Proof. (1) -> (2): Let J(?= U ^ = 1 ^ be a network of X, where each
^ is a discrete family of closed subsets of X. For each n, let {UH:
H e 3^n} be a family of open subsets of X such that H c UH for each
H £ / „ and (U^: H e JίTn} is discrete in X For each H e ^ , τi e N,
by [6, Lemma 3.3] there exists an open neighborhood base &(H) of i/
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such that <%{H) is JΓ(/ί)-preserving in both sides at each point of X for
some σ-discrete family 3^(H) of closed subsets of X and H c U c UH

for each U e <W(H). Set <%n = \J{<V(H)\H G j ^ } for each Λ. Then
Φ = U^= 1 ΦΛ is a base for X and each °Un is ^preserving in both sides at
each point of X, where J*"= U ^ = 1 ^ U Jί* and

for each n. Since J^ is a σ-discrete family of closed subsets of X, !F is
also a σ-discrete family of closed subsets of X. This completes the proof
of (1) -> (2). (2) -> (3) is trivial. (3) -> (1): By a routine check, we can
show that every closed subset F of X has an open neighborhood base
which is inside ^preserving at each point of X for some σ-discrete family
3tf of closed subsets of X. Then by Lemma 2.1(3), I G I . This completes
the proof.

LEMMA 2.3. Let $f be a σ-discrete family of closed subsets of a
stratifiable space X and tfί = {Ua:a G A] a family of open subsets of X
which is ^preserving in both sides at each point of X. Then there exists a
collection Φ = {φα:« ^^4} c C(X, I) satisfying the following conditions:

(a) For each Ao a A, sup{φα:α e Ao) e C(X9I).
(β) Ua = cozφα for each a e A.
(γ) For each point p G X, {φα(/?) : α e i } w α /m/ϊe set.

Proof. Write Jί^= U ^ = 1 ^ , where each ^ is a discrete family of
closed subsets of X. Let Qo be the set of all rational numbers of (0,1], For
each a e A, set

JT(α)= { i / G / : f f c I - t/J.

Then obviously, U^(α) = X— [/α. For each «, there exists a discrete
family {<9fff: H e ^ } of open subsets of X such that H <z UH for each
H ^ J^n. Since Jf is a monotonically normal space, X has the operator
£>(M, iV). For each AT e J^n, n G TV, we choose a regular open set F^ of
X such that

As a preliminary for the discussion below, we observe the following (1) by
the same argument as in the proof of [7, Theorem 2, (1) -> (2)].

(1) If for each H e j?7, GH is a regular open set of X such that
ffcGffcG^cFff, then the families
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and

[x~ \J{GΪr H €Jf(o)}:α ^ A)

are closure-preserving families of closed and open subsets of X, respec-
tively.

For each H e^f, there exists a function fHe C(X,I) such that
fH\0) = H and fH\\) = X-VH. We write Qo as β 0 - {qx = 1, ?2,...}.
By induction on «, we shall construct families {F(/f, qn):H e J f} and
^(4«X n <Ξ N, of subsets of X For n = 1, let V(H,q^ = VH for each
H <Ξ H, and let

for each a ^ A. Then by (1), ^(^i) = {#(α, ̂ ) : α e ^ } isa closure-pre-
serving family of closed subsets of X. Let n e N and assume that for each
k < n, we have constructed families &(qk) = {JB(α,^A:):α e 4̂} and
{V(H, qk): H e JT} satisfying the following:

(2)rt U ^ = 1 ^ ( ^ ) is a closure-preserving families of closed subsets of X
and each B(a, qk) ^ @t{qk) is defined by

(3)n If fl*<^ with k,k'<n, then V(H,qk) c V(H,qk,) and
#(α, ^ 0 c Int £(α, ^ ) for each H <Ξ Jf and α e A.

(4)n If 9 / = min{ qλ,..., qn), then F(i/, 9 / ) c tf[09 qt).
To obtain &(qn+x), we define F(7ί, ?„+1) and B(a, qn+1) as follows:
(1) If qn+ι < qk for each k < /?, then we choose a regular open set

(V(H,qn+1)by

HcB(H,qn+1)c V(H,qn+l)ctf[O,qn+1)n f) V(H,qk).
k = l

(2) Otherwise, we choose a regular open set V(H,qn+λ) by

[J{V(H,qt):t< n and qt < qn + ι) c V(H,qn+ι) c

c Π { K ^ ^ ) ^ < Λ and

For each α G yl, we define

and also define the family &(qn + ι) = {B(a,qn+ι):a ^ A}. By (1),
&(qn + ι) is a closure-preserving family of closed subsets of X. Therefore,
(2)n+ι is satisfied. (4)n+ι is trivial by the definition of V(H,qn+1) in (1).
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To see (3) Λ + 1 , let qt < qn+1 for some / with t < n. Then by (2) we easily

see

B(a,qn+ι)c:X- \J{V(H,qt):H

dX- \J{V(H,qt):H ^Jf(a)} = B(a9qt).

Since V(H,qt) c VH in (2), by (1) the second set is open in X. This

implies B(a, qn + 1) c Int B(a, qt). If qt > qn + ι with / < n, then by (2) we

have V(H,qn + ι) Π B(a, qt) = 0 . This implies

B(a,qt) aX

Again, the second set is open in X by (1). Hence we have B(a,qt) c

Int B(a, qn+1). In this manner, we repeat the construction of a sequence

{ ^ ( ? ) : ? E δ o ) °f families of subsets of X Then, by induction the

following are obvious:

(5) For each q e <2o> &(q) = {#(α, ί ) : « G v4} is a closure-preserv-

ing family of closed subsets of X.

(6) If q,q'^Q0 w i th q < q\ t h e n for e a c h a^A B(a,q')a

Int B(a,q).

Since °il is inside ^preserving at each point and Π{V(h,q):q G g 0 }

= // for each H G Jf7, by the method of the construction of VH we get

that

(7) For each a €= ̂ , C/α = U{5(α,^) : ? G β 0 } .

Also, from the fact that °ll is inside ^preserving at each point, we get

that

(8) For Ao c A, if p G Π{ί7α:α G ̂ 4O}, then there exist « G iV and

H e J ^ such that p ^ H a Γ\{Ua:a G ̂ 0} and ̂  Π V(H',q) = 0 for

each ί £ g 0 and each /Γ G (U?1 Λ ^ ) Π (U{ / ( « ) : « £ ^l0}).

Now, for each α G ^ w e define φα: X -> / by

Then, as shown in the proof of [2, Theorem 2], φ α G C ( I , / ) and

cozφα = [/α for each a G ̂ 4, and (α) is satisfied. The condition (γ) is

easily obtained by (8). This completes the proof.

COROLLARY 2.4. Under the hypothesis for Lemma 2.3, there exist a

collection Φ c C(X, I) and a σ-discrete family Jίf of closed subsets of X

such that (α), (/?) and the following are satisfied:

(γ) ' For each H e Jf andAo <z AtinίiφJH .a G AO} G C{HJ).
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Proof. In the proof above, without loss of generality we can assume
H Π UaΦ 0 if and only if H c Ua for each H G tf and a G Λ. By the
same method, we can construct ^?(#) = {#(«, q)'-ot e yl}, # e g 0 ,
satisfying (5), (6), (7) and (8) above. If we define Φ = {φa: a G A] by (9)
above, then Φ is shown to be the desired collection. In fact (a) and (β)
are obvious. By the similar argument to that of the proof of [7, Theorem 2,
(1) -> (2)], we can observe that for each / ί E / and each q G g 0 ,
{ B(a, q): α G A}/H is interior-preserving in the subspace /f.

Now, we establish the following general assertion, from which (γ) '
follows directly:

Assertion. Let {B(a,q):a e A} and Φ = { φ a : α € i } be the same
as in the proof of Lemma 2.3. If for each q G β 0 , {J?(α, <?):« G ̂ 4} is
interior-preserving in X, then for each >40 c A, inf{φα:α G ̂ 4O} G

Proof of the assertion. Let ί be an arbitrary number of [0,1). Since

is closed in X, it suffices to show that S = (inf{φα:α e A0})~l(t,l] is
open in X. Let /? be an arbitrary point of S. Then

t<mf{φa(p):atΞA0} = δ < 1.

Take r and s ^ Qo such that / < r < s < 8. Since for each a G Λt0,
^ < δ < φa{p), p^B{a,s). By (6) above, p G Int 5(α, r) for each
α G ̂ 40. Therefore

is an open neighborhood of p in X because {B(a,r):a ^ A) is interior-
preserving in X. Since N(p) c 5, S is open in X This completes the
proof.

REMARK 2.5. If we slightly modify the argument above, then we can
establish the following: Let J(? be a σ-discrete family of closed subsets of
a stratifiable space X and <%= {Ua:a ^ A) a, family of open subsets of X
which is ^preserving in both sides at each point of X Then there exist a
contraction p: X -> X with X metrizable and a collection {fα: X -> /: α
G 4̂} of correspondences satisfying the following:

(1) For each α G i l , φ β = /αp G C(X, /) and cozφα = £/α.
(2) ρ ( ^ ) is a σ-discrete family of closed subsets of X
(3) For each H ̂ Jίf and each α G 4̂,
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In fact, let J^= U^Lx^, where each J^ is discrete in X and for each
H G 3te and each a G A, H Π £/α # 0 if and only if # c C/α. By the
same argument as in the proof of Lemma 2.3, we can construct families
{ V(H, q):q G Q0,H G j f } and {^(#) :ήfGg 0 }of subsets of X. Let p
be a contraction of X onto a metrizable space X satisfying the following:

(1) p ( ^ ) is a σ-discrete family of closed subsets of X.
(2) For each q ^ Qo and each i, {p(V(H,q)):H G J^ } and

{p(V(H, q)):H €: Jί?;} are discrete families of open and closed subsets of
X, respectively.

(3) For each # G Qo, p(SS(q)) is a closure-preserving family of closed
subsets of X.

For each a G ̂ 4, we define a correspondence /α: X -> / as follows:

/ n W \inf{q<=Q0:χeP(B(a,q))}.

Then it is easy to see that {fa: a ^ A} and p: X -> ̂  satisfy the required
conditions.

If we apply the essential argument of [4, Theorem 2.1] to this case, we
can construct a one-to-one continuous mapping g: X -> 7 with 7 a
stratifiable σ-metric space such that g(Ua) is open in Y for each a ^ A.
As a consequence, we reach to the coincidence theorem of the class Jί
with stratifiable μ-spaces of [5].

LEMMA 2.6. Let X be a stratifiable space and Φ = {φα:α G yί} c
C( X, I) satisfy the conditions (α), (β) and (γ) above. Then there exists a
σ-discrete family Jίf of closed subsets of X such that {cozφa:a G A} is
^preserving in both sides at each point of X.

Proof. For each a e A and each n, set Fan = φ^ι[l/n, 1]. Then
obviously each Fan is closed in X and cozφα = O™=1Fan. Moreover, for
each n ϊFn = {Fαπ: a e 4̂} is closure-preserving in X To see it, let /? G X
-U{Fan:a (=A0) for ^ 0 c A. This implies 0 < φa(p) < \/n for each
α €ΞΛ0. By (γ) supίφ^j^)^ <Ξ Ao) < l/n. Since sup{φa:a (Ξ Ao} is
continuous at /?,

is an open neighborhood of p such that N(p) Γ) Fλn= 0 for each
α G ^ 0 . Hence J^ is closure-preserving in X Assume

p G Π{cozφft:α e Ao) for Aocz A.

By (γ), there exists n e JV such that l/n < inf{φα(j9):α e ^ 0 } . This
implies /? G Γ\{Fan:a e yl0}. By the same argument as in the proof of
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(4) -> (1) in Lemma 2.1, we have a σ-discrete family Jtf of closed subsets

of X such that {cozφα: a e A) is ^preserving in both sides at each point

in X. This completes the proof.

We state the main result.

THEOREM 2.7. For a space X, the following are equivalent:

(1) X ^ Jί, that is, X is a stratifiable μ-space.

(2) X has a topology induced by the collection Φ = U ^ Φ , , c C(X, I)

such that each Φn satisfies (α), (β) and (γ) of Lemma 2.3.

Proof, (1) -> (2): Let X^Jί. By Lemma 2.2, X has a σ-discrete

family JC of closed subsets of X and a base U ^ = 1 ^ w , where each °Un is

^preserving in both sides at each point of X. By Lemma 2.3, for each n

there exists a collection Φrt c C(X, /) satisfying (α), (β) and (γ). Then

Φ = U^ = 1 Φ n is the desired collection. (2) -» (1): By the argument of [2,

Theorem 2.1] and by (α), Jί is a stratifiable space. By Lemma 2.5, for

each n there exists a σ-discrete family J^n of closed subsets of X such that

°ίln = {cozφ.φ G Φrt} is ^-preserving in both sides at each point of X.

Then it is easy to see that each °lln is ^preserving in both sides at each

point of X, where Jf= \J^=lJ^fn is also a σ-discrete family of closed

subsets of X. This completes the proof.
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