Pacific Journal of Mathematics

ON FUNCTIONS AND STRATIFIABLE μ -SPACES

TAKEMI MIZOKAMI

Vol. 125, No. 1 September 1986

ON FUNCTIONS AND STRATIFIABLE µ-SPACES

TAKEMI MIZOKAMI

It is shown that a space X is a stratifiable μ -space if and only if X has a topology induced by the collection $\bigcup_{n=1}^{\infty} \Phi_n$ of [0, 1]-valued continuous functions of X such that each Φ_n satisfies the conditions (α), (β) and (γ) stated below.

1. Introduction. Throughout, all spaces are assumed to be regular Hausdorff. N always denotes the positive integers. For a space X , $C(X, I)$ denotes the collection of all continuous functions $f: X \rightarrow I$ [0,1]. For $f \in C(X, I)$ we denote by coz f the cozero set of f in X. We are assumed to be familiar with the class of stratifiable spaces in the sense of [1]. For a stratifiable space X , every closed subset F of X has a stratification $\{O_n(F) : n \in N\}$ in X. As is well-known, every stratifiable space X is monotonically normal, that is, X has a monotonically normal operator $D(M, N)$ for each disjoint pair (M, N) of closed subsets of X.

J. Guthrie and M. Henry characterized metrizable spaces X in terms of collections of continuous functions with continuous sup and inf as follows: A space X is metrizable if and only if X has the weak topology induced by a σ -relatively complete collection $\Phi \subset C(X, I)$, that is, $\Phi =$ $\bigcup_{n=1}^{\infty} \Phi_n$, where for each *n*, each subcollection of Φ_n has both continuous sup and inf, [3]. On the other hand, C. R. Borges and G. Gruenhage obtained the characterization of stratifiable spaces as follows: A space X is stratifiable if and only if for each open set U of X there exists $f_U \in C(X, I)$ such that $\cos f_U = U$ and such that for each family \%\ of open subsets of X, sup{ $f_U: U \in \mathcal{U} \in C(X, I)$, [2, Theorem 2.1]. In the discussion below, we also give a characterization of the class of stratifiable μ -spaces in terms of collections of continuous functions with continuous sups with an additional condition. This is the main purpose of this paper.

In an earlier paper $[6]$, the author introduced the notion of M-structures and studied the class M of all stratifiable spaces having an M-structure. This class M is shown to coincide with that of stratifiable μ -spaces, [5]. The kernel of *M*-structures is the term " \mathcal{H} preserving in both sides". Therefore, first we state the definition. For the definition of M-structures, we refer the reader to [6].

Let \mathcal{U}, \mathcal{H} be families of subsets of a space X. Then we call that \mathcal{U} is *inside **Ppreserving at a point $p \in X$ if for each $\mathscr{U}_0 \subset \mathscr{U}$, $p \in \bigcap \mathscr{U}_0$

implies $p \in H \subset \bigcap \mathcal{U}_0$ for some $H \in \mathcal{H}$. We call that \mathcal{U} is outside *A* preserving at p if for each $\mathscr{U}_0 \subset \mathscr{U}$, $p \in X - \bigcup \mathscr{U}_0$ implies $p \in H \subset X$ $-\bigcup \mathscr{U}_0$ for some $H \in \mathscr{H}$. If \mathscr{U} is both inside and outside *** preserving at p, then $\mathcal U$ is called *H*-preserving in both sides at p.

2. Continuous functions and stratifiable μ -spaces.

LEMMA 2.1. For a stratifiable space X , the following are equivalent:

(1) $X \in \mathcal{M}$.

(2) Every closed subset F of X has an open neighborhood base $\mathcal U$ in X such that $\mathcal U$ is H-preserving in both sides at each point of X for some σ -discrete family $\mathcal H$ of closed subsets of X.

(3) Every closed subset F of X has an open neighborhood base $\mathcal U$ in X such that $\mathcal U$ is inside H-preserving at each point of X for some σ -discrete family $\mathcal H$ of closed subsets of X.

(4) Every closed subset F of X has an open neighborhood base $\mathcal U$ in X such that for each $U \in \mathcal{U}$ there exists a sequence $\{F_n(U) : n \in N\}$ of closed subsets of X satisfying the following:

(a) $U = \bigcup_{n=1}^{\infty} F_n(U)$ for each $U \in \mathcal{U}$.

(b) For each n, { $F_n(U)$: $U \in \mathcal{U}$ is a closure-preserving family in X.

(c) For each $\mathscr{U}_0 \subset \mathscr{U}$, if $p \in \bigcap \mathscr{U}_0$, then $p \in \bigcap \{F_n(U): U \in \mathscr{U}_0\}$ for some n.

Proof. (1) \rightleftarrows (2) is given in [6]. (2) \rightarrow (3) is trivial. (3) \rightarrow (4): Let F be a closed subset of X and \mathcal{U}, \mathcal{H} be families given by (3). Write \mathcal{H} = $\bigcup_{n=1}^{\infty} \mathcal{H}_n$, where each \mathcal{H}_n is a discrete family of closed subsets of X. For each $U \in \mathcal{U}$ and each *n*, set

$$
F_n(U) = \bigcup \bigg\{ H \in \bigcup_{t=1}^n \mathcal{H}_t : H \subset U \bigg\}.
$$

Then it is easy to see that $\{F_n(U): n \in N\}$, $U \in \mathcal{U}$, satisfy the required conditions. (4) \rightarrow (1): Let F be a closed subset of X and let $\mathcal{U} = \{U_{\lambda} : \lambda$ $\in \Lambda$ be an open neighborhood base of F in X such that for each $\lambda \in \Lambda$, there exists a sequence $\{F_{\lambda n}: n \in N\}$ of closed subsets of X satisfying the conditions (a), (b) and (c) with $F_n(U) = F_{\lambda n}$ and $U = U_{\lambda}$ for each $\lambda \in \Lambda$. Define an equivalence relation R on X as follows: For $x, y \in X$, xRy if and only if $\Lambda(x) = \Lambda(y)$, where $\Lambda(x) = {\lambda \in \Lambda}$: $x \in U_{\lambda}$. Let $\mathscr P$ be the disjoint partition of X with respect to R. $\mathscr P$ is written as follows: $\mathcal{P} = \{ P(\delta) : \delta \in \Delta \}$, where for each $\delta \in \Delta \subset 2^{\Lambda}$

$$
P(\delta) = \bigcap \{U_{\lambda} : \lambda \in \delta\} - \bigcup \{U_{\lambda} : \lambda \in \Lambda - \delta\}.
$$

For each n, $k \in N$ and $\delta \in \Delta$, set

$$
F(n, k, \delta) = \left[\bigcap \{ F_{\lambda n} : \lambda \in \delta \} - O_k \Big(\bigcup \{ F_{\lambda n} : \lambda \in \Lambda - \delta \} \Big) \right]
$$

$$
\cap \left[X - \bigcup \{ U_{\lambda} : \lambda \in \Lambda - \delta \} \right].
$$

Then we can show that

$$
\mathscr{F}(n,k)=\{F(n,k,\delta)\colon \delta\in\Delta\}
$$

is a discrete family of closed subsets of X . To see it, let p be an arbitrary point and let $\delta_0 = {\lambda \in \Lambda : p \in F_{\lambda n}}$. Then, we easily see that if we define

$$
N(p) = \left(X - \bigcup\{F_{\lambda n} : \lambda \in \Lambda - \delta_0\}\right)
$$

$$
\cap O_k\left(\bigcap\{F_{\lambda n} : \lambda \in \delta_0\}\right)
$$

when $\delta_0 \neq \emptyset$ and

$$
N(p) = X - \bigcup \{F_{\lambda n} : \lambda \in \Lambda\}
$$

when $\delta_0 = \emptyset$, then $N(p)$ is an open neighborhood of p in X such that $N(p) \cap F(n,k,\delta) = \emptyset$ for each $\delta \in \Delta - \{\delta_0\}$. This shows that $\mathcal{F}(n,k)$ is a discrete family in X. It is easily seen that each $F(n, k, \delta)$ is closed in X . Let

$$
\mathscr{H}=\bigcup\{\mathscr{F}(n,k):n,k\in N\}.
$$

To see that $\mathcal U$ is *H*-preserving in both sides at each point of X, it suffices to see that if $p \in P(\delta)$, then there exists $F(n, k, \delta) \in \mathcal{H}$ such that $p \in F(n, k, \delta) \subset P(\delta)$. But this is obvious from the construction of \mathcal{H} . This completes the proof.

LEMMA 2.2. For a stratifiable space X , the following are equivalent:

(1) $X \in \mathcal{M}$.

(2) X has a base $\mathcal U$ such that $\mathcal U$ is σ -H-preserving in both sides at each point of X for some σ -discrete family $\mathcal H$ of closed subsets of X.

(3) X has a base $\mathcal U$ such that $\mathcal U$ is σ -inside $\mathcal H$ -preserving at each point of X for some σ -discrete family $\mathcal H$ of closed subsets of X.

Proof. (1) \rightarrow (2): Let $\mathcal{H} = \bigcup_{n=1}^{\infty} \mathcal{H}_n$ be a network of X, where each \mathcal{H}_n is a discrete family of closed subsets of X. For each n, let $\{U_n:$ $H \in \mathcal{H}_n$ be a family of open subsets of X such that $H \subset U_H$ for each $H \in \mathscr{H}_n$ and $\{\overline{U_H}: H \in \mathscr{H}_n\}$ is discrete in X. For each $H \in \mathscr{H}_n$, $n \in N$, by [6, Lemma 3.3] there exists an open neighborhood base $\mathcal{U}(H)$ of H such that $\mathcal{U}(H)$ is $\mathcal{F}(H)$ -preserving in both sides at each point of X for some σ -discrete family $\mathcal{F}(H)$ of closed subsets of X and $H \subset U \subset U_{H}$ for each $U \in \mathcal{U}(H)$. Set $\mathcal{U}_n = \bigcup \{ \mathcal{U}(H) : H \in \mathcal{H}_n \}$ for each n. Then $\mathscr{U} = \bigcup_{n=1}^{\infty} \mathscr{U}_n$ is a base for X and each \mathscr{U}_n is \mathscr{F} -preserving in both sides at each point of X, where $\mathscr{F} = \bigcup_{n=1}^{\infty} \mathscr{F}_n \cup \mathscr{H}$ and

$$
\mathscr{F}_n = \bigcup \big\{ \mathscr{F}(H) / \overline{U_H} : H \in \mathscr{H}_n \big\}
$$

for each *n*. Since \mathcal{F}_n is a *o*-discrete family of closed subsets of X, $\mathcal F$ is also a σ -discrete family of closed subsets of X. This completes the proof of (1) \rightarrow (2). (2) \rightarrow (3) is trivial. (3) \rightarrow (1): By a routine check, we can show that every closed subset F of X has an open neighborhood base which is inside *** preserving at each point of X for some σ -discrete family $\mathcal X$ of closed subsets of X. Then by Lemma 2.1(3), $X \in \mathcal M$. This completes the proof.

LEMMA 2.3. Let $\mathcal H$ be a σ -discrete family of closed subsets of a stratifiable space X and $\mathcal{U} = \{U_{\alpha} : \alpha \in A\}$ a family of open subsets of X which is H -preserving in both sides at each point of X. Then there exists a collection $\Phi = \{\phi_{\alpha} : \alpha \in A\} \subset C(X, I)$ satisfying the following conditions:

- (α) For each $A_0 \subset A$, sup $\{\phi_{\alpha} : \alpha \in A_0\} \in C(X, I)$.
- (β) $U_{\alpha} = \cos \phi_{\alpha}$ for each $\alpha \in A$.
- (γ) For each point $p \in X$, $\{\phi_{\alpha}(p) : \alpha \in A\}$ is a finite set.

Proof. Write $\mathcal{H} = \bigcup_{n=1}^{\infty} \mathcal{H}_n$, where each \mathcal{H}_n is a discrete family of closed subsets of X. Let Q_0 be the set of all rational numbers of (0, 1]. For each $\alpha \in A$, set

$$
\mathscr{H}(\alpha) = \{ H \in \mathscr{H} : H \subset X - U_{\alpha} \}.
$$

Then obviously, $\bigcup \mathcal{H}(\alpha) = X - U_{\alpha}$. For each *n*, there exists a discrete family $\{\mathscr{U}_H: H \in \mathscr{H}_n\}$ of open subsets of X such that $H \subset U_H$ for each $H \in \mathcal{H}_n$. Since X is a monotonically normal space, X has the operator $D(M, N)$. For each $H \in \mathcal{H}_n$, $n \in N$, we choose a regular open set V_H of X such that

$$
H\subset V_H\subset \overline{V_H}\subset U_H\cap D\bigg(H,\bigcup\bigg\{H'\in\bigcup_{t=1}^n\mathscr{H}_t:H'\cap H=\varnothing\bigg\}\bigg).
$$

As a preliminary for the discussion below, we observe the following (1) by the same argument as in the proof of [7, Theorem 2, (1) \rightarrow (2)].

(1) If for each $H \in \mathcal{H}$, G_H is a regular open set of X such that $H \subset G_H \subset \overline{G_H} \subset V_H$, then the families

$$
\left\{X-\bigcup\{G_H\colon H\in\mathscr{H}(\alpha)\}\colon \alpha\in A\right\}
$$

and

$$
\left\{X-\bigcup\left\{\overline{G_H}:H\in\mathscr{H}(\alpha)\right\}:\alpha\in A\right\}
$$

are closure-preserving families of closed and open subsets of X , respectively.

For each $H \in \mathcal{H}$, there exists a function $f_H \in C(X, I)$ such that $f_H^{-1}(0) = H$ and $f_H^{-1}(1) = X - V_H$. We write Q_0 as $Q_0 = \{q_1 = 1, q_2, \dots\}$. By induction on *n*, we shall construct families $\{V(H, q_n): H \in \mathcal{H}\}\$ and $\mathscr{B}(q_n)$, $n \in N$, of subsets of X. For $n = 1$, let $V(H, q_1) = V_H$ for each $H \in H$, and let

$$
B(\alpha, q_1) = X - \bigcup \{V(H, q_1) : H \in \mathcal{H}(\alpha)\}\
$$

for each $\alpha \in A$. Then by (1), $\mathscr{B}(q_1) = \{B(\alpha, q_1) : \alpha \in A\}$ is a closure-preserving family of closed subsets of X. Let $n \in N$ and assume that for each $k \le n$, we have constructed families $\mathscr{B}(q_k) = \{B(\alpha, q_k) : \alpha \in A\}$ and $\{V(H, q_{k}) : H \in \mathcal{H}\}\$ satisfying the following:

 (2) _n $\bigcup_{k=1}^{n} \mathcal{B}(q_k)$ is a closure-preserving families of closed subsets of X and each $B(\alpha, q_k) \in \mathcal{B}(q_k)$ is defined by

$$
B(\alpha,q_k)=X-\bigcup\{V(h,q_k):H\in\mathscr{H}(\alpha)\}.
$$

(3)_n If $q_k < q_{k'}$ with $k, k' \le n$, then $V(H, q_k) \subset V(H, q_{k'})$ and $B(\alpha, q_{k}) \subset \text{Int } B(\alpha, q_{k})$ for each $H \in \mathcal{H}$ and $\alpha \in A$.

(4)_n If $q_t = \min\{q_1, \ldots, q_n\}$, then $V(H, q_t) \subset f_H^{-1}[0, q_t)$.

To obtain $\mathcal{B}(q_{n+1})$, we define $V(H, q_{n+1})$ and $B(\alpha, q_{n+1})$ as follows:

(1) If $q_{n+1} < q_k$ for each $k \le n$, then we choose a regular open set $(V(H, q_{n+1})$ by

$$
H \subset B(H, q_{n+1}) \subset \overline{V(H, q_{n+1})} \subset f_H^{-1}[0, q_{n+1}) \cap \bigcap_{k=1}^n V(H, q_k).
$$

(2) Otherwise, we choose a regular open set $V(H, q_{n+1})$ by

$$
\bigcup \left\{ \overline{V(H, q_t)} : t \le n \text{ and } q_t < q_{n+1} \right\} \subset V(H, q_{n+1}) \subset \overline{V(H, q_{n+1})}
$$
\n
$$
\subset \bigcap \left\{ V(H, q_t) : t \le n \text{ and } q_t > q_{n+1} \right\}.
$$

For each $\alpha \in A$, we define

$$
B(\alpha,q_{n+1})=X-\bigcup\{V(H,q_{n+1}):H\in\mathscr{H}(\alpha)\}\
$$

and also define the family $\mathscr{B}(q_{n+1}) = \{B(\alpha, q_{n+1}) : \alpha \in A\}$. By (1), $\mathscr{B}(q_{n+1})$ is a closure-preserving family of closed subsets of X. Therefore, $(2)_{n+1}$ is satisfied. (4)_{n+1} is trivial by the definition of $V(H, q_{n+1})$ in (1).

TAKEMI MIZOKAMI

To see (3)_{n+1}, let $q_t < q_{n+1}$ for some t with $t \le n$. Then by (2) we easily see

$$
B(\alpha, q_{n+1}) \subset X - \bigcup \{ \overline{V(H, q_t)} : H \in \mathcal{H}(\alpha) \}
$$

$$
\subset X - \bigcup \{ V(H, q_t) : H \in \mathcal{H}(\alpha) \} = B(\alpha, q_t).
$$

Since $\overline{V(H,q_i)} \subset V_H$ in (2), by (1) the second set is open in X. This implies $B(\alpha, q_{n+1}) \subset \text{Int } B(\alpha, q_t)$. If $q_t > q_{n+1}$ with $t \le n$, then by (2) we have $V(H, q_{n+1}) \cap B(\alpha, q) = \emptyset$. This implies

$$
B(\alpha,q_{t})\subset X-\bigcup\{\overline{V(H,q_{n+1})}:H\in\mathscr{H}(\alpha)\}\subset B(\alpha,q_{n+1}).
$$

Again, the second set is open in X by (1). Hence we have $B(\alpha, q) \subset$ Int $B(\alpha, q_{n+1})$. In this manner, we repeat the construction of a sequence $\{\mathscr{B}(q): q \in Q_0\}$ of families of subsets of X. Then, by induction the following are obvious:

(5) For each $q \in Q_0$, $\mathscr{B}(q) = \{B(\alpha, q) : \alpha \in A\}$ is a closure-preserving family of closed subsets of X.

(6) If $q, q' \in Q_0$ with $q < q'$, then for each $\alpha \in A$ $B(\alpha, q') \subset A$ Int $B(\alpha, q)$.

Since W is inside *H*-preserving at each point and $\bigcap \{V(h, q) : q \in Q_0\}$ = H for each $H \in \mathcal{H}$, by the method of the construction of V_H we get that

(7) For each $\alpha \in A$, $U_{\alpha} = \bigcup \{ B(\alpha, q) : q \in Q_0 \}.$

Also, from the fact that $\mathcal U$ is inside *H*-preserving at each point, we get that

(8) For $A_0 \subset A$, if $p \in \bigcap \{U_{\alpha} : \alpha \in A_0\}$, then there exist $n \in N$ and $H \in \mathscr{H}_n$ such that $p \in H \subset \bigcap \{U_\alpha : \alpha \in A_0\}$ and $H \cap V(H', q) = \emptyset$ for each $q \in Q_0$ and each $H' \in (\bigcup_{i=n}^{\infty} \mathcal{H}_i) \cap (\bigcup \{ \mathcal{H}(\alpha) : \alpha \in A_0 \}).$

Now, for each $\alpha \in A$ we define $\phi_{\alpha}: X \to I$ by

(9)
$$
\phi_{\alpha}(x) = \begin{cases} 1 & \text{if } x \in B(\alpha, 1), \\ \inf\{q \in Q_0 : x \notin B(\alpha, q)\}. \end{cases}
$$

Then, as shown in the proof of [2, Theorem 2], $\phi_{\alpha} \in C(X, I)$ and $\cos \phi_{\alpha} = U_{\alpha}$ for each $\alpha \in A$, and (α) is satisfied. The condition (γ) is easily obtained by (8). This completes the proof.

COROLLARY 2.4. Under the hypothesis for Lemma 2.3, there exist a collection $\Phi \subset C(X, I)$ and a σ -discrete family $\mathcal H$ of closed subsets of X such that (α) , (β) and the following are satisfied:

 $(\gamma)'$ For each $H \in \mathcal{H}$ and $A_0 \subset A$, inf{ ϕ_{α}/H : $\alpha \in A_0$ } $\in C(H, I)$.

Proof. In the proof above, without loss of generality we can assume $H \cap U_{\alpha} \neq \emptyset$ if and only if $H \subset U_{\alpha}$ for each $H \in \mathcal{H}$ and $\alpha \in A$. By the same method, we can construct $\mathscr{B}(q) = \{B(\alpha, q) : \alpha \in A\}, q \in Q_0,$ satisfying (5), (6), (7) and (8) above. If we define $\Phi = {\phi_{\alpha} : \alpha \in A}$ by (9) above, then Φ is shown to be the desired collection. In fact (α) and (β) are obvious. By the similar argument to that of the proof of [7, Theorem 2, $(1) \rightarrow (2)$, we can observe that for each $H \in \mathcal{H}$ and each $q \in Q_0$, $\{B(\alpha, q): \alpha \in A\}/H$ is interior-preserving in the subspace H.

Now, we establish the following general assertion, from which $(\gamma)'$ follows directly:

Assertion. Let $\{B(\alpha, q): \alpha \in A\}$ and $\Phi = \{\phi_{\alpha}: \alpha \in A\}$ be the same as in the proof of Lemma 2.3. If for each $q \in Q_0$, $\{B(\alpha, q) : \alpha \in A\}$ is interior-preserving in X, then for each $A_0 \subset A$, inf{ $\phi_{\alpha} : \alpha \in A_0$ } \in $C(X, I)$.

Proof of the assertion. Let t be an arbitrary number of $[0, 1)$. Since

$$
\left(\inf\{\phi_{\alpha}:\alpha\in A_0\}\right)^{-1}[t,1]=\bigcap\{\phi_{\alpha}^{-1}[t,1]:\alpha\in A_0\}
$$

is closed in X, it suffices to show that $S = (\inf{\phi_{\alpha} : \alpha \in A_0})^{-1}(t, 1]$ is open in X . Let p be an arbitrary point of S . Then

$$
t < \inf\{\phi_\alpha(p) : \alpha \in A_0\} = \delta \le 1.
$$

Take r and $s \in Q_0$ such that $t < r < s < \delta$. Since for each $\alpha \in A_0$, $s < \delta \le \phi_{\alpha}(p)$, $p \in B(\alpha, s)$. By (6) above, $p \in \text{Int } B(\alpha, r)$ for each $\alpha \in A_0$. Therefore

 $N(p) = \bigcap \{ \text{Int } B(\alpha, r) : \alpha \in A_0 \}$

is an open neighborhood of p in X because { $B(\alpha, r): \alpha \in A$ } is interiorpreserving in X. Since $N(p) \subset S$, S is open in X. This completes the proof.

REMARK 2.5. If we slightly modify the argument above, then we can establish the following: Let $\mathcal H$ be a σ -discrete family of closed subsets of a stratifiable space X and $\mathcal{U} = \{U_{\alpha} : \alpha \in A\}$ a family of open subsets of X which is \mathcal{H} -preserving in both sides at each point of X. Then there exist a contraction $\rho: X \to \hat{X}$ with \hat{X} metrizable and a collection $\{f_{\alpha}: \hat{X} \to I : \alpha\}$ \in A \ of correspondences satisfying the following:

(1) For each $\alpha \in A$, $\phi_{\alpha} = f_{\alpha}\rho \in C(X, I)$ and $\cos \phi_{\alpha} = U_{\alpha}$.

- (2) $\rho(\mathcal{H})$ is a σ -discrete family of closed subsets of X.
- (3) For each $H \in \mathcal{H}$ and each $\alpha \in A$,

$$
f_{\alpha}/\rho(H) \in C(\rho(H), I).
$$

In fact, let $\mathcal{H} = \bigcup_{i=1}^{\infty} \mathcal{H}_i$, where each \mathcal{H}_i is discrete in X and for each $H \in \mathscr{H}$ and each $\alpha \in A$, $H \cap U_{\alpha} \neq \emptyset$ if and only if $H \subset U_{\alpha}$. By the same argument as in the proof of Lemma 2.3, we can construct families $\{V(H, q): q \in Q_0, H \in \mathcal{H}\}\$ and $\{\mathcal{B}(q): q \in Q_0\}$ of subsets of X. Let ρ be a contraction of X onto a metrizable space \hat{X} satisfying the following:

(1) $\rho(\mathcal{H})$ is a σ -discrete family of closed subsets of \hat{X} .

(2) For each $q \in Q_0$ and each i, $\{\rho(V(H,q)) : H \in \mathcal{H}_i\}$ and $\{\rho(\overline{V(H,q)}) : H \in \mathcal{H}_i\}$ are discrete families of open and closed subsets of \hat{X} , respectively.

(3) For each $q \in Q_0$, $\rho(\mathcal{B}(q))$ is a closure-preserving family of closed subsets of \hat{X} .

For each $\alpha \in A$, we define a correspondence $f_{\alpha} : \hat{X} \to I$ as follows:

$$
f_{\alpha}(x) = \begin{cases} 1 & \text{if } x \in \rho(B(\alpha,1)), \\ \inf\{q \in Q_0 : x \notin \rho(B(\alpha,q))\}. \end{cases}
$$

Then it is easy to see that $\{f_{\alpha} : \alpha \in A\}$ and $\rho: X \to \hat{X}$ satisfy the required conditions.

If we apply the essential argument of [4, Theorem 2.1] to this case, we can construct a one-to-one continuous mapping $g: X \rightarrow Y$ with Y a stratifiable σ -metric space such that $g(U_{\alpha})$ is open in Y for each $\alpha \in A$. As a consequence, we reach to the coincidence theorem of the class M with stratifiable μ -spaces of [5].

LEMMA 2.6. Let X be a stratifiable space and $\Phi = {\phi_{\alpha} : \alpha \in A} \subset$ $C(X, I)$ satisfy the conditions (α) , (β) and (γ) above. Then there exists a σ **-discrete family H** of closed subsets of X such that $\{\cos \phi_{\alpha} : \alpha \in A\}$ is \mathcal{H} preserving in both sides at each point of X.

Proof. For each $\alpha \in A$ and each *n*, set $F_{\alpha n} = \phi_{\alpha}^{-1}[1/n, 1]$. Then obviously each $F_{\alpha n}$ is closed in X and coz $\phi_{\alpha} = \bigcup_{n=1}^{\infty} F_{\alpha n}$. Moreover, for each $n \mathcal{F}_n = \{F_{\alpha n} : \alpha \in A\}$ is closure-preserving in X. To see it, let $p \in X$ $-\bigcup \{F_{\alpha n} : \alpha \in A_0\}$ for $A_0 \subset A$. This implies $0 \le \phi_{\alpha}(p) < 1/n$ for each $\alpha \in A_0$. By (γ) sup $\{\phi_{\alpha}(p) : \alpha \in A_0\}$ < 1/n. Since sup $\{\phi_{\alpha} : \alpha \in A_0\}$ is continuous at p ,

$$
N(p) = \left(\sup\{\phi_{\alpha} : \alpha \in A_0\}\right)^{-1}[0, 1/n)
$$

is an open neighborhood of p such that $N(p) \cap F_{\lambda n} = \emptyset$ for each $\alpha \in A_0$. Hence \mathcal{F}_n is closure-preserving in X. Assume

$$
p \in \bigcap \{ \cos \phi_{\alpha} : \alpha \in A_0 \} \quad \text{for } A_0 \subset A.
$$

By (γ), there exists $n \in N$ such that $1/n \le \inf{\phi_{\alpha}(p) : \alpha \in A_0}$. This implies $p \in \bigcap \{F_{\alpha n} : \alpha \in A_0\}$. By the same argument as in the proof of (4) \rightarrow (1) in Lemma 2.1, we have a σ -discrete family *H* of closed subsets of X such that $\{\cos \phi_{\alpha} : \alpha \in A\}$ is *H*-preserving in both sides at each point in X . This completes the proof.

We state the main result.

THEOREM 2.7. For a space X , the following are equivalent:

(1) $X \in \mathcal{M}$, that is, X is a stratifiable μ -space.

(2) X has a topology induced by the collection $\Phi = \bigcup_{n=1}^{\infty} \Phi_n \subset C(X, I)$ such that each Φ_n satisfies (α) , (β) and (γ) of Lemma 2.3.

Proof. (1) \rightarrow (2): Let $X \in \mathcal{M}$. By Lemma 2.2, X has a σ -discrete family *H* of closed subsets of *X* and a base $\bigcup_{n=1}^{\infty} \mathcal{U}_n$, where each \mathcal{U}_n is \mathcal{H} -preserving in both sides at each point of X. By Lemma 2.3, for each n there exists a collection $\Phi_n \subset C(X, I)$ satisfying (α) , (β) and (γ) . Then $\Phi = \bigcup_{n=1}^{\infty} \Phi_n$ is the desired collection. (2) \rightarrow (1): By the argument of [2, Theorem 2.1] and by (α) , X is a stratifiable space. By Lemma 2.5, for each *n* there exists a σ -discrete family \mathcal{H}_n of closed subsets of X such that $\mathscr{U}_n = \{\cos \phi : \phi \in \Phi_n\}$ is \mathscr{H}_n -preserving in both sides at each point of X. Then it is easy to see that each \mathcal{U}_n is *** preserving in both sides at each point of X, where $\mathcal{H} = \bigcup_{n=1}^{\infty} \mathcal{H}_n$ is also a σ -discrete family of closed subsets of X . This completes the proof.

REFERENCES

- [1] C. R. Borges, On stratifiable spaces, Pacific J. Math., 17 (1966), 1-16.
- [2] C. R. Borges and G. Gruenhage, Sup-characterization of stratifiable spaces, Pacific J. Math., 105 (1983), 279-284.
- J. Guthrie and M. Henry, Metrization, paracompactness and real-valued functions, $\lceil 3 \rceil$ Fund. Math., 95 (1977), 49–54.
- M. Ito, M_0 -spaces are μ -spaces, Tsukuba J. Math., 8 (1984), 77-80. $[4]$
- [5] H. J. K. Junnila and T. Mizokami, *Characterizations of stratifiable* μ *-spaces*, Topology Appl., 21 (1985), 51-58.
- [6] T. Mizokami, On M-structures, Topology Appl., 17 (1984), 63-89.
- $__$, On M-structures and strongly regularly stratifiable spaces, Pacific J. Math., 116 $[7]$ $(1985), 131-141.$

Received May 20, 1985 and in revised form December 10, 1985.

JOETSU UNIVERSITY OF EDUCATION JOETSU, NIIGATA 943 **JAPAN**

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

V. S. VARADARAJAN **HERMANN FLASCHKA** C. C. MOORE
(Managing Editor) University of Arizona University of C **University of California**
Los Angeles, CA 90024 **Salt Lake City, UT 84112** VAUGHAN F. R. JONES
R. FINN University of California **Stanford University Berkeley, CA 94720**
 BOBION KIBBY

(Managing Editor) University of Arizona University of California Los Angeles, CA 90024 RAMESH A. GANGOLLI H. SAMELSON HERBERT CLEMENS University of Washington Stanford University University of Utah Seattle, WA 98195 Salt Lake City, UT 84112 VAUGHAN F. R. JONES HAROLD STARK **ROBION KIRBY University of California Berkeley, CA 94720**

R. FINN University of California University of California, San Diego

ASSOCIATE EDITORS

R. ARENS E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSHIDA

(1906-1982)

SUPPORTING INSTITUTIONS

UNIVERSITY OF ARIZONA UNIVERSITY OF OREGON

UNIVERSITY OF BRITISH COLUMBIA UNIVERSITY OF SOUTHER **CALIFORNIA INSTITUTE OF TECHNOLOGY STANFORD UNIVERSITY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF TOKYO** UNIVERSITY OF NEVADA, RENO NEW MEXICO STATE UNIVERSITY **NEW MEXICO STATE UNIVERSITY WASHINGTON STATE UNIVERSITY**

UNIVERSITY OF SOUTHERN CALIFORNIA **OREGON STATE UNIVERSITY UNIVERSITY OF WASHINGTON**

Pacific Journal of Mathematics Vol. 125, No. 1 September, 1986

