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In this paper, we show that the elements of a {>-sequence can be
ordered lexicographically to produce an ordered continuum. An applica-
tion of this idea answers a question of V. Malyhin and others: Is there a
compact Hausdorff space in which ne two points have equal character?
We show that the consistency strength of the existence of such a space
lies between that of an inaccessible and a Mahlo cardinal. We show that
compactness is essential in this result by constructing, in ZFC, a o-com-
pact Hausdorff space in which no two points have equal character.

Let us begin with some definitions:

DErFINITION 1. { f,: a € E} is a O ( E)-sequence (where E C k — {0}
and f,: « — 2)if, for each f: k — 2, thereis a € E such that f, C f.

This is not exactly the standard definition (we use the characteristic
functions of subsets of «, we trap only once and do not require that £ be
stationary or even cofinal in k) but it is equivalent in most cases. The
lexicographic ordering is not well defined because their domains are not
equal. We need to subtract some f,s which are “not needed”. Let us fix
this idea.

DEFINITION 2. { f,: @ € E} is a minimal {,( E)-sequence if, whenever
FcC E and {f,; a € F}isa Q(F)-sequence, F must equal E.

This seems like a strong condition but it is not. We can subtract the
f.’s which are not needed.

LeMMA 1. If {f,: a € E} is a O (E)-sequence, then there is F C E
such that

{f.: @ € F} is a minimal  (F )-sequence.

Proof. The idea is to inductively subtract any f, compatible with f,
when B < a. That is, a € F iff, for each € a NF, ffbUf, is not a
function. { f,: a € F} is a O (F)-sequence since, for each f: k — 2 there
is a minimal a € E such that f| a = f,. By the construction of F and the
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minimality of a, @ € F. { f,: @ € F} is minimal since, for each a € F, we
can find f: xk — 2 such that f D f,. By the construction of F, there does
not exist 8 € F such that 8 # a and f D f,.

Minimality implies that the lexicographic ordering of a minimal
O (E)-sequence is well-defined. Meanwhile, the ¢ prediction property
implies compactness.

Some notation is useful:

Let a* B beinf{y: f,(v) # f5(¥)}.
The lexicographic ordering < is defined by f,<f, iff f,(a*B) = 0.

LEMMA 2. If & = {f,: a € E} is a minimal  (E)-sequence, then
the ordered space X({>) induced by the lexicographic ordering is compact.

Proof. We show that < is Dedekind-complete. That is, we show that
for each W C E such that « € W, B € E — W implies f,<f,, there is
n € E such that, « € W impies f,<f, and such that « € E — W implies
[y Define f: k — 2 recursively by f(y) = 1 iff there is a« € W such
that f, I y=fI vy and f,(v) = 1. This f is “between” { f,: « € W} and
{fo: « € E— W}. Since { f,: a € E} is a {)-sequence, there is n € E
such that /D f,. Fix a # 1.

If a € Wand f>f, then f(a*n)=1 and f(a*n)=0. By the
construction of f O f,, f(a*n) = 1 and that is a contradiction.

If a€ E— W and f>f, then f(a*n)=1 and f,(a*n)=0. By
the construction of f O f,, there is B € W such that fy ! a*n=f a*xq
and fg(axn)=1. Therefore fy| a*n=/f [ a*n and f(a*xn) <
fg(a*n) so f,<fp which is a contradiction.

The space X(<>) may not be connected but it is dense-in-itself when
E consists of limit ordinals and that is what we need to make it connected.

LEMMA 3. If & = { f,: « € E} is a minimal , (E)-sequence and E is
a set of limit ordinals, then X() is dense-in-itself. To prove Lemma 3, one
must essentially prove that the character of each point f, in X()
(x(f,, X(O))) (see [1)) is determined by its index:

LeMMA 4. If O ={f,;: a€ E} is a minimal , (E)-sequence and
a € E is a limit ordinal, then x(f,, X()) = cfa.

Proof of Lemmas 3 and 4. It suffices to construct either (1) a
<-increasing cf(a)-sequence which converges to f, and a W € [E]=¢(®
such that, for each B € E, with fg> f,, thereis y € W such that [ > foo
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or (2) a <-decreasing cf(a)-sequence which converges to f, and a W €
[E]=® such that, for each B € E with f,<f,, there is y € W such that
133f,<f,. Let B be a cofinal subset of a of cardinality cf(a). For each
B € B, construct g5 k > 2by got B=1,1 B, g4(B) # fu(B), g1 x ~
(B+1)=1-f(B)andfind y(B) € E: f, C 8p-

Find i € 2: |f7(i) N B| = cf(a). If i = 0, we construct (2) If i = 1,
we construct (1) Fix i = 0 for this proof.

{fyp): B € B; f(B) = 0} is the a-sequence.

Let B > B’ be fixed where f,(B) = f,(B") = 0.

By the construction f, g,(B") = gg(B") # f(B) = 0and f 4 (B) =
8p(B) =f(B)=0while f o1 B =8g t B'=f,1 B =8g1 B = fyp
I B’. This implies f, 5, <f, s, and so the a-sequence is <~decreasing. We
show that the a-sequence converges to f,. Otherwise 38 € EVS € f,71(0)
N B. f,Af; o) 1f7HO) N Bl = a = 3B > (a*d): f(B)=0. f,5C 8
and gg | B =/, Band f, ., incompatible with f, implies y(8) > B.

fupt (@*8) + 1 =gpl (a*8)+1=/f 1 (a*d)+1implies f, 4!
(a*8) = f5I (a*?d). f'y(B)(a *8) = f(a*8) < fy(a*8) implies f'y(B)qu'

Let W= {y(B): f(B)=1, B € B}. Suppose B € E and f;4f,. We
find 6 N W such that fp<df;<f,. fp(B*a)=0 and f(B*a)=1. Let
§=v(B*a), f; C gp+ay and fol B*a = 8l Bra=f1 B*a
while fy(B*a) = gp.(B*a) # f(B*a) =1 so that f;<f,. fp! B*a
=f.! Bra=f1 B*ra while fy(B*a)=/fy(B*a)=0 and f;I 8~
((B*a)+1)=1 implies f<f;. Lemma 3 enables us to make X()
connected.

LeMMA S. If (X, <) is a compact ordered space which is dense-in-itself
then letting an equivalence relation ~ on X be defined by x ~ y if there is no
z € Xsuchthat x <z <y, (X/~, <) is a continuum.

The basic theorem can be proved now.

THEOREM 1. If there is a cardinal k and a set of regular infinite
cardinals E C « such that  (E) holds, then there is a ordered continuum
with no two points of equal character.

Proof. If  is a O (E)-sequence, then Lemma 1 implies that we may
assume <> is minimal. Lemmas 2 and 3 implies that X(<>) is compact and
dense-in-itself. Lemma 4 implies that the character of a point is the
regular infinite cardinal by which it is indexed. Lemma 5 produces an
ordered continuum X({>)/~ in which the character of an equivalence
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class is the maximum of the characters of its elements (since equivalence
classes are finite), and the theorem is proved.
A partial converse can be proved.

THEOREM 2. If there is a compact Hausdorff space X with no two points
of equal character, then this is a cardinal k and a set of infinite cardinals
E C « such that there is a { ( E)-sequence.

Proof of Theorem 2. Let k = |X|. Let { P,; a € k} enumerate [ X]°.
Define F C*2 and {U;: f € F} a family of open sets such that

LIU{U; g B<domf}|>1iff fe F

2.fe F=>U(U;, 4 B<domf} =0 _

3./, €F, |f —fl=1and f' O f implies U, C U}

41,1,/ €F |f —fl=1=|f"~fland f' # " and f' D f, f”
D g impliesU;N\ Uy = &

S5.f€F=|UN Pyl <1

6. U, is an open set containing no isolated point and no point of
character «.

For any g: k — 2, there is a unique x, € (U;: f € F, f C g}. If the
character of x, is a, < k then let £, : a, = a be defined by o, © &- This
is well-defined since no two points have equal character. Let E = {a,:
g €"2}.

This proof is a simple modification of P.291 of [1].

COROLLARY TO THEOREM 1. (V' = L + 3 Mahlo cardinal.) There is an
ordered continuum with no two points of equal character.

Proof. The definition of a Mahlo cardinal is a regular cardinal
which has a stationary subset E of regular infinite cardinals. Under
V = L, whenever « is a regular cardinal and E is a stationary subset of «
then O, (E) holds (see p. 181 of [2]).

COROLLARY TO THEOREM 2. (2 weakly inaccessible cardinal) Any
compact Hausdorff space has two points of equal character.

Proof. Let « be the least cardinal such that there is a set of infinite
cardinals E C k and a {,(E)-sequence { f,: « € E}. If k is a successor,
then « is not minimal. If « is a singular limit, then « is also not minimal
but an argument is needed.



ORDERED CONTINUA 255

Let C be a closed unbounded set of order-type cf(x).

Let D be the set of limit points of C.

Any cardinal in D has cofinality less than cf(«k); thus D N E C cf(k).

Let F= D — cf(k); thus EN F= &. If a € F, whenever possible,
let a~ be the greatest element of F U {0} which is smaller than a. For
each a € F, by minimality, thereis g,: ({y € k: a < y < a}) = 2 which
does not contain any f, | Yy — a whenevera < y < a.

Let h: k — 2 contain each g,. & does not contain any f, whenever
Yy € E.

We demonstrate that compactness is an essential condition in these
results by proving

THEOREM 3. (ZFC) There is a a-compact Hausdorff space X in which no
two points have equal character.

We need a set-theoretic lemma.
LEMMA 6. There is an infinite cardinal x such that 8 _= k.

Proof. Induction on a < w;. Let ky = w. Let k,,; =8 . Let k, =
sup{kp: B < a} when a is a limit. Let k = «,, .
We need to construct a tree

LEMMA 7. There is an infinitely branching tree (T, <) of height w such
that (letting t* = {t' € T: t' > tand level t’ = level t + 1}; the immediate
successors of t) t,t' € T and t # t" implies |t*| # |t'*|.

Proof. Construct the tree on k of Lemma 6 by induction on level. If
level n has been constructed, let 7, be the set of nodes at height less than
n, let S, be the set of nodes at height n, let 4 be the set of cardinals less
than «.

We carry an induction hypothesis that |4 — {|t*|: 1 € T,}| = « and
find an injection 7: S, > 4 — {|t*: 1t € T, }.

Define ¢ € S, to have «(¢)-many immediate successors.

Proof of Theorem 3. Topologize the tree of Lemma 7 by letting a
neighborhood of 1 € T be defined in each F € [t*]~* by U()={seT:
(1) s >t and (2) u € F implies s # u}. T, is a compact subset of T and
so T is o-compact.
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The corollary to Theorem 2 was independently obtained by Peg
Daniels. The author thanks the referee for many useful comments on the
proof of Theorem 2 and the corollary to Theorem 2.
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