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The main result of this paper is the description of certain linear
manifolds T'(A), associated with a symmetric operator, in terms of
certain boundary values of the characteristic function of a unitary
colligation.

1. Introduction. Let & be a Hilbert space and let Sbea m,-Space,
i.e., a Pontryagin space with k negative squares, such that § contains &
and the indefinite inner product on § restricted to § coincides with the
Hilbert inner product on §; we denote this situation by § C §. Let A be
a selfadjoint subspace in §2 with nonempty resolvent set p(4). With 4 we
associate as in [8] a family {T(/)|/ € CU {o0}} of linear manifolds
T(1) c £* defined by

(1.1) {T(1)={{Pf,Pg}I{f,g}EA,g—lfe@}, lec,
A\ T(w0) = {{f, Pg}I{f.8) €4, € $}.

Here P denotes the orthogonal projection from $ onto £. We note that
A N ©? is a symmetric subspace in $2, with adjoint (P@4)¢, ie., the
closure in $2 of the set

P®4 = {{Pf, Pg}|{f. g} €4}.
The following inclusions are obvious:

ANS>c T(l)c P4, le CU{o0},

and also

T(I)c T(I)*, 1€ Cu{w},

with equality when / € p(A4).

Now let S be a symmetric subspace in $2. We consider the selfadjoint
extensions 4 C $? of S, with nonempty resolvent set p( A), where  C $.
The corresponding families { T(/) |/ € C U {0} }, form the class of Straus
extensions of S and T'(/) for / € C\ R was characterized in [8], to which
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we refer for notations and definitions. An important tool in this note is
the characteristic function of a umtary colligation of the form
(@ &, ®; U), where the inner space f{) is a m,-space, the outer spaces are
fixed and given by & = »(S* — ) and & = »(S* — p), the correspond-
ing defect spaces of S, and where U is the restriction of C,(A4), the Cayley
transform of 4, where p € p(A4)\ R. The main result of this paper is the
description of T(A) for real A, ie, A € RU {00}, in terms of certain
boundary values of this characteristic function. Straus [19], [21], [22]
investigated the case where k = 0 and the manifolds involved are single-
valued, i.e., (graphs of) linear operators. His method we could not easily
extend to the case where x > 0 and the manifolds are multivalued.
However, by generalizing the theory of unitary colligations from the case
where the inner space is a Hilbert space (see Brodskii [4]) to the case
where it is a 7 -space, we obtain a method which is simpler than the one
used by Straus (for instance, the two cases A € R and A = oo need not be
treated separately) and, at the same time, works just as well in the more
general situation.

We outline the contents of this paper. In §2 we consider unitary
colligations and their characteristic functions and state results to be used
in the rest of this paper. The proofs will appear in [9]. Such characteristic
functions associated with 7 _-spaces were also considered by Krein and
Langer [12], [13], [14]. The new ingredient in our treatment is the sys-
tematic use of unitary colligations. Closely related results are announced
by Arov and Grossman [2], Azizov [3] and Filimonov [10]. In §3 we give
the above mentioned characterization of T(A), A € R U {o0}. We give a
sufficient condition for T(A), A € RU {0} to be selfadjoint. This in-
cludes a result of Stenger [17]. Also we will characterize the symmetric
linear manifold 4 N $? as the intersection of a finite number of mani-
folds T'(1), thereby sharpening and generalizing a result of Brown [5]. In
[20] Straus presented a characterization of the subspaces {{ f, g} € S*| g
= Af}, A €R, for the case of a densely defined symmetric operator. In
order to apply his previous theorems from [19], [21], he had to introduce
special Straus extensions in an auxiliary Hilbert space. In §4 we show that
such results when S is a symmetric subspace follow directly by making use
of the theory of unitary colligations.

We dedicate this paper to Earl A. Coddington, whose work in the
theory of subspaces and its applications to ordinary differential equations
has been very stimulating for us. The first and last author wish to express
their gratitude to Prof. Coddington for many inspiring ideas and many
years of cooperation.
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2. Unitary colligations. In this section we will collect some state-
ments about unitary colligations in #,_-spaces, which will be proved in [9].
Let & and @ be arbitrary Hilbert spaces and let § be a 7_-space. We shall
use [ , ] as the notation for the scalar or inner product for these and other
spaces; it should be clear from the context to which space it refers. By
S. (&, ®) we denote the class of all functions ® with the following two
properties:

(a) © is defined and meromorphic on D = {z € C||z| < 1}, with
0 € D, the domain of holomorphy of @ in D, and has values in [, &].

(b) The kernel

I-6%(%)6(z)
I

has k negative squares, i.e., for arbitrary choices of n € N, z, € D¢ and
fi€ &,i=1,...,n, the n X n hermitian matrix

([SG(ZH Zj)fi’ f}])i,j=1,..4,n

has at most « and for at least one such choice exactly k negative
eigenvalues.

Let A be a unitary colligation, i.e.,, a quadruple of the form A =
(.@, &, &; U), where

_(T F\.($§ @)

@D v (G H)'(?s)"(@

is unitary, i.e., isometric and surjective. Here (@ ) ((@)) is the orthogonal
direct sum of § and & (®, respectively), T € [§, ), F€[F, §], G €

[$, ®] and H € [§, ®]. According to M. G. Krein the characteristic
function ® = 0, of A is defined by

SG(ng') Z,{E@g,

(2.2) O(z)=H+:6(I - zT)'F, z'ep(T),

see Brodskii [4]. As U is unitary, it is easy to see that T is a contraction
and hence the spectrum 6(7') of T consists of points from D¢, the closure
of D in C, and of at most k points from C\ D¢ which are normal
eigenvalues of T, cf. [11]. Thus ©(z) is defined for z € D, with the
exception of at most k points.

The unitary colligation A is called closely connected if the linear span
of all elements of the form T"Ff or (T *)"G*g withm,n € NU {0},f € &
and g € &, is dense in $, or, equivalently, if there exists no nontrivial
subspace & C § with T(®) = R and T is isometric. In particular, if A is
closely connected, T has no eigenvalues on the unit circle dD. Finally, two
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unitary colligations A = (.s::), X, ®; U) and A" = (&', §, ®; U") are called
unitarily equivalent if there exists a unitary operator Z € [, '] such

that
U = (z 0 )( T F)(z-l 0 )
0 Ig/\G H/\O Iy |

THEOREM 2.1. (i) Let A = (&:_f), &, ®; U) be a unitary colligation where
$ is a m-space. Then ©, € S_(F, ®) for some k' with 0 < k' < k. If A is
closely connected then k' = k.

(i) If ® € S(F, ®) then there exists a unitary colligation A =
(5, &, &; U), where $isa @ -space, such that ® = ©,. The colligation A
can be chosen such that it is closely connected also, in which case it is
uniquely determined up to unitary equivalence, and Dg = {z € C|z7' &
0,(T)}.

It follows from the construction, that if the colligation A is closely
connected, the dimension of the inner space $ is equal to the sum of the
numbers of negative and positive squares of the kernel Sg,.

The next theorem deals with the behaviour of ® € S (g, &) on the
boundary 9D of D. By lim, .,, we denote the nontangential limit as z € D
tends to { € aD.

THEOREM 2.2. Let © € S (&, ©), { € aD, ¢ € . Then the following
statements are equivalent:

(1) there exists an element ¢ € &, such that ||¢|| = ||{¥|| and
lim [\!” ‘P] _[9_(2)4)3 (P] exists,
z5¢ 1- {Z
(i)
im I 10 (2) ¥l exists,
(i1i) there exists a sequence (z,) in D g with z,, > § such that
Iyl — 118(z,) ¥l
ol BRI R

If one of these statements is valid, then @ in (i) is uniquely determined and
¢ = lim, ., 0(2)y.
If ©® = O, where A is a closely connected unitary colligation, then
equivalent to (1), (ii) or (iii) is
(iv)
Fye R(I-¢T),
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and then (iv) implies
¢ =(H+G(I-{T)'F)y.

Let ©® € S (&, @) and let ® = 6, where A is as in Theorem 2.2. As
¢ € 0D is not an eigenvalue of T we may extend the definition of ® to {
by putting

Do(O() ={veFIFy € R(I -(T)},
O(¢)=H+(G(I-¢T)'F onD,(0(¢)).

In general, ©,(0({)) need not be closed, but, of course, if we also have
that { ! € p(T), then D,(O({)) = & and the definition of O({) coincides
with the one in (2.2). Theorem 2.2 shows that this extension of ® to D¢
can be described without making use of the fact that it is a characteristic
function of a colligation: for { € dD we have

24(6()) = (v & 51 lim PALTIOEN oyig

and

®(§)¢=}i§1§ O(z)y, strongly, Y€ Dy(0(2)).

We note that for { € dD, O({) is an isometry on D ,(0({)). We remark
that D (©({)) is in general contained in the set

{¢ € ¥ li;n; O(z)y exists strongly},

cf. [19]. Also we note that if { € 0D and 1/{ € p(T), then O({) is a
unitary mapping from § onto &. In particular, this happens when
dim § < oo, for then 3D < p(T).

THEOREM 2.3 (maximum principle). Let ® € S (¥, ®),y € F, o€ B
and assume that the relation ¢ = O(z)y holds for more than « points
z € Dg. Then we have the inequality ||| < |||l If we have ||p|| = ||{]|, then
¢ = 0(2)Yforallz € D

If A= (9, F, ®; U) is a unitary colligation, where U is of the form"
(2.1), then it is clear that H maps the nullspace »( F) isometrically onto
the nullspace »(G*) with inverse H*. In terms of the characteristic
function ® = ©,, we have that

@(z)],(p)=H|,,(F), z € Dy,
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and hence with y € »(F) and ¢ = Hy, that

(2.3) p=0(2)y, loll=Il¥ll, z€De.
Conversely, if we have (2.3) and A is closely connected if xk > 0, then
Y € v(F),p € v(G*)and ¢ = Hy.

3. Straus extensions. Let $ be a Hilbert space and let S C $2 be a
symmetric subspace. It is well-known that S* can be written as
S* =S+ M, + M;, direct sumin $?,

where /€ C\Rand M, = {{f, g} € $*| g = If}, is the defect subspace
of S at /€ C. We fix p € C\ R and consider a selfadjoint extension
A c $? of S with u € p(A) where § is a Pontryagin space with k negative
squares such that § D, §. The condition p € p(4) is a restriction only if
k > 0. For, if k = 0 § is a Hilbert space and then C\ R C p(4). But if
k > 0 then either p(4) = @ or C\ R C p(A4) with the exception of at
most 2k points, which are normal eigenvalues of 4, and one of these could
coincide with p. We denote the Cayley transform and its inverse at
I € C\ R by C, and F, respectively. Then

C,(4)=C,(S)+ U, C(4)=C(S)+U*, directsumsin $?,
and
(3.1) A=S+F(U)=S+FE(U*), directsumsin 2,

where U is (the graph of) a unitary operator with a matrix representation
of the form (2.1) in which § = § © © is a Pontryagin space with «
negative squares,

F=D(M;)=v(S*—f) and ©=D(M,)=r(S*—p).
Writing the equalities in (3.1) in full detail, we obtain:

i (T + F) )\ [ B - (T + FY)
A_S+{{(¢—(G¢+pr))’(w—u(cwm))}

AT {(@—(T*@w*q:) ko — B(T* + G*9)
9 —(F*p + H*) | \ po — B(F*¢ + H*p)

direct sums in $2.

:pe%,aizeé}

|

A direct consequence of these formulas is a description of 4 N &%
AN$*=S+{{y- Hy,iy—pHY} ¢ €v(F))
=S+{{¢—- H*p,pp — pH*p} |9 € »(G*)}, direct sumsin $2.

<peG,¢<—:£>},
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Using definition (1.1) we obtain from (3.2)
T() = S +{{¥ — (G + H), iy — p(GY + HY)} |
veg.yed,(I-p)y=_~-p)(Th+ F)}
=S+{{o—(F* + H*p),np — B(F*p + H*p)} |
9€6,9€8,(I-p)o=(-pg)(T*%+G%)}, [eC,
(3.3) direct sums in $2,
T(w0) = S +{{¥ ~(G¥ + Hy), ¥ — 1(G} + HY)} |
VEDZV+9,¢y=TYy+ F}
=S+{{9~(F*¢ + H*9),np — B(F*$ + H*p)} |
9€EG,$E€9,p=F* + G*¢}, direct sumsin 2.

Let C,= {/€ C|Im/Imp > 0}, let z: C, > D be the fractional linear
transformation z(/) = (I — p)/(l — p) and put z(c0) = 1. Then (3.3) im-
plies that the Straus extension of S associated with A4 via formula (1.1) can
be written in the following way: for all/ € C, with z(/) € Dg

(34) T(l)=S+{{v—-0(z2)¥, iy —pO(2)¢} |¥ € »(S* - )},

z=z(1),
and
(3.5) T()=S+{{o - 0(z)*p, np — 10(z)*p} |¢ € »(5* — p)},
z =z(1),

direct sums in £2, where ® = 0, is the characteristic function of the
unitary colligation A = (8,8, 6, U ) and belongs to class S,.(%, ®) for
some k’ with 0 < k¥’ < k. We note that A is closely connected if and only
if A is closely connected, i.e., the linear span of all elements of the form
(A — I)7th, h € §,1 € p(A), together with the elements of § is dense in

9. It follows from Theorem 2.1 that if 4 is closely connected, then k' = k.
Theorem 2.1 and (3.3) imply the following result

THEOREM 3.1. Let S be a symmetric subspace in $* and p € C\ R.

() Let {T(I)|1 € CU {}} be a Straus extension of S associated
with a selfadjoint extension A of S in &2 with p € p(A), where § D, is a
w-space. Then there exist uniquely a k' with 0 < k' < k and a function
0 € S, .(v(S* — ), v(S* — n)) such that, for all | € C, with z(l) € D,
T(1) is given by (3.4). Furthermore, for these values of [ (3.5) is valid. If A is
closely connected then k' = k.

(i) If for some ©® € S (v(S* — ), »(S* — p)) and all | € C, with
z(l) € Dy, T(I) C 2 is given by (3.4), then T(l) can be extended to all
I € CU {0} such that {T(l)|l € CU {0}} is a Straus extension of S
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associated with a selfadjoint extension A of S in $2 with p. € p(A), where
$ D, 9 is a n-space and then T(), z(1) € D, is given by (3.5). A and $
can be chosen such that A is closely connected, in which case they are
uniquely determined up to isomorphisms which, when restricted to 9, are
equal to the identity on Q.

This theorem is actually another formulation of Theorem 5.1 of [8]
and shows that the description of Straus extensions given there is one in
terms of characteristic functions of unitary colligations. In [18] Straus
identified the mapping © in (3.4), restricted to the operator case with
k = 0, with a characteristic function (in his sense) of some operator in .
It can be shown that this notion is equivalent to that of a characteristic
function of a colligation associated with this operator.

For A € R U {0} we reformulate (3.3) as follows

(3.6) T(A) = s +{{¢ —(H+$6(I-¢T)'F)y,

B — w(H + (G(1 - {T)'F)y} |
VEF, FYye R(I— {T)}, direct sum in §2,

where { = (A —p)/(A—p)if A€ R and { =1 if A = co. Theorem 2.2
now implies that T(A) for these values of A can be characterized as a
boundary value of 7(/), ! € C,.

THEOREM 3.2. Let S be a symmetric subspace in $%, p € C\ R and let
T(l) C $? be given by (3.4), 1 € C,, z(l) € Dg, where ® € S (»(S* — p),
(S — ). Thenwith{ =(A—p)/(A—pB)ifA€Rand{=1if\ = o

we have

T(A) =S +{{y - 0¥, By — pO() ¥} | ¥ € Do(0(£))},

where

2,(6(6) = (¥ < »(s* - 1) im 1L 18(2)yl

exists },
z5¢ 1—|z| }

and
O()y =lim O(2)y, ¥ < Do(O()).

Theorem 3.1 restricted to the operator case with k = 0 coincides with
the main results of Straus in [19], [21] and [22].
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As T(D)* = T(I), I € p(A), T(]) is a subspace for I € p(A4). How-
ever, for those A € R U {00} which do not belong to p(4) T(A) need not
be closed in general. Sufficient conditions for 7(A) to be closed for all
A€ RU{oo} are that dim»(S* — p) < o0 and dim »(S* — ) < oo.
Another sufficient condition is that dim § < oo, as follows from the
following theorem.

THEOREM 3.3. Let A be a selfadjoint subspace in §* with p(A) # 9,
where © is a m-space, and let $ C_ O be a Hilbert space such that
dim § © § < oo. Let P be the orthogonal projection from & onto &. Then

T(N) = {{Pf,Pg}|{f. 8} €4,8-Afe 9}, AER,
and

T(o) = {{f. Pg}|{f. 8} € 4,f€ $} = P4,

are selfadjoint in °.

Proof. Let p. € p(4) N (C\R) and let A = (§, §, §; U) where § =
$oHand U= C,(A). Then A is a unitary colligation and without loss of
generality we may assume that it is closely connected. Write

o=(g 7)s(3)-(5)

G H/'\$ $

and let ® = ©,. Then, as dim § < oo, for all { € 3D we have that
1/¢ € p(T') and therefore

O()=H+{G(I—-¢T)'F

is unitary for all { € dD. Formula (3.6) with S = {{0,0}} € $* and
& = $ now implies that T(A) is selfadjoint for all A € R U {o0}.

The statement in Theorem 3.3 about 7(c0) coincides with a result of
Stenger [17] in case k = 0 and 4 is a selfadjoint operator. The theorem is
still valid when § is a 7_-subspace of §, 0 < ¥’ < «.

THEOREM 3.4. Let © be a Hilbert space and § be a m-space with
9 cC, $. Let A be a selfadjoint subspace in §2 with p(A) #+ @, which is
closely connected if k > 0. We assume p. € p(A)\ R, so that the correspond-
ing Straus family is represented for all | € C, with z(I) € Dg by

T(1) = {{¢ — 0(2(D)¥, iy — pO(2(1)) ¥} |¥ € $}

for some ©® € S(9, $). If S, C $? is a symmetric subspace in 2, such
that

S, c T(1),
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for more than k points | € C, with z(I) € D, then we have

S, CA4nH

Proof. We assume S, C T(!), forl = I,,...,I ,,in C, with z(/;) € D,
i=1,...,k + 1. Let {a, B} € S|, then

{B - I"‘a’B - ﬁa} = {l[/,@(Z(l,))lP}

for some ¢ € §. The symmetry of S, implies ||8 — pal = |8 — Ra]|, so
that we have

o=0(z([))¥, ol =¥l

for more than « points /; such that z(/;) € ©g. Using Theorem 2.3 and the
formula following (3.2) with § = {{0,0}}, we obtain the desired result.

This result, stated in a slightly different way, can be found in [8]. The
present proof is similar to the one given by McKelvey [16] who showed
this result for the case of a Hilbert space $ and operators S and 4. 4
direct consequence of Theorem 3.4 is

k+1

N (%)
i=1
where /;, i = 1,...,k + 1, are distinct points in C, with z(/;) € Dg. This
can be seen by checking that the set on the right-hand side is symmetric.
A more general result is contained in the following corollary.

AN 2= nT(l), 1<j<xk+1,

COROLLARY. Let © be a Hilbert space and $ be a m-space with
9 C, $. Let A be a selfadjoint subspace in §° with p(A) # @, which is
closely connected if k > 0. We assume p € p(A) \ R, so that the correspond-
ing Straus family is represented by © € S,(9, §). Let I,,...,I ,, € C, be
k + 1 distinct points such that z(l,) € Dg, i=1,....,6 + 1, and let
my,....m.., € C, be x + 1 distinct points such that z(m,) € Dy, i =
1,....,6 + 1. Then

k+1

AN @2 = ﬂ (T(li) N T(mi))’

i=1

Proof. 1t is sufficient to show that the manifold on the right-hand is
symmetric, because then we may apply Theorem 3.4. So we assume

k+1

(e 8) € N (T() O 7)),
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which implies by (3.4) and (3.5) that
{B—pa,B—pa)={¥,0(z(1))¥} = {8(2(m) "0, 9},

for y,p € ©, i =1,...,k + 1. This representation yields ||| = |||, see
Theorem 2.3, or, equivalently, Im(a, 8) = 0, and the proof is complete.

This corollary contains a result of Brown [5]. He considered a densely
defined symmetric operator S in §, and assumed that 4 is a selfadjoint
operator extension of S in the Hilbert space §. In that case he proved

Ang?= N 1()),
IEC\R
or, strictly speaking, the equivalent result
{(red(q)ngiafes}= N 2(10).

leC\R

4. A special extension of a symmetric subspace. Let § be a Hilbert
space and let S C $? be a symmetric subspace. We define the linear
manifolds S(/),/ € C U {0}, by

S(l)y=S+ M, leC,

S(o0) =S +{{0,8} € 5*}.

In this section we will study the boundary behaviour of S(/) as / tends to
A € R U {00}, analogous to the results in Theorem 3.2. First we note
some obvious consequences of the definition. We have S C S(/) C S*,
I € CU {oo}; S(I) is maximal dissipative for / € C*, -S(/) is maximal
dissipative for / € C~, S(I)* = S(/) for /€ C\ R and S(A) is a (not
necessarily closed) symmetric linear manifold for A € R U {o0}. Note
that for A\ € R S(A) is selfadjoint if and only if

R(S—A)=R(S*=A)N(R(S—N))",
while (see [7]) S(o0) is selfadjoint if and only if
D(S) =D(S*) N(D(8))".

The manifold S(o0) plays a role in determining whether an extension of S
is an operator or not, cf. [6] and [22].

(4.1)

THEOREM 4.1. Let S be a symmetric subspace in $* and let p € C\ R,
I € C,. Then we have

G(SIN s 5= 8 =)
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where © € Sy(v(S* — ), v(S* — p)) is the characteristic function of the
unitary operator colligation

(% . @

“\r(S* - §) v(S*—p))

C,—L(S(l‘)) IIv(S"‘—ﬁ)
where P, denotes the orthogonal projection from  onto v(S* — p).

P 0

"

Proof. For a fixed p € C\ R we have for/ € C;
$=R(S—-1)+»(S*—p), directsum.

This decomposition defines a projection of § onto »(S* — p), parallel to
R(S — 1), which we denote by P, ,. Completely analogous to Straus [20]
we obtain

I - _ -
Py =g BT+ (= B)(S() =7,
where P, denotes the orthogonal projection from § onto »(S* — p).
Using the identity

R (=) - 107 = (1= 7RG s

-1
’

we obtain
P, = P,,( - 5___—5(‘7‘(5(”)))_1, leC,.
Note that the identity
G(S(p)) = G(S)ln(s-g) @ Oluiss—uy>

shows that C;(S(p)) is a partial isometry on $. We have for all § €
v(S* — i) that C(S(/)) ¢ € »(S* — p) and

(I=m)¥ - -G (S())¥ € R(s-1).

Using the notion of parallel projection we obtain the desired result.

Applying Schwarz’ lemma to this characteristic function ®, note
0(0) = 0, we obtain the following corollary.

COROLLARY. For p € C\ Randl € C, we have

Iz
|G (S50l < l 1= ﬁ
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If for some y € v(S* — i) and somel € C;

Ic.(s(1)y]= %:—ﬂnxbu,

then ¢ € v(S*) N $*(0) and, consequently,

Gsmy-7=ty, 1ec,

s

LetA € R U {oo}, then it is not difficult to show that C,(S(A)) |, s+
is the boundary value of C,(S(/))|,(sx—p) as / = A, I € C,. In order to
apply Theorem 2.2 we remark that the symmetric subspace S C $? can be
written as an orthogonal sum S; ® H, where S; is a simple closed
symmetric operator in 7, H is a selfadjoint subspace in $3 and §,
Jj = 1,2, are subspaces of § with § = &, & 9,, cf. [15]. This shows that
forle CU {0}

s(1) = s,(1) @ H(I) = 5,(1) @ H,
where
S1(1)=S1-i-{{f,g}ES1*|g=lf}, leC,
Sy(0) = 8, +{{0, g} € Sr}.
In terms of the colligation the above splitting implies
Gi(S(n)) = Gi(Si(n)) ® C,(H),

i.e., a splitting in a unitary operator and a partial isometry, which does not
have a non-trivial unitary part. Hence without loss of generality we
assume S to be simple, which is equivalent to the corresponding unitary
colligation being closely connected.

THEOREM 4.2. Let S be a simple symmetric closed operator in $* and let
S(A), A€ RU {0}, be given by (41). Let p € C\R and let © €
So(v(S* — &), v(S* — ) be as given in Theorem 4.1. Then with { =
A=pg)/(A—p)ifA€Rand{ = 1if A = oo we have

SA)=S+{{v -0, By —pO(5)Y} ¥ € Dy(B())]),

where

D,(0($)) = {¢ ev(S*-p)| 11_1}} Il ;!@)lilzwll exists},

and

O()y = lim O(:)¥, ¥ D(O()).



360 A. DDKSMA, H. LANGER AND H. S. V. DE SNOO

Straus [19], [21] obtained this result by extending the operator to a
selfadjoint operator in a larger Hilbert space and then used his previous
results about Straus extensions [18]. We prove this result by directly
relying on Theorem 2.2. In [20] Straus gives necessary and sufficient
conditions for the operator S in Theorem 4.2 to be densely defined. A
more general version is given in the following theorem.

THEOREM 4.3. Let ¥ and & be Hilbert spaces and let © € Sy(F, ®)
with ©(0) = 0. Then there exists a Hilbert space &, a simple symmetric
closed operator S C $%, p € C\ R, an isometry F from § onto v(S* — R)
and an isometry G from v(S* — 1) onto &, such that

@(é—:—“—:) = G[C(S) o] . 1€ G

The operator S is densely defined if and only if for all y € ¥
e =0l _

z51 1—-|z|

or, equivalently, if for all y € § and for all p € & with ||{|| = || ||

SRR

lim

z51

Proof. According to Theorem 2.1 there exists a closely connected
unitary colligation A = (§, &, &; U), where § is a Hilbert space and U

has the form
(5 6):(3)~ (8]
G 0/"\& &)
where T is a completely non-unitary partial isometry. If we denote the
isometric part of T by V, we have

W(T)=G*6=9(V)", »(T*)=FF=%(V)",

and we have
0(z) = G[ZPSD(V)*(I - ZT)_IIIm(V)J-]F> z€D,

where F and G are isometries from & onto R(V)*, and from ®(V)* onto”
& respectively. For p € C\ R we define S = F,(V'), so that S is a simple
symmetric closed operator in §. Note that

DV)=R(sS-n), RFV)=R(S-p),
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so that

D) =v(S*—p), RIV)'=»(S*-q).
Hence we obtain

T I'm(V)l)= C,-L(S(M)) Ilv(S*—ﬁ)

and hence
l__
9(—[—:.};) G[C )l,(st M)]F IECE'

Next we observe that S is densely defined if and only if S*(0) = {0}. If
S$*(0) = {0}, then S(c0) =S, which by Theorem 4.2 implies that
Do(0O(1)) = {0}. Conversely, if D (0(1)) = {0}, then we have by Theo-
rem 4.2 that S(o0) = §, which implies $*(0) = {0}. The final statement in
our theorem follows from Theorem 2.2.

If we have & = §, then we may write G = F*W, where W is a
unitary extension of V in &, see [12]. Our result resembles a similar
statement in [15]. The special case & = & = C goes back to Livsic, and
can be found in [1].
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