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In an earlier article by Kissin a new class of reflexive algebras
possessing non-inner derivations implemented by bounded operators was
introduced. Its method supplies us with many examples of reflexive
algebras which have non-inner derivations implemented by bounded
operators and for which effective analysis appears to be possible.

0. Introduction. It is generally well-known that all the derivations of
W *-algebras are inner. Christensen [1] and Wagner [5] have proved that
the same is true of nest and quasitriangular algebras. Furthermore,
although Gilfeather, Hopenwasser and Larson [2] have shown that some
CSL-algebras may have non-inner derivations, none of these derivations
are implemented by bounded operators. The present paper extends the
approach adopted in the earlier article [3] and considers a new method of
constructing reflexive operator algebras &/ from two given sets of closed
operators { F,}*}, {G,}7=! and from a given set of reflexive operator
algebras { ;}7_, (n can be a finite number or infinity).

The structure of these algebras and their properties are very interest-
ing. For example, one can show that, if certain conditions are applied to
the operators { F;} and {G,}, then the algebras ./ are semi-simple and
totally symmetric without, however, becoming C*-algebras [4]. These
algebras also possess the following property: if A4 is reversible and belongs
to »7, then A~! also belongs to «/. But in this paper we shall confine our
discussion to two subjects:

(1) Under what conditions on { F;} and {G,} are the algebras .&/
reflexive?
(i1) What is the structure of Lat =/?

Usually, when studing CSL-algebras, one considers the pairs
(#7,Lat &) in the same way as one considers the pairs (&7, &) when
studing W *-algebras. However, it has been suggested [3] that in the
general case of operator algebras &/ it would be more useful to consider
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126 E. V. KISSIN

the triplets (.7, Lat &7, Ad /) where Ad ./ consists of all bounded opera-
tors which generate derivations on /. As well as the obvious connection
between o/ and Ad ./, there is also a close link between Lat.«/ and
Ad #:
(i) All operators A4 in Ad &7 generate one-parameter groups of homeo-
morphisms of Lat &/ (M — exp(tA)M).
(ii) For every subspace M in Lat.</, the set Ad &/,, = { B € Ad &«
BM C M} is a Lie subalgebra of Ad &/ and
&= (1 Ad«,,
MelLlat
if o7 is reflexive. ’

A knowledge of the structure of Ad 7 enables us to obtain a clearer
description of the nature of Lat /. This can be done by establishing the
structure of the orbits in Lat <7 with respect to Ad &

In many cases, however, these triplets degenerate into pairs. For
example, if &7 is a W *-algebra, then Lat =7 is the set of all projections in
&', and Ad o/ =+ /’; as a result the triplet turns into the pair
(&, '), If of is a CSL-algebra, then Ad & = &/ and the triplet becomes
the pair (&7, Lat 2/). But, in the case of an arbitrary operator algebra,
Ad &/ is not usually equal to &7+ /" and Ad &/ does not contain Lat .«/;
in this case, therefore, the triplet does not degenerate into a pair.

One of the simplest classes of this type of algebras is %, [3]. This
class consists of all the reflexive algebras &/ which satisfy the following
conditions:

(a) The quotient Lie algebra Ad 27/%/ is non-trivial;

(b) For every M in Lat &/ the codimension of Ad &7,, in Ad &/ is less

than or equal to 1.

According to these conditions, no CSL- or W *-algebras (except for the
factors B(H) ® 1,) belong to #,. For algebras from Z,, effective analysis
appears to be possible. The structure of the quotient Lie algebra Ad <7/,
for o/ € £, is quite simple and enables us to obtain a description of
Lat 7 in terms of the orbits in Lat &7 with respect to Ad &7 [3].

The new method introduced in the article provides us with a wide
variety of algebras from %,, although not all the algebras obtained by this
method belong to %, (see Example 2). There is reason to think that this
method may in fact provide us with all the algebras from %, which
satisfy some extra conditions on Lat .<7.

Theorem 2.4 investigates the structure of Lat.«/ and Theorem 2.5
considers some sufficient conditions for the algebras .7 to be reflexive.
Section 3 deals with a particular case when all J; = B(H,) and a detailed
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description of Lat./ is obtained in Theorem 3.5. Two examples of
algebras &/ when n = 2 are also considered. In Example 1,
dim(Ad 2Z/2/) = 2 and all operators from Ad &/ which do not belong to
&/ generate non-inner derivations on /. In Example 2, Ad &/ =,
although the structure of Lat &/ is the same as in Example 1.

I would like to thank the referee of this article for his helpful
suggestions, and am grateful to Dr. J. A. Erdos for his useful advice.

1. Preliminaries and notation. Let n be an integer or infinity, let H,,
forl1<i<n (1<i<oo,if n= o), be Hilbert spaces and let 7, be
reflexive operator algebras on H,. (A subalgebra 7 of B(H) is reflexive if
I = Alglat7, where Lat 7 is the set of all closed subspaces invariant
under operators from 7, and AlgLat J is the algebra of all operators in
B(H) which leave every member of Lat.J invariant.) Let F; and G,, for
1 < i < n, be closed operators from H,,, into H,. By D(F;) and D(G))
we shall denote their domains in H, ;. Let F,* and G* be the adjoint
operators from H, into H, , and let D(F;*) and D(G}*) be their domains
in H,. Set D, = H,, Dy = H, (if n < o)

D,,,=D(F)nD(G,) and D} = D(F*)nD(G})
forl1 <i<n.Then D,C H;and D* C H,.

Let us impose some restrictions on the operators { F;} and {G,}.

(R,) D, and D} are dense in H, for all i.

(R,) G; # 0 for all i.

By % we shall denote the set of all sequences T = {T;}7_, such that

(A) T, € 7, T,,,D(G,) € D(G)) and T,,,D(F,) € D(F);

(A T.G;| pioy = GiTis1 | pGy

(A ;) the operators (F.T,,, — T,F)| p F) extend to bounded operators

Ty, from H, into H;

(A ) sup||T}|| < oo and sup||Tg|| < oo.

From (R,) it follows that for every i there only exists one bounded
operator Ty which extends (F.T;., — T,F)| p r)- For every i let %, be a
subalgebra of .7, such that an operator B belongs to %; if and only if
there exists a sequence {7, } € % for which B = T..

Let 5# be the direct sum of all H,. For every sequence T = {7} from
% let AT = (A, ;) be the operator on ¢ such that

(1) A;=T, A,.,=T; andallother 4, =0.
By (A,), AT is bounded. Put
w(H)={AT:Tew),
I(#)={4=(4,) € B(#): A, =0if i >j—1}.
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By o we shall denote the set of operators on J# generated by all sums of
operators from %(5¢) and from I(5¢).

For example, if n = 2, then F and G are closed operators from H,
into H,, /= H, ® H,, J, for i =1, 2, are reflexive subalgebras of
B(H,), I(#) = (0} and
T, T

oA=U(H) = {A = ( o T

) € B(+#): (1) T, 7,,T,D(G) c D(G)
and T,D(F) € D(F); (2) TG | p6y = GT; | poys

(3) TFlD(F) = (FTz - TlF)lb(F)'}

Let 7 be a subalgebra of B(H). Then
Ade/= {B€ B(H):[B,A] =BA — ABe s/ forall A € &/ }.

Operators from Ad &/ generate bounded derivations on . It can be
easily checked that Ad &7 is a Lie algebra and that 7 and its commutant
&/’ are Lie ideals in Ad &.

The rank one operator z — (z, x)y will be denoted by x ® y.

2. Reflexivity of . In this section, in Theorem 2.4 we shall obtain
some information about Lat .o/ and in Theorem 2.5 we shall state some
sufficient conditions for an algebra &7 to be reflexive.

LemMmA 2.1. &7 is an algebra and I(3¢) is a weakly closed ideal in <.

Proof. 1t is obvious that I(5#) is a weakly closed ideal in /. Let
T={T,} and T' = {T/} belong to %. It is easy to see that their linear
combinations also belong to #. Therefore linear combinations of opera-
tors AT and A" belong to #(). Let B = { B,} where B, = T,T/. Then
B satisfies conditions (A;) and (A ,). Since the operators

(FiBi+1 - BiFi)lD(E)
= (FT,s1 — TE)T/ | pry + T(F Ty — T/F,) | pery

extend to the bounded operators T T}, + T;Tg, we get that B satisfies
(A;) and that

(2) By = T;T/,, + TT}.
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From (2) it follows immediately that B satisfies (A ,) and hence B € %.
From simple computations and from (1) and (2) it follows that
ATAT = A% mod I(#).

Therefore & is an algebra and the lemma is proved.

LEMMA 2.2. (i) The operators F, + tG, and F* + (G} are closable for
every complex t.
(ii) For every {T,} € %
(AY) T;*D(F*) € D(F*) and T*D(G}) € D(G);
(A%) GXT* ID(G,-"‘) = iilGi*iD(Gi*);
(A’S) (T3 F* — F*T*)| D(E*) = TFT ID(I-;*)-

Proof..For every complex ¢ the domain of the operator F,* + /G*
is D¥. Since D is dense in H,, there exists the adjoint operator
(F* + 1G*)*. We also have that

(Fi* + t_Gi*)*ID,-u = (E + tGi) |D,+x'

Since (F* + tG*)* is closed, the operator F, + tG; is closable. Similarly
we can prove that the operator F* + ¢G}* is closable. Thus (i) is proved.

From (A,) it follows that for every {T,} € #, for every y € D(G,)
and for every x € D(G})

(3 (Gr.T*x) = (T6,y,x) = (GT,,1y, %) = (3, T,Gx).
Hence for every x € D(G})
(4) T*x e D(Gi*) and GXT* | by = TG D(G*)*

1l

Thus (A%) is proved.
From (A ,) it follows that for every y € D(F,) and every x € D(F*)

(5) (Fy,T*x)=(T,Fy,x)

= (ETos = Tp)yox) = (3. (T0.E2 - T2)x).
Therefore for every x € D(F*)
(6) T*x€D(F*) and T#|pe = (THE* = F*T*) | pen,

Thus (A%) is proved. From (4) and (6) it follows that (A%) holds which
concludes the proof of the lemma.
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DEFINITION. By S/ we shall denote the closure of the operator
F, + G, which is defined on D, and by R} we shall denote the closure
of the operator F* + {G* which is defined on D;*. By D(S}) and by
D(R!}) we shall denote their domains.

It is easy to see that (R))*| ., = F; + ¢G,. Since (R})* is closed, we
get that

(7) S/ (R)*.
Since S is the closure of F;|, and (Rg)* = (F;* | ps)*, it follows that
(8) Sy Fic (Ry)™.

By 5#, we shall denote the null subspace in . For every 0 <i <n
let 5, be the direct sum of H,,..., H,, We shall consider 5, as a
subspace in J#. It is easy to see that ¥, € Lat &/.

For every K € LatJ, let X be the direct sum of 5#,_; and K.
Then X" can be considered as a subspace in S, so that #'C 5, and
X' € Lat /.

Let S be a closed operator from H, , into H,. Put

M= {(i) x€ D(S)and y = Sx}.

Then M is a closed subspace in H; ® H,,; which can be considered as a
closed subspace in . Therefore M; is a closed subspace in 5. By A%
we shall denote the direct sum of 5#,_, and M, and we shall consider
M as a closed subspace in 2.

LeEMMA 2.3. (i) Let S be a closed operator from H, | into H; and let D
be a linear manifold in D(S') such that

1) S is the closure of the oprator S | p;

2Y)TD C D foreveryT € U, ;

3) Tyl p = (STr — T,S) | p for every (T} € 4.
Then A € Lat /.

(i1) Let S be a closed operator from H, into H, , and let D be a linear
manifold in D(S) such that

1) D is dense in H;;

2) S is the closure of the operator S | p;

3) T*D C D forevery T € %,.

4) (T8 = ST*) | p = T¢ | for every (T} € 4.
Then M« € Lat .
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Proof. If an operator A belongs to I( ), then it is easy to see that
At € H#,_, forevery & € A5.
Let T= {T,} € % and A" € #(H#). Then A’¢ € #,_, for every
¢ € 5#,_,. Suppose that ¢ = (¥) € ML Then
At =¢ mod#_,
where

s'=(y

X

’

€EH,®H_ ,, x'=T,;x and y =Ty+ Tx.

4

Let x € D. Then, by 2), x’ € D. Since y = Sx, we get, by 3), that
Y = T,Sx +(ST,,, = T,8)x = ST,,,x.

Hence ¢ € M. Thus, if {¢ = (J) € M} and if x € D, then A"¢ € #L.
But, by 1), the elements £ = (2), where x € D, are dense in M{. Therefore
AT¢ € #L for every ¢ € M which completes the proof of (i).

Now let S be a closed operator from H, into H; ,. We only need
condition 3) for condition 4) to be defined correctly. By 1), S$* is a closed
operator from H,,, into H,. Let x € D and y € D(S*). Then for every
{Tk} & %7 by 4):

(Tr219, %) = (7, T:%,Sx)
= (n.[ST + T2]x) = ([Ti5™ + Tp] y.x).
By 2),
T.1y € D(S*) and  S*To. | pesey = (T:8* + Tyl pese-
Applying (i) to S* we obtain that #%. € Lat «Z. The proof is complete.

THEOREM 2.4. Subspaces M, M (py and M. belong to Lat.o/ for
1 < i < n and for all complex t.

Proof. Put D =D, ;. Then D C D(S}) and it follows from the
definition of S/ that S/ is the closure of S/| . It follows from (A,) that
TD,,, € D,,, forevery T € %, ,. Finally, by (A,), and by (A ;), we get

(ST, — TSi)p,, = (FT,oy — T.F,+ t(GT,,, — T,G) | p,_,

= (FiTi+1 - Tze) ID,-H = TF, | p,

i+1”

Therefore, by Lemma 2.3, A . € Lato/.
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Now put D = D*. By the definition of R}, we have that D € D(R!)
and that the closure of R!|, is R.. By (R;), D is dense in H,. It follows
from Lemma 2.2 (Af) that T*D C D for every T € %,. Thus, conditions
1), 2) and 3) of Lemma 2.3 (ii) hold. By Lemma 2.2 (A,) and (A,),

(T;:lRi - R;T;*) lDf
= (T3, F* — F*T* + {(T%,GF — G*T*)) | pr = T2 | .

Therefore condition 4) of Lemma 2.3(ii) holds and .#/ ryx € Lat .

At last, if S=F, and D = D(F),), then it can be easily seen that
conditions 2) and 3) of Lemma 2.3(i) follows from (A,) and (A,).
Therefore A ; € Lat o/ and this completes the proof of the theorem.

Now we shall prove the main result of the section.

THEOREM 2.5. If for every i, 1 < i < n, either

(@) N,ec D(S/) = D, and the closure of G,| p,  is G,
or

(b) N,ec D(R}) = D}* and the closure of G} | . is G},
then « is reflexive.

Proof. Let B = (B,;) € AlgLat #. Since J#, € Lat &/, we obtain that
B,;=0if i > j. For every K € LatJ; the subspace ¥'=#,_; ® K is
contained in 5, and belongs to Lat./. Since all algebras 7, are

reflexive, we obtain that
(9) B.eJ..

i 1

Now let
#= ()= () e m

where x € D(F,). Considering Mj. as a subspace in 5 we obtain that
Bz = 7z’ mod 5#,_; where

Z,=(y
X

’

) €H,®H,,, X' =B, 141X

’

and y’ = B,y + B;;,x.
Since M} C A} and since, by Theorem 2.4, #}. € Lat o/, we have
that z’ € M;. Therefore

(10) x" = B, 1;.1x € D(F),
y' =B Fx + B, ;;x = Fx’ = FB, ;X
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Thus
(11) Bl gy = (FBii1ii1 — BiF) | pery-
Now let (a) hold for some i and let
z= (Six) € M, wherex € D(S}).
Then repeating the argument above we obtain that

B 11X € D(Sti)’

B, S/x + Bjj1x = S/B;, 111X
If x € D,,,, then x € D(S/) and, by (a),

Bii1inx € N D(Sri) =D,,,.

teC
Therefore
B, (F, + tG))x + B, 1x = (F, + 1G,) B, 1, .

From this and from (11) we immediately obtain that
(12) B"G'fD,.H = GiB'+1i+1|DH_l'

mn-i 1

Let x € D(G,). Since, by (a), the closure of G|, is G;, there exists a

sequence {x,} such that x, € D, ,, {x,} converges to x and {G;x,}

converges to G;x. Then, by (12),
B,.G,x = lim B, ,G;x

1 ¥ i § 1=1""n

= LimG.B; ;1%

1
Since the sequence { B, ,;,,x,} converges to B, ;,,;x and since G, is
closed, we obtain that

(13) B,.1i11* € D(G;) and B,,Gx =GB, ;1X.
Now let (b) hold for some i and let

z = ( (R)* X) where x € D((Ri)"‘).
x
Repeating the same argument as for F, we obtain that

B,y € D((RE)Y),
B, (R)*x + B,,,1x = (R)*B,,1,.1x.
Therefore for every y € D*
(Bxy, (R)*x) = (7, B.,(R!)"x)
= (9 [ Buisr + (R)*Brariar] x) = ([-Bifar + BA1isaRil y, %)

= ([-Bx1 + B a(F* + iGF)] v, x).
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Repeating the same argument as in Lemma 2.2 we obtain from (11) that
BD(E*) ¢ D(F*)
and that
B 1| pgny = (BRiiF* = F*BE) | psny-
Taking this into account and since D* C D( F;*), we obtain

(Bxy. (R)"x) = ([F*B}; + iB}1,11GF] v, x).
From this formula it follows that
By € D(R!) and RBXy = (F*B* + iB*, . .G*)y.
Therefore, by (b), for every y € D*
Bty e N D(R)) =D}

teC
and
(E* + iG*)Bxy = (F*BX + iBX.,,.,.G*)y.
Thus
G'B| D*x = B 1G] D+
Let y € D* and z € D(G,). Then
(G*y, Bii1sa12) = (Bf1,01Gy,2) = (G¥Biy,z) = (¥, B,,G,2).

Since, by (b), the closure of G*| . is G*, we obtain from this formula
that

(13/) B, 141D (G)CD(G) and BllGllD(G) GIBI+1;+1|D(G)

Put T, = B,,. It follows from (9), (10), (11), (13) and (13’) that conditions
(A)), (A) and (A3) hold for the sequence 7' = {7;} and that B, ; = T}.
Since B is bounded, 7T also satisfies condition (A,). Therefore the
sequence T = {T,} belongs to % and B — A" € I(5#). Thus B € &/
which concludes the proof of the theorem.

COROLLARY 2.6. If for every i at least one of the operators F, or G, is
bounded, then  is reflexive.

Proof. We obtain easily that D,,; = D(S,) for every i and for ¢ # 0.
Therefore, by Theorem 2.5(a), «/ is reflexive.
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3. Structure of Lat /. In Lemma 2.3 and Theorem 2.4 we obtained
some information about the structure of Lat /. But further investigation
of its structure in the general case of arbitrary reflexive algebras { 7;} is
very difficult. Therefore in this section we shall consider the simplest case
when all 7, = B(H,). In Lemma 3.1 we shall show that if all %, are
weakly dense in B(H,), then the sufficient conditions of Lemma 2.3 for a
subspace # to belong to Lat./ are also necessary. Imposing some
further restriction (R ;) on the operators { F;} and { G;} we shall obtain
the main result of the section (Theorem 3.5) which describes the structure
of Lat «7.

LemMA 3.1. Let all I, = B(H,) and let all %, be weakly dense in
B(H)). If # € Lat &, then M is either 3 or one of the subspaces #, for
0 < i < n, or there exist an integer 1 < i < n and a closed operator S from
H,, into H; such that

(1) D(S) is densein H, _,;

(2) TD(S) € D(S) foreveryT € U, +;

() Tx | pes) = (ST;y1 — T;S) | p(sy for every sequence {Tx} € U;
and that M = M .

Proof. Let ze M. If z€ H,,, but z &#, then S#,_, C .#, since
I(s#) c /. Therefore if n = oo and if for every i there exists z;, € A
such that z, € £, but z;, & ), then A = .

Suppose that # # . Then there exists an integer i such that
MCH,,, but #CH,. (If n< oo, then it is obvious. If n = oo, then it
follows from the argument above.) Hence 5,_; C .# and we get that
M=3¥_, ® M, where M is a closed subspace in H; ® H, , which is
considered as a subspace in J#.

Suppose that # # 5, ;. Let us show that M N H, = {0}. Let z # 0

belong to M N H,. Then for every T = {T,} € % we have that
Az2=Tz modH#,_, M.

Since #,_, C #, we obtain that Tz € #. Hence Tz € # for every
T € %,. Since %; is weakly dense in B(H,), the set {Tz: T € %,} is dense
in H,. Therefore, since # is closed, we obtain that H; C .#. Hence
H,=H,_, ® H, is contained in . Since A # i, there exists x € A
such that x € H, ,. Using that %, , is weakly dense in B(H,, ;) and
repeating the above argument we obtain that H, , C 4. Hence # = ¢, |

which contradicts the assumption that /# # 5¢, ;. Thus M N H, = {0}.
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Since M 1is closed, there exists a closed operator S from H,_, into H,
such that

M=Mg={z=(f€):xeD(S)gH,Handy:Ser,}.

Therefore A = M.
Now for every T = {T,} € % and for every z = (%) € M{ we have
that A7z = z’ mod J#,_,, where

z’=(y
X

’

), x'=T,x and y =Ty+ Tpx.

’

Since # € Lat o and since 5#,_, C A, we have that z/ € M{. Hence
(14) T..,x € D(S) and T, Sx + Tpx = ST, x

1

for every x € D(S). Thus conditions (2) and (3) of the lemma hold. From
weak density of %,,, in B(H,,,) and from (14) it follows that D(S) is
dense in H, ;. Hence condition (1) holds and the lemma is proved.

From this lemma and from Lemma 2.3 we obtain the following
corollary.

COROLLARY 3.2. Let all I; = B(H,) and let all %, be weakly dense in
B(H,). Then Lat </ consists of 3, of all subspaces 3, for 0 < i <n, and
of all subspaces M’ for 1 < i < n, where S are closed operators from H, |
into H, which satisfy the conditions of Lemma 3.1.

Now let { x;}7; and { y;}/_, be sequences such that

(B) yy€D,CH, (Bf) x;, € D¥C H,,

(By) yi = Gyisrs (BY) x40 = Gx;,

(Bs) sup||yill < o0, sup||F;y;,f| < o0;

(BY) sup||x,|| < oo, sup||F*x,|| < oo.

By X we shall denote the set of sequences {x,} which satisfy
conditions (Bf)—(B5), and by Y we shall denote the set of sequences { y,}
which satisfy conditions (B,)—(B,). It is obvious that X and Y are linear
manifolds.

LEMMA 3.3. Let all ;= B(H,). If {x,} € Xand {y,} € Y, then the
sequence of operators { x; ® y;} belongs to %.

Proof. Put T, = x, ® y,. For every x € H,, by (B,), we have that
Tix = (x,x;)y; € D;.
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Hence condition (A,) holds. By (B,) and by (B¥), for every x € D(G,)
T,.Gx = (Gx,x;)y, = (x,G*x,) G,y
= (%, x,.1)G Y1 = GT, 1.
Hence condition (A ,) holds. Next, for every x € D(F;) we have that
(FT.y — T,F)x = (x, %) Fyi —(Fx, x,)y,
= (%, x4 ) By = (0, o)y = Tix,
where the operator

(15) Tp,=%x;11® Fy . — F*x; ®

is bounded. Hence condition (A ;) holds. Finally, by (B5), (Bf) and (15),

sup||T;|| = sup||x; ® y,|| < supl|lx;||sup] y;[| < oo
and

SuPIITE|l = SUP||xi+1 ® Fy.,— F*;® yi”

< supl|x; 1 [lsupll Fyy; | + supll yiflsup | Fx, | < co.

137

Thus condition (A ,) holds and therefore the sequence { x; ® y,} belongs

to %. The lemma is proved.

DEFINITION. For every k let Y, (X, ) be the set of elements in D, (D})
such that y € Y,(x € X,) if there exists a sequence { y,} € Y ({x,} € X)

for which y = y, (x = x,).

Since X and Y are linear manifolds, X, and Y, are also linear

manifolds.

LemMa 34. () If {x;,}) € X and {y,} €Y and if {T,} € U, then

(T*x,) € Xand (T,y,) € Y.

(1) If all %, are weakly dense in B(H,) and if X # {0} and Y # {0},

then all X; and Y; are dense in H,.

Proof. Let us prove that {T,y;} € Y. Since y, € D,, we have, by (A,),

that 7,y, € D,. Hence (B;) holds. By (A ;) and by (B,),
G(T1y1) = T(G.y,11) = Ty

Thus (B,) holds for {7;y,}. By (A;), by (A,) and by (B,),
sup|| T,y l| < supl|T, sup] y, || < oo
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and

sup|| FT,. 1yl = SuP”(TiFi + TE))’:’H“
< sup|| T; lsup|| F,y;41 | + sup|| Ty [supll y.i 1| < o0.

Hence (B,) holds for {7;y,}. Thus the sequence { 7 y,} satisfies conditions
(B;)—(B;) and therefore {T;y,} € Y. In the same way, using conditions
(A*)—(A%) and (Bf)—(B¥), we obtain that { T;x,} € X, and (i) is proved.
Now suppose that Y # {0}. Then there exists a sequence { y;} € ¥
and the smallest k such that y, # 0. It follows from (B,) that y, # 0 for
i > k.By (i), {T,y,} € Y for every {T,} € %. Since %, are weakly dense
in B(H,) and since y; # 0 for i > k, the linear manifolds Y, are dense in
H, for i > k. Suppose that 1 < k. Then y, , = G,_,y, = 0. Hence, by

(A2)7
Gy 1Ty = T 1G9, = 0,

and therefore T, y, € KerG,_, for every {T,} € %. Since %, is weakly
dense in B(H,), KerG,_, is dense in B(H,). Hence G,_, = 0 which
contradicts (R,). Therefore y,_; # 0 which contradicts the assumption
that 1 < k is the smallest number such that y, # 0. Hence £ = 1 and all
Y, are dense in H,. In the same we obtain that if X # {0}, then all X are
dense in H,, and the lemma is proved.

Let us impose further restrictions on the operators { F;} and {G,}.

(R;) Let all X, and Y, are dense in H,.

Since the operators S, are closed, the operators S/ | v,,, are closable.

DEFINITION. By Q! we shall denote the closed operator (R | x)* and
by P we shall denote the closure of S| .

Then P/ C S/ and, since R, |y C R;, we have that (R})* < Q. Tak-
ing (7) into account we obtain that

(16) P/c S/c(R)" coi

THEOREM 3.5. Let (R;) hold. Then Lat./ consists of H, of all
subspaces ¥, for 0 < i < n, and of all subspaces M5 for 1 < i < n, where
S can be P/, S/, F,, (R.)*, Q! or any closed operator from H, | into H, such
that

(1) P C S C Q! for somet;

(2) TD(S) € D(S) forevery T € U, .



SOME REFLEXIVE OPERATOR ALGEBRAS 139

Proof. It was already proved in Theorem 2.4 that subspaces /' iy
Mgy and A belong to Lat.o/. Repeating the same argument and
using Lemma 2.3 we obtain that the subspaces .#% and .#{, also belong
to Lat /. Now let S be a closed operator which satisfies the conditions of
the theorem. Since Y,,, € D(P/) € D(S), condition (1) of Lemma 3.1
holds. Condition (2) of Lemma 3.1 follows from condition (2) of the
theorem. Since #; belongs to Lat.s/, Q; satisfies condition (3) of
Lemma 3.1. Therefore taking into account that § = Q]| s, e obtain

(TiS + TF,) ID(S) = (TIQ; + TF;)]D(S)

= QT ID(S) = ST 1 ID(S)’
so that condition (3) of Lemma 3.1 holds. Therefore # € Lat /.

Now let S be a closed operator from H,_, into H, which satisfies the
conditions of Lemma 3.1 and let us prove that it satisfies the conditions of
this theorem. It obviously satisfies condition (2) of the theorem.

Let {x,} € X and {y,} € Y. Then, by Lemma 3.3, the operator
X;+1 ©® ;.1 belongs to %, ;. It follows from condition (2) of Lemma 3.1
that for every z € D(S)

(%01 ® y,1)2 = (2, %,41) i1 € D(S).
Since, by condition (1) of Lemma 3.1, D(S) is dense in H,,,, we get that
Y., € D(S). It follows from condition (3) of Lemma 3.1 and from (15)

1

that for every z € D(S)

(xi ®)’i)SZ +(xi+1 ® ‘Fiyi+1)z _(E'*xi ® )’i)Z = S(xi+1 ® yis1)Z.
Hence
(17) (Sz’xi)yi +(Z7xi+1)F;'yi+1 _(Z’ F}*xi)yi = (Z’xi+1)Syi+1

Let z € Y, ;. Then (z, F*x,) = (F;z,x;). Put V=8 — F,. We obtain
from (17) that

(18) (Vz, %)y = (2, %) VVia

By (B,), y; = G,y;+1- Since X,,, is dense in H, ,, we can choose x, ,
such that (z, x,, ;) # 0. Then it follows from (18) that for every y € Y,

Vy =1G,y,
where ¢t = (Vz, x;)/(z, x,,,)- Therefore we obtain that
(19) Sly,, = (F+1G)ly, = Sy,

Thus P/ € S. Using (19) we obtain from (17) that for every z € D(S)
(Sz, X))y, — (Z’ E'*xi)yi = (z, Xis1)1GYii1-
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By (B,), y; = G,y;,, and, by (B}), x,,, = Gx,. Hence
(Sz,x,) —(z, E*x;) = t(2,G*x;).
Therefore (Sz, x;) = (z, R}x;) which means that

X * .
Sc(Riy) =0
Thus P/ € S C Q! and S satisfies condition (1) of this theorem which
completes the proof.

Now suppose that n < oo, that all H, = H, that all G, = I and that
all 4, = B(H). Then

D =D(F), Dr=D(F¥),
all Y,=D=N"!D,,, and all X,=D*=N"_}'D* If D and D* are

dense in H, then % consists of all sequences {7;}7.; such that 7} = ---
= T, = T, where T belongs to

A={TeB(H): (a) TD,C D;

(b) the operators (F,T — TF,)| , . extend to bounded operators TF,}'

From Corollary 2.6 it follows that & is reflexive. We also have that the
operators P/ are the closures of the operators (F, + tI), = F,| , + I,
that S} = F, + ¢I, that R = F* + ¢I and that

0 = ((E* +fI)|D*)* = (Fi*|m)* + 1l

Therefore (R))* = S/, S =F, and it follows from Theorem 3.5 that
Lat &/ consists of #, for i =0,...,n, and of all subspaces ME for
i =1,...,n — 1, where S can be P}, S/, Q! or any closed operator such that

(1) P/ c S c Q! for somet;

(2) TD(S) € D(S) for every T € A.

If the operators { F;} are such that for every i the closure of F, |, is
F. and the closure of F* | ;. is F;*, then

Pi=F +t=S5;
and
Qi=(F*|p)" +t=(F*)" +U=F+d=S5,.

Therefore we obtain the following theorem which was proved in [3]
(Theorem 4.4(i1)) (the theorem was erroneously stated without condition

(b))
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THEOREM 3.6. If (a) D and D* are dense in H; (b) for every i the
closure of F, | , is F; and the closure of F* | p. is F*, then Lat &/ consists of
H, fori=0,...,n, and of all subspaces ./{fg, fori=1,...,n — 1 and for
te .

If the conditions of Theorem 3.6 do not hold, then the structure of
Lat &/ is more complicated, and even in comparatively simple cases it is
difficult to describe it fully.

EXAMPLE. Let F;C F,C --- C F,_,. Then D = D(F)) and D* =
D(F}*,). Hence all P/ = F, + ¢I and all

Qi =(F*|ps)" +tl=(Fx )"+l =F,_, +1
Then for every 1 < k < n — 1 and for every t € C we have that
F+dcF +dcCF,_,+1t.

By property (a) of A, TD(F,) € D(F,) for every T € A. Therefore Lat &/
contains all subspaces J#, for i =0,...,n, and all subspaces #% for
i=1,...,n — 1, where § can be any of the operators F, + ¢/ for 1 <k
< n — 1 and for ¢ € C. The following question arises: do other operators
R exist, apart from F,, k = 2,...,n — 2, such that

(1) FCRCEF,_;;

(2) TD(R) € D(R) for every T € A.
If such operators do not exist, then we have a full description of Lat &7 If
they do exist, then each of them generates a set of subspaces .#%,,, for
i=1,...,n — 1and for t € C, which belong to Lat .&.

Finally, we shall briefly consider two examples of algebras &7 for
n = 2 and provide full descriptions of Lat»/ and of Ad /. The case
when the operator G is the identity was investigated in [3]. In Theorem 4.3
it was shown that Ad &/# /. In Example 2 a closed operator F was
considered such that Ad &/=/+ {N} + { B}, where N and B do not
belong to #7, so that dim(Ad &7/&/) = 2. It was also proved that &/’ =
{I} + {N} so that B generates a non-inner derivation on /. Now we
shall consider an example of a reflexive algebra .« constructed from two
closed operators F and G such that Ad &=+ { N} + { B}. But for
this algebra &/’ = {1}, so that all operators from Ad &/ which do not
belong to &7 generate non-inner derivations on %7.

ExampLE 1. Let H, = H, = H = K ® K, where X is an infinite-di-
mensional Hilbert space and let 5= H & H. Let { e,}>_, be an orthogo-
nal basis in K and let W be an unbounded operator on K such that

We, = ne,,.
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For a complex a set

F=(aW2 Wz) and G=(W2 O).
0 aW 0 W

Then
D(F)=D(W?)® D(W?), D(G)=D(W?)® D(W),

D, = D(F), D¥ = D(G).
Therefore restrictions (R,), (R,) and (R;) on operators F and G hold.
Obviously G is the closure of G|, and F is the closure of F| . Also
(a+1)Ww? w2

P=S=F+1tG=
L 0 (a+ )W

) fort #+ —a

and
S = (0 Wz) P
0 0

We also have that D(S,) = D,, if t # —a and D(S_,) = K & D(W?). So
N,cc D(S,) = D, and, by Theorem 2.5, &/ is reflexive.

We have that
_ a+i)w? 0
R,=F*+1G* = (a ) B fort # —a
W? (a+i)Ww?
and
R :( 0 O)
- w?* 0/

It is easy to check that S, = R} = Q,. Therefore, by Theorem 3.5, Lat &/
consists of %, 5#,, # and of all Mg, fort € C.

Set
0 0 0 0 0 0 0 O
oo 0 0 1o I 0 0
N=lw-> o o 7] @™ B=1y o 1 o
0 w1l 0 0 0O 0 0 O

Then B,N € B(s#) and it is easy to check that [N, B] = NB — BN = N.
It can be proven that Ad &=+ {N} + { B} and that &/’ = {[}, so
that all linear combinations of the operators N and B generate non-inner
derivations on /. One can also show that &/ € R,.
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In the following example we shall consider a reflexive algebra &/
constructed from two closed operators F and G such that Ad &/ = </,
although the structure of Lat 7 is the same as in Example 1.

EXAMPLE 2. Let 5 and W be the same as in Example 1. Set

_(w 0 _(w 0
F (O W) and G (O W‘l)'

Then
D(F)=D(W) e D(W), D(G)=D(W)@eK,
D,=D(F) and D} =D,.

The operators F and G satisfy restrictions (R,), (R,) and (R ;). Repeating
the same argument as in Example 1 we obtain that &7 is reflexive, that
Lat &/ consists of 5%, ¢, 5 and of all M, for t € C, and that G is the
closure of G|, and F is the closure of F|,. It can be proven that
Ad &=/, so that all derivations on & implemented by bounded
operators are inner.
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