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DERIVATIONS ON THE LINE AND
FLOWS ALONG ORBITS

C. J. K. BatTtY

The closure of the derivation AD: CL(R) — C,(R) defined by
(AD)(f) = Af’, where A: R — R is continuous, generates a C,-group
on C,(R) (corresponding to a flow on R) if and only if 1 /A is not locally
integrable on either side of any zero of A or at + co.

If S is a flow on a locally compact, Hausdorff, space X with fixed
point set X2, & is the generator of the induced action on C,(X), A:
X\ X2 — R is continuous, and bounded on sets of low frequency under
S, and ¢t —> A(S,»)7! is not locally integrable on either side of any zero
or at + oo, then the flows along the orbits of S form a flow on X whose
generator acts as Ad;.

1. Introduction. Let S be a flow on a locally compact, Hausdorff,
space X, and §; be the generator of the associated one-parameter group of
*-automorphisms of C,(X), the commutative C*-algebra of continuous
complex-valued functions on X which vanish at infinity. Thus

68f= }i__l;l(l)t—l(fost _f)

whenever the limit exists (pointwise, and hence uniformly) and defines a
function in Cy(X). Let 29 =N, ., 2(8). Then D¢ is a dense *-subal-
gebra of Cy(X). If 8: 9 - Cy(X) is a *-derivation, then there is a
function A: X — R such that

8f=Asf (feay)
[1]. The function A may be chosen arbitrarily on the fixed point set XJ:
XJ={we X: Sw=w forall ¢}
={we X: §;f(w)=0forall fin 22},

and we shall always assume that A = 0 on X_. However, A is uniquely
determined and continuous on X \ X¢, and satisfies a bound of the form

(*) ()| <c(l +r(w)") (0 € X\ X2)

for some constant ¢ > 0, and integer n > 0, where »(w) is the frequency
of w, so

v(w)" =inf{s>0: S0 = w)}
(»(w) = 0if w is aperiodic) (see [4]).
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210 C. J. K. BATTY
We shall therefore study the *-derivations A defined by

Aogf on X\ X

Aog)f =
M)f =10 oa X0

whenever the right-hand side defines a function in Cy(X). Here A:
X\ X? - R is a continuous function. The domain 2(Ad) contains 2
if and only if A satisfies a bound of the form (%), but this will not
necessarily be assumed. Nevertheless, 2(Ad;) is always reasonably large.
Indeed for any w in X\ X¢, € > 0 such that 2ev(w) <1 and F in
C*[-¢,¢€], there exists f in 2 such that f(S,w) = F(¢) (|t] <€), and
suppf € X\ X? [4]. In particular, f € D(AS;).

The properties of interest are whether there is a flow 7 whose
generator 8, extends Adg, and if so whether 7T is unique and whether
D(A8g) (or some smaller subalgebra) is a core for §;. Considering both
functions which vary transversally and along the orbits of S, it is apparent
that T should be a flow along the orbits of § whose speed is given at each
point by the function A. Thus

IS =S, s n»

T

where 7, is a flow on R such that
07,/0t =A_ o7,

where A (5) = A(S,w).
The first stage (§2) therefore is to study flows 7 on R satisfying the
differential equation

AT/3t =AoT

where A: R — R is a continuous function. If 1 /A is not locally integrable
on either side of any zero of A or at + oo, then there is a unique flow T of
this type, each zero of A is a fixed point of T, and C®(R) is a core for §;.
Otherwise, there may be no flows or there may be many flows.

In §3, it is shown that if each A satisfies these conditions of
reciprocal non-integrability, then the flows with speeds A along the
orbits together define a flow on X whose generator extends Adg.

There is some overlap between §2 of this paper, a paper of de
Laubenfels [6], which left several questions incompletely answered, and an
unpublished manuscript of the author’s [2] which has circulated and been
cited quite widely. The results of §3 are more general than those obtained
in [3, 7], where it was assumed that A satisfies a Lipschitz condition

|A(S,0) = M) | <|x(»)
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whenever »(w) < ». Such a condition implies the reciprocal non-integra-
bility conditions.

I am grateful to R. de Laubenfels for his helpful response to my
queries concerning [6], and to D. W. Robinson for his encouragement in
reviving this subject while I was visiting the Australian National Univer-
sity at his invitation.

2. The real line. Sakai [9] has raised the question of characterizing
all flows T on [0, 1] whose generator extends AD, where A € C[0,1] and
D denotes differentiation defined on C'[0, 1]. The motivation for this was
the fact that, for any flow T on [0, 1], there is a homeomorphism & of [0, 1]
such that 8,4, extends AD for some A. Similar remarks apply to flows
on R, where D itself is the generator for the flow of translations, and we
shall work on the whole line, at least initially.

In fact, one can, by choosing 8 appropriately, arrange that 6761
one of the flows T described in the following example [10, p. 26]. But this
fact does not directly help to decide when A D extends to a generator, nor
is it helpful in considering flows on general spaces.

ExaMpLE 2.1. For each open interval I in R, define flows 7; on I as
follows:

b(x —a)e® 9" + a(b — x)
b—x+(x—a)e® "

71(a,b)(x’ t) =

3

Tiaoy(X,1) = a +(x — a)e’,

T-

w.ty( X, 1) =b +(x —b)e™",

Te(x,t)=x+t.
Now let U be an open subset of R, %, be the set of all connected
components of U, and ¢ be a function of %, into {~1,1}. Define
T,(x,e(I)t) (xele %),

(xe R\ U).

Then T/ is a flow on R, and its generator is the closure of A7.D|C?(R),
where

T(x,t) =

e((a,0))(x —a)(b—x) (x€ (a b) € 6y),

e((a, 0))(x — a) (x € (a,0) € €,),
Ny(x) = { e((~00, 5))(b — x) (x € (~o0,b) € %),

e(R) (if U= R),

0 (x e R\ U).
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Let A: R — R be any continuous function, and put
Z(A)={x € R: A(x) =0},
UAN)=R\Z(A) = {x: A(x) # 0}.

For x in U(A), let
a, = sup{y < x: A(y) = 0},

B. = inf{y > x: A(y) = 0}
with the convention that the supremum of the empty set is —co, and the
infimum is + oo.

Let A;"()\) (respectively, 4;(A)) be the set of all points x in Z(A) U
{00} such that for some y < x, A > 0 (respectively, A < 0) in (y, x) and
1/A is integrable over (y, x). Let 4,7(A) (respectively, 4, ())) be the set
of all x in Z(A) U {—o0} such that for some z > x, A > 0 (respectively,
A < 0)in (x, z) and 1 /A is integrable over (x, z). Let

A,(N) =47 (M) uar(X), A4 A)=47A)v4as(X),
AN) =4,(A) U 4,(N).

The first lemma specifies the properties which amount to a flow on R
having speed A. The proof is elementary and will be omitted.

LEMMA 2.2. Let T be a flow on R, and A\: R — R be continuous. The
following are equivalent:
(i) T is differentiable with respect to t, and 0T /3t = Ao T,
(il) CX(R) € D(8;) and 8 extends AD |CP(R),
(i) CR) € 2(8;) and 8, extends AD|CXR),
@iv) If x € UX) and T)x € (a,, B,), then
[y,
x Ay) 7

if x € int Z(X), then T,x = x.

COROLLARY 2.3. Let T be a flow with speed N (so that T satisfies the
conditions of Lemma 2.2) and x € U,. The following are equivalent:
() {T,x: t € R} C U(N),
1) {T,x: t € R} = (a,, B,),
(iii) a, & A,(N) and B, & A,(N).

The following result (for [0, 1] rather than R) was included in [6], but
no proof was given of the core property. The construction of T appeared
earlier in [11].
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THEOREM 2.4. Let A: R = R be a continuous function. The following
are equivalent:

(i) There is a flow T such that 8 is the closure of AD|CZ*(R),

(i) A4(A) = 2.

Proof. (i) = (ii). For y in Z(A), (8,f)(y) = 0 for all f in C*(R), and
hence for all f in 2(8;). It follows that 7,y = y. Thus for x in U(A),
{T,x} c U(N), so, by Corollary 2.3, &, & A,(A) and B, & A,(X). Now if
there exists z in A4,(A), then there exists x in U(A) such that x < z and
1/A is integrable over (x, z) and therefore over (x,8,). But then B €
A,(M), which is a contradiction. Similarly, 4,(A) is empty.

(ii) = (i). For x in U(A), there is a (unique) function ¢ such that
g(x)=0and ¢’ =1/ in (a,, B,); g is injective, and, by assumption, g
maps (e,,B,) onto R. Define T,x = g '(z). For y in Z(M), define
T,y = y. It is easy to verify that T is a flow with speed A.

The open set U(A) may be decomposed into a countable union of
disjoint open intervals (a;, b,). Let 2(\) be the algebra of all functions f
in C!(R) which are constant in some neighborhood of each a; and in some
neighborhood of each b,. Since T fixes each a; and each b;,, Z(A) is
invariant under the dual action of T—the derivative of foT, is
(AeT)(f"oT,)/A on U(A). Since 2(A) is dense in Cy(R), and contained
in 9(8;), it follows that D(A), and therefore CX(R), is a core for 8.
Finally, given f in C}(R) with support in [-N, N, there is a sequence f,
in C?(R) with support in [-N, N]such that ||f = f,|| = O, ||/ — £/l = 0.
Then ||8,f, — 6-f|| = 0. Thus CZ(R) is a core for §;.

If A(\) # @, there may or may not be a flow with speed A, and any
such flow may or may not be unique. Suppose for example that there
exists x in A4;"(A) N A;(A). Then any flow with speed A would reach x
from neighboring points on either side in a finite length of time, but
would have no way of leaving x. So there is no flow with speed A. On the
other hand, if there are sufficiently many zeros of A, a flow 7 may be
delayed at the zeros. These delays are measured by p where

dy
(1 w(Ir(x, 1)) =|t] - VAT
) ( g )= ‘/;T(x,t) IA(»)]
for x in U(A), where I(x,?) is the open interval between x and T7,x.
Since the intervals I(x,?) are disjoint from the fixed point space RY,
there is no restriction on p on RY, and, for standardisation, one may as
well assume that p(R%) = 0. Thus a (positive) measure p, defined on the
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Borel subsets of R, will be said to be a delay measure for T if (1) is
satisfied and p(R%) = 0.

Conversely, it is possible to reconstruct 7 from p by observing that
Tx =yif x <yand

X

[ 50 +mom(xy) =1

This sets up a bijective correspondence between flows with speed A and a
certain class of measures, which have to be identified. A formal statement
will be made in Theorem 2.5, for which the following notation and
terminology is needed. As suggested above, finiteness of the delays and
integrability of 1 /A on one side of a zero of A has to be balanced on the
other side with no change of sign of A.

For a measure p on R, let F;(p) (respectively, F.(p)) be the set of all
x in (—o0, 00] (respectively, [-00, 00)) for which u(y, x) < oo for some
y < x (respectively, p(x, z) < oo for some z > x). Then p will be said to
be a fluid measure for A if p is non-atomic,

(2) AF(A) N F(p) = 4F(N) N E(p),

and p is carried by 4,(A) N F,(p) (= 4,(A) N E(p)). Note that all these
sets are Borel measurable, and that 4,(A)\ 4,(A) etc. are countable and
therefore null for measures p which are non-atomic.

THEOREM 2.5. Let A: R = R be a continuous function. For any fluid
measure p. for N, there is a unique flow T on R with speed N for which p is
a delay measure. Conversely, for any flow T with speed \, there is a unique
delay measure p. for T, and p. is a fluid measure for A.

Proof. For simplicity, we shall write 4,", F,, etc. in place of 4;"(A),
F,(A) etc., and put

Vi={x: AM(x) 20}, V= {x:A(x)<0},
Ut= {x: XM(x) >0}, U = {x: A(x)<0]}.

Let p be a fluid measure. Define an equivalence relation on R by
saying that points x and y with x < y are equivalent if p(x, y) < oo and
1/\ is integrable over (x, y). Let C, be the equivalence class of x; it is
clear that C, is some interval in R. If C, consists of the single point x,
define T,x = x. Otherwise, let a and b be the endpoints of C,, so that
-0 < a < x < b < 0. To define T;x, the first stage is to show that C, is
contained in ¥* or in ¥~ Suppose that there exist y~in C, N U~ and y*
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in C. N U*, and suppose for the sake of argument that y~ < y. Let
y = sup((y,y")NU"), sothat y"<y <y*. Then (y,y") is con-
tained in V*, and y is equivalent to y*,so ye AX N F.By (2), y € 4,
which contradicts the fact that y is the limit of an increasing sequence in
Uu-.

Now suppose for the sake of argument that C, is contained in V™ (the
other case is similar). If a = x, then x € A" N F,=A} N F, so b = x.
Thus we need only consider the case a < x < b. Define

X dy

p(x)=1{ |
fx m-i—,u(x,x’) (x < x’ <b).

By definition of the equivalence relation, and (2),

aéANFDA'NE.
Since (a, x) C V*, it follows that either p(a, x) = co or [FA(y)tdy =
o0, 80 @(a) = —oo. Similarly, ¢(b) = 0. In particular, neither a nor b is
equivalent to x, so C, = (a, b).

Since p is non-atomic, ¢ is continuous, and ¢ is clearly strictly
increasing. Thus for each ¢ in R, there is a unique point 7,x in (a, b) such
that ¢(7,x) = ¢, and ¢t — T,x is a homeomorphism of R onto (a, b) = C,.
It is clear that Tyx = x and (1) holds.

If T is defined on R X R in this way, then for 5,7 > 0 and with the
above notation and assumptions, using (1) with x replaced by 7,x,

T,T;x
P(T) = st = [T s b ume T +
= ¢(T.Tx) — o(Tx) + o(Tx) = (T,Tx),

so T,,,x = T,T,x. Dealing similarly with other cases, it follows that T
satisfies the group property. Since 7, is an order-preserving homeomor-
phism of each C,, it is a homeomorphism of R. It is clear from the
construction that 1 = T)x is continuous, so T is a continuous flow on R.
(For flows on R, it is elementary to establish joint continuity from
separate continuity, but flows on general spaces have the same property
(see {5, Lemma 2.4]) for example).

For x in 4,N F,, C, is non-trivial, so x is not fixed by 7. Thus
A, N F, is disjoint from RY (actually RS = R\ (4, N F))). Since p is
carried by 4, N F,, p is a delay measure. Since u(U) = 0, it follows from
(1) and the construction that Lemma 2.2(iv) is satisfied, so that 7 has
speed A.
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Let S be any flow with speed A for which p is a delay measure. For x
in U*, S,x increases with ¢ for small ¢ by Lemma 2.2(iv), and hence for
all ¢ (since ¢ — S,x is either strictly monotone or constant by the group
property). Now S,x is determined by (1). Similarly S,x is uniquely
determined for x in U~. Any interior point of Z is fixed under S. Thus
S,x is uniquely determined for all x in a dense subset of R, so by
continuity .S is unique.

Now let T be a flow with speed A, let x be a point in R \ R% and C
be the trajectory of x. Now ¢ — T,x is injective, hence strictly monotone,
and suppose for the sake of argument that it is increasing, so C is
contained in ¥* by Lemma 2.2(i). If for some ¢ >0 and s, <s,,
A(T;x) < & whenever s; < t < s,, then by Lemma 2.2(iv),

Ix-Tx< e(sy — 5).
For t; < t,, {y € (T,x,T, x): A(y) < ¢} is a countable union of disjoint
intervals of the type (T, x, T, x), so it follows that its Lebesgue measure is
less than &(z, — ¢,). Hence Z N (T, x, T, x) is (Lebesgue) null.
If A(T,x) > 0 whenever s; < ¢ < 53, then by Lemma 2.2(iv),

’ ’ Tyx d
(3) S, =5 _j; }\()))))

Now U*N(T, x, T, x) is a countable union of disjoint intervals of the form
(T;;x, T,;x) and, taking the sum over these intervals and using the nullity
of Z N (T, x, T, x) gives

T,. dy
4 = [T D
@ W) s o) L5

Define a function F. on C by

(1) - t+ ;%5 (r<0),
o t—[fxx% (t>0).

Then F_ is continuous and (4) shows that F. is increasing. So F.
determines a (positive) non-atomic Lebesgue-Stieltjes measure p. on C,
and p. may be regarded as a measure on R. Furthermore . is indepen-
dent of the choice of x in C, since replacing x by T,x alters F. only by a
constant. For ¢ > 0 it is immediate that

5) [ A‘(”’) + pe(x, Tx) =
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Also (3) shows that any compact subinterval of the open set C N U™, and
hence C N U™ itself, is p~null, so p is carried by C N Z.

Similarly for a non-trivial trajectory C contained in V~, one may
construct a non-atomic measure p ., carried by C N Z, such that

T,x
(6) [ 5y e TR =1 (<o),
There are only countably many non-trivial trajectories C; let p be the sum
of all the corresponding measures p. It is clear that p(RY%) = 0, and (5)
and (6) show that (1) also holds, so p is a delay measure for 7.

Suppose x is a point in Z with non-trivial trajectory C. Assuming
that C is contained in V'™, (5) gives

T
.[ ) ﬂ— + “C(T-lx, Tlx) =2,

T ;x >\(y )
soxe€ A NFNANE.

Now consider a point in R% N 4;". For all sufficiently large x’ < x,
(x’, x) is contained in ¥* and 1/A is integrable over (x’, x). Let x” be
any point of U"N(x’, x). The trajectory C of x” is contained in (-0, x),
SO

p(x',x) = pe(x”,x) = lim po(x”, T,x")

t—o00

. Tx" dy
=lim{t— | —F—)=
,-fi‘o{ I A<y>} *
using (5) in the penultimate step. Thus x & F,.

These and similar arguments show that

(4,nF)u(4,nEF)

CZ\R%c [(4} n4})u(4; n4]) N FNE,.

Thus p is a fluid measure.

Finally, let p’ be any delay measure for 7. Then (1) shows that p’ is
uniquely determined on any open subinterval of a non-trivial trajectory,
and is o-finite on the trajectory. Hence p’ is uniquely determined on each
non-trivial trajectory. Since p’ is carried by the union of the countable set
of non-trivial trajectories, it follows that p’ is unique. This completes the
proof of Theorem 2.5.

From Theorem 2.5, it is a routine matter of measure theory to
determine those A for which there is a (unique) flow with speed A.
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COROLLARY 2.6. There is at least one flow on R with speed \ if and
only if (x,y) N Z(A) is uncountable whenever —co < x <y < oo and
either x € (A (M)\A;/(N)) U (4, (M)\A; (X)) ory € (47 (AM)\4, (D))
U (A7 (A)\ A7 (N)). The flow is unique if and only if A;7(X) = A (M),
A7 (A) = A (M) and A(N) is countable. If there are two distinct flows with
speed A\, then there are uncountably many.

If AD|C>(R) generates a C,-semigroup 7, then the derivation law
implies that 7, is an endomorphism of Cy(R). Since all C,-groups of
*-.automorphisms arise from flows, Theorem 2.5 covers all cases when
AD|C*(R) generates a C,group. A C,-semigroup of endomorphisms
corresponds to a half-flow Ton R = R U { + 0o} which fixes + oo, that
is, a continuous mapping T: R X [0, ©0) = R such that

Iyx=x, TTL,=T,, To = o, T,(-o0) = —c0.

The analogue of Theorem 2.4 follows.

PROPOSITION 2.7. Let A: R — R be continuous. The following are
equivalent:

(1) AD|C>(R) generates a Cy-semigroup on C,(R),

(i) 47(A\) = 47 (\) = 2.

The Cj-semigroup in Proposition 2.7 arises from a half-flow on R (as
opposed to R) if and only if —co & A7 (A) and co & 4,7(A), that is, 1/A
is not integrable at + co.

All the results of this section have analogues for T (= R/Z) and
[0, 1], provided that A4,"(A) etc. are interpreted correctly. For T, regard A:
T — R as a periodic function on R and let 4,"(A) consist of those x in
Z(A) such that for some y <x, A >0 in (y,x) and 1/A is integrable
over (y, x), etc. The statements of Theorems 2.4 and 2.5 and Proposition
2.7 are almost unchanged. For [0,1], let 4,7(A) consist of those x # 0 in
Z(A) such that, for some 0 <y <x, A >01in (y, x) and 1/A is integra-
ble over (y, x); let A,;7(A) consist of those x # 1 in Z(A) such that for
some x <z<1, A<0in (x,z) and 1/A is integrable over (x, z), etc.
The statements of Theorem 2.4 become:

(i) There is a flow T on [0, 1] such that 8, = AD.
(i) A(A) = g; AM0)=A(1) =0.
Theorem 2.5 is valid, but only for functions satisfying A(0) = A(1) = 0.
The conditions of Proposition 2.7 are:

(i) AD generates a C,-semigroup on C[0, 1],

(i) A7 (AN)=A4;(A)=2; M0 >0, A(D) <0O.
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This answers a question raised in [6]. In particular, Theorem 4 of [6]
remains valid if the assumption that the derivation is well-behaved is
dropped, provided that the assertion that p(0) = p(1) = 0 is replaced by
the conditions p(0) > 0, p(1) < 0. Some of the claims made in [6] about
the example on p. 77 are incorrect, and the true position is set out below.
(In comparing this paper with [6], the reader should bear in mind that
there is a difference in sign conventions in defining generators.)

ExamPLE 2.8 [6, p. 77]. Consider A: [0,1] = R defined by A(x) =
—2x1/2, Then
A; (M) ={0}, AF(A)=4;,(A)=4/(\)= 2.
Thus condition (ii) is satisfied, and AD is the generator of the half-flow
T~, where

T x = (max(x/? — 1,0)).
On the other hand, —A does not satisfy (ii) because -A(1) <0 and
0 € A} (-)). The half-flow T* defined by
T x = (min(x/2 + t,l))2
satisfies
dpf (x) = -A(x)f"(x)
for 0 < x < 1, but behaves differently at both endpoints.

3. General spaces. Let S be a flow on a locally compact Hausdorff
space X, with fixed point set X2, and let \: X\ X2 — R be a continuous
function. The problem now is to determine conditions under which there
is a flow with “speed A relative to S, and how such flows behave at the
points of X. The first result interprets the relative speed in two different,
but equivalent, ways.

PROPOSITION 3.1. Let T be a flow on X, and X: X\ XJ > R be a
continuous function. The following are equivalent:
(i) For w € int X?, T,w = @; for © € X\ X2, there is a function T,:
R — R such that T,w = S, ,w (¢ € R) and 7,(0) = A(w),
(i) If f € 2(8s) and g € Cy( X) are such that
_ Aogf on X\ Xg
0 on X3,

then f € 2(6;) and 8,f = g.
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Proof. (i) = (ii). This is a standard argument, but the details are
included for completeness. For w in X\ Xg,

iy LD s, 1

= 7,(0)8sf(w) = g(w).

TN

Replacing w by T,w, it follows that
[T 218 _ o) =3 [ { 1T 0) - s(0) s

< %fot |g(Tw) — g(w)|ds < sup ||g°T, — g].

Isl=<le|

By continuity, this estimate remains valid for « in X\ X§, while it is
trivially valid for « in int XJ. Thus

[t (fT,—f)—g| < sup llgeT, — gl >0 asz— 0.

NESH

Thus f € 9(8;), and 8,f = g.

(i) = (i). Firstly, consider & in X\ X?. The argument used in [3] to
show that {T,w} C {S,w} is still valid, so there is a function 7, such that
T, = S, (yw- Furthermore, 7, is uniquely determined modulo the S-period
of w, and one may (uniquely) arrange that 7, is continuous and 7_(0) = 0.
It was shown in [4, Theorem 2.1] that there exists f in 2(dg) such that
f(S.w) = s for all small |s|, and suppf C X\ X?. It follows from (ii) that
f€ 2(6;) and

(1)

Mo) = (8:f)(w) = lim 1 = +2(0)

Next, for any function & in Cy( X) with supp 4 contained in int XJ, it
follows from (ii) that h € 2(8;) and 8k = 0. The local nature of 8,
ensures that each point of int X is fixed by T.

REMARK. The class 2 of functions f which satisfy condition (ii) of
Proposition 3.1 is a *-subalgebra of 2(§s), but it may not separate the
points of Xg. Furthermore the flow T may not fix every point of X¢ (so
that 7 may not be a “fluctuation” of S in the sense of [2]). For example,
let X=R2 S(x,y)=(x+1,y), T(x,y)=(x+1ty). Here XJ=
R X {0} and A(x, y) = 1/y (y # 0), while @ fails to separate any points
of X2.
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A sufficient condition that T fixes each point of X¢ is condition (i) in
Theorem 3.2 below (see [3] and the proof of Theorem 3.2). Sufficient
conditions that & is a core for §, (in particular, & separates the points of
X, and T fixes XJ) were given in [3, 7, 8].

THEOREM 3.2. Let \: X\ X be a continuous function, and suppose

that
(i) For any compact set K C X, there exists ¢ > 0 such that \ is

bounded on { @ € K\ XJ: v(w) < &},

(i) If AMw) =0 for some w in X\ Xy, then t —» A(S,w)™" is not
integrable over (0, a) or over (-a,0) for any a > 0,

(iii) For any w in X\ X2, t = A(S,w)™" is not integrable over (0, o)
or over (—00,0). ,

Then there is a unique flow T on X with speed N relative to S (so that
the conditions of Proposition 3.1 are valid).

Proof. For @ in X\ X2, let A (#) = A(S,w). It follows from assump-
tions (il) and (iii) and Theorem 2.5 that there is a unique flow 6, on R
with speed A . This flow is characterised by the properties:

~ x is a fixed point of 6, = A(S,w) =0,

9, (x,
[ B it A(Sw) 0.

- A(Sw) T
The uniqueness of the flows, together with the relation
AS,(«:(x) = }\w('x + t)’

ensures that the flows 8, are coherent in the sense that
Os.,(x,5) +t=10,(x +1,5).

Let 7,(¢) = 6,(0,¢) and

S. e (0 X\XQ),
Low=
w (o e XSO).

Then T satisfies the group property 7.7, = T,_,.

In order to show that T is a flow, it remains to show that (w, 7) = T,w
is jointly continuous. Let (w,) and (¢,) be nets such that w, - w, z, > ¢.
By passing to subnets and replacing A by -A, it suffices to assume that
t, = 0 and to consider six cases:

1. w, € X3

2. 0, € X\ X, Mw,) = 0;
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3. w, € X\ XJ, we X\ XJ, Mwy) >0, Aw)>0, T.(t) = T,
where 0 < 7 < o0;

4. 0, € X\ X2, w € X\ X2, Mw,) >0, \M(w) =0;

5.0,€ X\ X2, 0 € X2, Mw,) >0, v(w,) > », where » > 0;

6. w, € X\ X2, w € X2, AMw,) > 0, »(w,) = 0.

Cases 1 and 2. Since X is closed and A is continuous, either w € X
or A(w) = 0. Thus

TLw,=w, 2> w=To.

Case 3. Firstly, suppose that 7 > 7 _(¢). Then, by construction of 7,
there exists § such that 7,(¢) < 8 <7, A(S,w) > 0for 0 < s < 0. Since S
is jointly continuous, A(Sw,)™" = A(S,w)™' as a — co uniformly for
0 < s < 8, and therefore

/0 ds N fﬂ ds
o A(Sw,) Yo A(Sw)
But for large a, 7,() <8 < 7,(t,), s0
0 ds 0 ds
t, > > ¢
> J, Xsey 7 h Mo
This is a contradiction, so it follows that = < 7 (¢). For all sufficiently

small §” > 7, A(S,w) > 0 for 0 < s < 6’, and the same argument as above
shows that

tsfe/ ds _)fa' ds .
Tl MSel) S A(Sw)
Hence 6’ > 7(t). Since 8’ >  is arbitrarily small, it follows that = >
7,(2). Thus 7 = 7,(¢) and
L@y =S, ()% = S,w =8, yo=Tw.

T, Tw

Case 4. By assumption (ii), for any 7 > 0, [ [A(S,w)|™* ds = o0, and
therefore

g ds
]im —_—_——
e—0+ -/(; A(Sw)| + ¢ *

Since (JA(S,w,)| + &) = (JA(S,w)| + €)~* uniformly on (0, 3), it follows
that

g ds
lim lm [ ——2 =
e—0+ a—»oofo |A(sta)| + & *
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It follows that

1 ds
lim = 00
i | s
and therefore 7,(7,) < n for large a. Thus 7, (z,) = 0, so
T, 0, = S

e ™ © = To.

Case 5. For each q,
7.(1.) = mp(e,)” +86,
where m is an integer, 0 < 0, < »(w,)”" < »™'. Passing to a subnet, one
may assume that §, — 6. Then

TLo,= Sm,,(ta)“’a = Spw, = S0 = w.

o

Case 6. Let K be any compact neighbourhood of w, and let
=inf{s > 0: S,w, & K }.
Supose that 7, = 7 < 0. Then S, w, = S,w = @, 50 @ € X\ K. This is a
contradiction. It follows (on passing to subnets) that 7, — oo.

By assumption (i), there is a constant ¢ such that |A(Sw,)| <c
whenever 0 < s < 7,, so that, for any > 0,

f" ds .0
0 l}\( a)l ¢

for all sufficiently large a. In particular, 7,(z,) < ct,. Passing to a subnet,
one may assume that 7,(7,) = 7 < co. Then

T,uwa > So=0w=To.
It is clear that T satisfies condition (i) of Proposition 3.1, and it
remains only to establish uniqueness. If T is any flow with relative speed
A, then for » in X\ X7, there is a unique continuous function #: R — R

such that %(0) =0 and T,w = §; (. Furthermore 7/(0) = A(w). The
uniqueness ensures that

:fw(s + t) = fw(s) + iS.; (,)w(t)
and therefore there is a flow 8, on R given by
éw(xr t) = fow(t) + x.
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Now 8, has speed A, and it follows from the uniqueness of flows with
speed A that 8 = 6. In particular

7(t)=0,0,1)=6,0,¢) = 7,(2),
so Tw=Tw(w € X\ XJ). )
For w € int X¢, T,w = @ = T,w. Thus 7; and 7, coincide on a dense
subset of X, and therefore 7 = T.

REMARK. Under the assumptions of Theorem 3.2, the algebra 2
considered in the remark following Proposition 3.1 equals 2(85) N 2(6;),
but it is still unclear whether it is automatically a core for §,. Let

Dy={f€2: f(S.0) € 2()\,)forall w € X\ XJ,
f has compact support},
where P(A ) is as defined in the proof of Theorem 2.4. Then %, is a

T-invariant *-subalgebra of 2, but it is not clear that &, separates the
points of X. If so, then & is a core for §.

ExampLE 3.3. In Theorem 3.2, it is not possible to replace (ii) and (iii)
by the weaker assumption
(iii)’ For each w in X\ XJ, there is a unique flow on R with speed A,
(where A (2) = A(S,w)),
even if (i) is replaced by the stronger assumption that A is bounded. For
example, let

X=Rx[0,1], S(x,y)=(x+1,y)

x[2 o
1+(1/y + 1)1 = |x) " |x? (Ixl= 1,y #0),
>\(-x’y) = 1,2
M (Ix|<1, y=0),
! (Ix]=1).
Then

2 dx 1 x
[ 3eo =2/ Miy) (y#0).

Since Z()\(O,y)) = A1+(>\(o,y)) = A:r(k(o,y)) = {0} and 4, (A, ,) =
A7 (A, ,y) = 9, there is a unique measure p satisfying the conditions of
Theorem 2.5 for A = A, ), namely p = 0. The corresponding flow 6, on

R satisfies
0 (s,t)=s+7,(t) where ny(t) dx___ .
e d 0 }\(x’ y)
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If T is any flow on R satisfying the conditions of Proposition 3.1, then T
induces flows 6, on R such that

T,(x,y) = (6,(x.1), ),

and §, has speed A q ,,. Hence 8, = 6, so

7,00,y) = (7,3),») =1, y) (y#0)
T3(O’0) = (70(3)’0) = (2’0)

This contradicts the continuity of 7.
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