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A class of sequences defined by nonlinear recurrences involving the
greatest integer function is studied, a typical member of the class being

a(0) =1, a(n)=a(ln/2]) +a(ln/3]) +a(ln/6]) forn=>1.
For this sequence, it is shown that lima(n)/n as n — oo exists and
equals 12 /(log 432). More generally, for any sequence defined by

s

a(0)=1, a(n)=Y ra(|n/m,]) forn=>1,

i=1

where the 7, > 0 and the m, are integers > 2, the asymptotic behavior of
a(n) is determined.

1. Introduction. Rawsthorne [R] recently asked whether the limit
a(n)/n exists for the sequence a(n) defined by

(11) a0 =1, a(n)=a(ln/2]) +a(ln/3]) +a(ln/6]), n=1,

where | x| denotes the greatest integer < x. If the limit exists, Rawsthorne
also asked for its value. We have answered these questions [EHOPR]: the
limit exists and equals 12 /log432, where, as in the rest of the paper, log
denotes the natural logarithm. Our method leads to a more general result
about such recursively defined sequences.

Let a(n) be the sequence defined by

(1.2) a0)=1, a(n)= glria([n/mi]), n1,

where r; > 0 and the m,’s are integers > 2. Let 7 be the (unique) solution
to

(1.3) gl

We distinguish two cases: if there is an integer d and integers u; such that
m; = d", we are in the lattice case, otherwise we are in the ordinary case.
In the ordinary case, lima(n)/n" exists; in the lattice case, lim a(n)/n’
does not exist, but lim, _, , a(d*)/d*" exists. The limit in either case is

i
-=1.
m;
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readily computable. The proof involves transforming (1.2) into a renewal
equation and using the standard limit theorems for that equation. For a
precise statement of our results, see Theorem 2.14 below.

We are interested also in the rapidity of convergence. We prove that
(a(n) — a(n — 1))/n" is greater than y - (logn)~“~Y/2 for some y > 0
and infinitely many n. In Rawsthorne’s original sequence (1.1), this result
can be strengthened (see Theorem 3.46). For n = 432/,

(1.4) a(n) — a(n — 1) ~ ( 6 )1/2 ast — o0,

n St
and this is, asymptotically, an upper bound. The numbers J(m,r):=
a(2™3") — a(2™3" — 1) satisfy the so-called “square” functional equation;
we use the work of Stanton and Cowan and others to help in the
asymptotic analysis.
A somewhat different functional equation was studied by Erdos [E1],
[E2]: for 2 < a, < a, < --- a sequence of integers, let

F(0)=0, F(1) =1,
0
F(n)=Y, F(|n/a,])+1 forn>1.
k=1
Both the methods and results are different from ours.

2. An application of renewal theory. We fix the following notation.
Let integers m,, 2 < m, < M, and positive real numbers r, be given.
Define the sequence a(n) recursively by

s

(2.1) a(0)=1, a(n)= Y ra(|ln/m;]), n=1.

For x > 0 define
(2.2) A(x) = a(]x]).

Since [x/mn] = [[x/m]/n] for positive integers m and n, we may de-
fine A(x) directly and, in effect, extend the sequence to a function on the
positive reals:

(23) A(x)=1 for0<x<1, A(x)= zs: rA(x/m;) forx > 1.

i=1
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Note that the function ¢(u) = Xr,/m} decreases strictly on the real line
from oo to 0 so there exists a unique 7 > 0 satisfying

(2.4) o(r)= Y 2t :zlp,:l.

i=1 M
Now let
(2.5) f(x) = A(x)/x"
so that we may rewrite (2.3) as
(26) f(x)=x7", 0<x<1; f(x)=) rin(L) for x > 1.
i=1 M \ M

Since p, > 0 and X p, =1, f(x) is a convex combination of previous
values of f for x > 1. It is thus unsurprising that f tends to a limit.

It is now appropriate to review some well-known (to probabilists)
results about the renewal equation. We paraphrase Feller [F, v. 2, pp.
358-362]. Suppose h is a Riemann integrable function with compact
support and F{dy} is a probability measure with finite expectation and
suppose g satisfies the renewal equation

2.7) g(u) =h(u)+ foug(u—v)F{dv}, u>0.

If the mass of F{dv} is concentrated on a set of the form {0, A,2A,...},
we are in the lattice case; otherwise we are in the ordinary case. The
following limit theorem for g is due to Erdos, Feller, and Pollard in the
lattice case and Blackwell in the ordinary case.

Renewal Limit Theorem (see [F, v. 2, p. 362]).
(i) In the ordinary case.

i J& h(u) du
29 A e
(ii) In the lattice case, let \ be chosen to be maximal; then g does not
converge, but for any fixed x € [0, \),
AXP_ o h(x + k)
Joo yF{ay}

where the limit in (2.9) is taken over integral n.

(2.9) lim g(x+ nA) =

We now return to our problem. Let

(2.10) g(u) = f(e").
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Then (2.6) can be rewritten as
e ", u<o;

(2.11) 8 =1 % pglu—logm), uxo.

i=1

Let F{dv} be the probability measure with mass p, at logm,. Then g
satisfies an equation of the form (2.7), where 4 measures the discrepancy
between the full recurrence of (2.11) and that portion provided by the
convolution in (2.7). This discrepancy arises from a negative argument of
g. Hence,

Q1) A= T petm— ¥ pmie,

u<logm, u<log m,

and so
(2.13) h(u) = X pimie™ "X 0105 m(1)-
i=1

Having now transformed (1.2) into a renewal equation we must decide
which case we are in. The mass of F is concentrated at {logm,}, which is
a subset of {0,A,2A,...} for some A (the lattice case) if and only if
m; = d* for some integers d and u,. Alternatively, we are in the ordinary
case if and only if (log m,) /(log m ) is irrational for some (m;, m ).

We now combine these discussions into a theorem.

THEOREM 2.14. Let a(n) be defined by (2.1) and let T be defined as
above.
(1) If T = 0 thena(n) = 1.
(i) If 7+ 0 and (logm,)/(logm,) is irrational for some (m;,m))
(the ordinary case), then
a(n) _ X pi(mj—1)/7

(2.15) nlinc}o n’ X, p;logm,

(iii) If = # 0 and m, = d*, where d and the u,’s are integers and d is
maximal (the lattice case), then
a(d) _ Tip(mi—1) d'logd

G190 T T Ty peem, -1

Proof. (i) If 7 =0, then X, = 1 and it is easy to see from (2.1) that
a(n) =1 by induction. As u” — 1 = rlogu for 7 near 0, this result is
consistent with the limiting behavior in (2.15) and (2.16).
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(i1) From our definitions,

A1) sy -

(2.17) pr g(logn),

so that information about the limiting behavior of g(u) from the Renewal
Limit Theorem can be translated into information about a(n)/n". In
either the ordinary or lattice case,

(2.18) [ vF(@) = X plogm,

i=1
In the ordinary case, as 7 # 0, we have by (2.13),

(2.19) fow h(u) du = :‘: fo“’g'" e~ du

S
= Z pim'i’(l - m;T)/T-
i=1

Equation (2.15) follows from the foregoing discussion, (2.8), (2.18), and
(2.19).
(iii) The period of the lattice is A = log d, and taking x = 0 in (2.9),

(2200 Y h(kA)= Y h(klogd)

k=0 k=0

= Z 2 pim:em‘rklong[O,logm,-)(klogd) .

k=0\i=1
Since m; = d ",
(2.21) Y e HIBy b togmy (K log d)
k=0

Z -tklogd _ _ d-—u,-f)/(l _ d—-r)

= (1 - m;7)d"/(d" - 1).

We now exchange the order of summation in (2.20) to obtain

(2.22) Y h(kA) = ¥ pmi(1 = m;7)d"/(d" = 1),
k=0 i=1
and (2.16) follows from (2.18), (2.22), and (2.9). O

In the lattice case, it is easy to show by induction that the sequence
a(n) is constant on intervals of the form [d*, d**! — 1]. For any rational
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x=j/d", d'<x<d'"", a(xd*) is defined for k > r, and a(xd*) =
a(d'~"*%). Using (2.16), one can compute lim a(d*x)/(d*x)"; we omit
the details.

As a check of Theorem 2.14, consider the following simple lattice
example with s = 1:

(2.23) a(0)=1; a(n) =d%(|n/d|), n=1.

It is easy to see in this case that 1 = a and a(d*) = d**D* 5o that
a(d*)/d*" = d°®. Substituting p, =1, m;, =d, and 7= a into (2.16)
returns d*, as predicted.

It is perhaps worth mentioning that the existence of lim, _,  f(n) can
be proved without recourse to the Renewal Limit Theorem. Here is a
sketch of the argument, without proofs. First, from (2.6), a > f(x) > 8
for x € [y, My], where y > 1 and M > max m, implies that « > f(x) > B
for all x > y. Thus L = limf(x) and / = limf(x) are positive and finite.
Pick sequences 7, > co and s, = oo with f(r,) > L, f(s,) - [ and
r, < s, < Mr,. The next step in the argument is proved as in §3; a(n) #
a(n — 1) if and only if n = mp* - -- m¢ for some integers e; and 7 # 0,
a(ny=a(n—-1) if >0 and a(n)<a(n—1) if 7 <0. There is a
dichotomy depending on which case arises. In the lattice case, a(n) is
constant on intervals [d¥, d**! — 1] and the substitutions m = d*, b(k)
= a(d*) show that {b(k)} satisfies a linear difference equation for k
sufficiently large. By the standard method for solving linear difference
equations (see [T, Ch. 4], for example) a(d*) = b(k) = ¢ - B* + o(B%) =
cd*™ + o(d*") for appropriate constants. (See the discussion following
Corollary 3.12 for more details.)

In the ordinary case, suppose (logm,)/(logm;) & Q and let m = m;,
and m = m,. For any & > 0 there exists E so that every x in [M' M]is
contained in an interval [w, w(1 + &)}, where w = m*“ /m* and e, and e,
are positive integers < E. Let W be any finite set of integers of the form
mit - -- m”%; for k sufficiently large and any w € W, f(r,/w) is close to
L and f(s,/w) is close to /. (This is proved by induction; basically, if a
weighted average like (2.6) is close to the maximum then its components
can’t be too far off.) Now suppose 7 > 0 and L >/ and let x = 5, /r,,
where k is sufficiently large; let w = m®/m® be chosen so that x €
[w,w(l + ¢)]. Then r’ = r,/m* is a little less than s’ = 5,/m*, but f(r’)
is close to L and f(s’) isclose to /. As 7 > 0, a(s’) = a(r’), and this gives
a contradiction to L > [. (More precisely, ¢ is chosen so that L — ¢ >
(1 + &)"(] + £).) A similar contradiction can be wrought when p < 0. In
either case, L =/ so the limit exists. This method, although self-con-
tained, gives no hint about the actual value of the limit.
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3. Rates of convergence. We retain the notation of the last section
and continue to assume that a(r) is defined by (2.1). Let
(3.1) J(n)=a(n)—a(n—-1)
denote the jump of the sequence at n. In this section we derive closed
forms for a(n) and J(n) and use them to give an indication of the rate
of convergence of f. Ideally, one would discuss the behavior of
|f(x) — lim f(x)|- As a step in that direction, we consider the “jumps” of
f. It is clear from (2.2) and (2.5) that f is everywhere continuous from the
right and f is continuous from the left except possibly at certain integers.
Let

(n) —a(n-1) _ J(n)

n‘f T *

(3:2) 2(n) = f(n) = lim f(n—e) = p

We shall show in this section that, in the ordinary case, |z(n)|>
c(logn) =172 for some ¢ > 0 and infinitely many integers n. In
Rawsthorne’s original problem, (1.1), the exponent of logn may be
improved from -1 to -1 /2.

In finding a closed form for a(n), the following notation is useful. Let
i=(i,...,i), 1 21, bean [-tuple of integers, 1 <i <. Let I(i) be the
associated interval:

(3.3) 1) =[m;---m, ,...om -m, _m

! -y "yl

(If /=1 in (3.3), take the left-hand endpoint to be 1.) As an inverse
function to I, for x > 1, let

(3.4) B(x) = {i: x € I(i)}.
THEOREM 3.5. For x > 1.
(3.6) A(x) = . %:( )ri1 e

Proof. Recall the basic recurrence (2.3):

A(x) = X rA{x/m,).

1=1
Consider the infinite tree with root “x” and valence s so that each node
“y” on the kth level is connected to the nodes “y/m,”, 1 < i < s on the
(k + 1)st level. We use this tree to iterate the recurrence (2.3) until the
argument of A goes below 1 for the first time. In this way, the path from

x to x/m,,..., to x/(m; ---m,) acquires the coefficient r, --- r,.
Since i = (i}, ..., ;) isin B(x) by construction and A(x/T1m,) = 1, (3.6)
is established. O

We now derive a recurrence for J(n) = a(n) — a(n — 1) and find a
closed form for J(n).
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THEOREM 3.7.
(1)
J(n) =Y rJ(n/m,).
m,|n
(ii)
al (e 4+ --- +e )' .
=(.—eri_l) el--ZeS— 161!...es! 1 .rss.

Proof. (1) We have from (2.3)

(3.8) z_‘: ( (m,)'A(nn;,l))'

If m,+n then |n/m,| =|(n—1)/m,| so the ith term is zero; if m,|n,
then by definition, the ith termis r,J(n/m,).

(ii) Observe that J(1) = a(1) —a(0) = X;_,r, — 1. Then, consider
each representation of n as a product m{* --- m%. The formula (ii)
follows by induction from (i) and the well-known multinomial recurrence:

(e, + . +e _ ¥ - +e, —1)' ' -
€0 e>1 el (3_1)'

We note that (ii) can also be derived from Theorem 3.5 and a
consideration of B(n) — B(n — 1) and B(n — 1) — B(n). If we consider

the representations n = my* --- m{ as formally distinct, we may let

N

Jj(fi»---, f,) denote that portion of the jump J(n) contributed by the
representation n = m{t --- m%. In view of Theorem 3.7 we have the
following recurrences and generating function.

jlen...,e)) =Y rjle,...,e,—1,...,e,),
(3.9)

(e, + -+ +e, )
el el

(3.10) j(ey,...,e,) = (Z r,— 1)
(3.11) Fzy,..z)=Y jle,...,e)zfr -+ z&

Bt

i=1

€1 ... s
r rs.

COROLLARY 3.12. If 7> 0 then J(n)>0 at all n of the form
mit - - m; if T <0 thenJ(n) < 0 at all such n.

K
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Proof. From Theorem 3.7 (ii), the sign of J(n) is the sign of
*_,r; — 1, which equals ¢(0) — ¢(7) in the notation of (2.4). Since ¢ is
stnctly decreasing, the conclusions follow immediately. a

We now turn our attention to the size of z(n). It is convenient to
dispose of the lattice case. As f(d*) converges to a limit / and A(x) is
constant on [d*~1, d¥), z(d¥)~ I(1 — d~"). It is more interesting to
look at f(d**') — f(d*). Let m, = d* and let u = maxu, Then from
(2.6),

(3.13) f(d*) = Zp, dk=w)

Let ¢(t)=1t*“—Xpt“ " be the charactenstlc equation of the linear
recurrence satisfied by f(d*). Clearly ¥(1) = 0 and, as lim|f(d¥)| < oo, it
follows that the other roots of y have moduli less than one. Hence there
exists a polynomial g of degree at most s — 1 and A, 0 < A < 1 so that

(3.14) |7(d%) = 1| < g(k)N* + o(N).

It follows that |f(d**') — f(d*)| < ck’A* for sufficiently large k, r <
s — 1 and some ¢ > 0.

Henceforth we assume the ordinary case and 7 # 0. We first need two
approximation lemmas. The first follows directly from the Stirling ap-
proximation I'(w + 1) ~ w”e */27w and we omit the proof. The second
allows us to adjust from real numbers to integers in our asymptotic
analysis.

LemMA 3.15. Fix a;, > 0, X5_, a, = 1 and define

L(Zi_ x,+ 1)
. F(x,,..., = = .
(3 16) (xl xs) ;g=1 r(xl + 1)
Then, as g > ®©
(3.17) Flayg,...,aq) ~ (2mg) P - a-(@a+1/)
19 ---> 04 q i
i=1

LeEMMA 3.18. Fix a; > 0, X°_; a; = 1 and define

Flayq+ ty,...,a,q +t,)

3.19 tpyant)) =
( ) ¢(q ! ) F(alq"--sasq)

Then there exists ¢ > 0 so that for all sufficiently large q and all choices of t,
with |t| < 1and ¥i_it, =0,

(3.20) ct<ol(g;ty,...,t,) <ec.
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Proof. From (3.16) we have

| ~ T(q+1) I'(g+1)
(321) ¢(g;ty,...,1,) = s T(ag+t+1) 7 TE_ T(ag+1)
T(a,q+1)
- U T(ag+1t,+1)°

Let

(3.22) H(a,q,t) =logT(ag +t + 1) —logT'(ag + 1).
AslogT is convex, for |¢t] < 1, ¢ # 0 we have

(3.23)  logT(ag + 2) —logT(ag + 1)

> H_(a,t_q,_t_l >logl'(ag + 1) — logI'(agq),

hence H(a, q,t) = tlog(ag + p),0 < p <1, and
(3.24) -logo(g;ty,....¢,) Z (a;,9,1) = Z t,log(a;q + p;)

= Y tloga, + Z t;logq + Z tilog(l + f’;)
i=1

i=1 i=1 i
SinceXt, =0, |, < 1and |p,| <1,
R R 1
(3.25) llogd(gsty,....1)| < X tloga, + 1 v
i=1 i=1
from which (3.20) follows. |

THEOREM 3.26. In the ordinary case with v # 0 there exists y > 0 so
that

(3.27) z(n)| > v -(logn) ¢~V

for infinitely many n.

Proof. The main idea is to let n = (m{* --- m?)9 for large gq. Large
in this case means that (3.17) is a good approximation. Since p;q is not an
integer in general, we need the approximation of Lemma 3.18.

To be specific, choose g large and choose integers e,, X!_, e; = ¢q such
that |e; — p;q| <1 for all i. By Theorem 3.7 (ii), we may ignore other
representations of n and
(el + - es)!

el el

S

e €
rll “oee rsx’

(3.28) |J(n)| > a-
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where a = |Xi_;r, — 1] = |¢(7) — $(0)] > 0. We now replace e; by p,q in
(3.28): I'lr* changes by a bounded factor, and by Lemma 3.18 we have
T'(g+1) :

. n rPd,

o (pg+1) i
where B has absorbed all other constants. Finally, by Lemma 3.16,

(3.30)  |J(n)| = B-(2mq) V2T py et/ Drpa(1 - ¢)
i=1

(3.29) |J(n)] = B -

= v 2T (r/p)"™

= Yq—(s—n/zl_i[1 miPa = yg= =D/ 27,
Since z(n) = J(n)/n" and q = (logn) /(X p;logm,), (3.27) follows. |

It is possible to sharpen the constant slightly by noting that for any
¢ > 0 there are infinitely many g such that p,q is within ¢ of an integer
for all i. (Standard pigeonhole principle argument.) If s were to equal 1
then (3.27) would violate the convergence of f, except that s = 1 is always
a lattice case.

We conclude this paper by returning to Rawsthorne’s original prob-
lem:

a(0) =1, a(n)=a(ln/2]) + a(ln/3]) + a(ln/6]).
By Theorem 3.7 we know that a(n) jumps only at numbers of the form
2436¢; that is, products of 2 and 3. Let

(3.31) J(m, r) =: J(2737).
Then m = e, + e;, r = e, + e;, and by both parts of Theorem 3.7,

(3.32) J(m,r) 22 m+r—z)' =2;(m+r—.i)(ij),

(m— i)W (r — i) m—i J\1

Jm,r)=J(m,r=1)+J(m—-1,r)+J(m—-1,r - 1),
(3.33) m,r>1,
7(0,0) = J(m,0) = J(0, r) = 2.

Unsurprisingly, such a simply defined recurrence has a large litera-
ture; (3.33) is called the “square” functional equation and arises as a
natural generalization of Pascal’s triangle. (Actually, 3J is the standard
form.) The first problem on the 19th Putnam Competition to show that
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S(n) = 1X,J(i,n — i) satisfies the recurrence S(n + 2) = 2S(n + 1) +
S(n) [GGK, p. 53]). This recurrence then arose in Golomb’s study of
sphere packing in the Lee metric [Go]. Stanton and Cowan [SC] consid-
ered (3.32) in its own right and were the first to prove Lemma 3.34 below.
A. K. Gupta [Gul] [Gu2] gave different proofs and generalized these
numbers further, as did Carlitz [Ca] and Alladi and Hoggatt [AH]. The
function 3J has a natural interpretation as the number of ways to go from
(0,0) to (m, r) with steps of size (1,0), (0,1) or (1, 1); see Fray and Roselle
[FR] or Handa and Mohanty [HM]. Greene and Knuth [GK; pp. 111-113]
discuss the asymptotics of J(m, m).

Our analysis of z(2™3") relies crucially on the following combinatorial
lemma.

LEMMA 3.34.
(3.35) J(m,r)=2;(';’)(:)2"=22ij(m+’“")(;).

m-—i
Proof. Consider the coefficient of x™ in

201 + x)™(1 + 2x)" = 22(;)xf(1 +ox)™ O

Stanton and Cowan originally proved this lemma by a sequence of
standard combinatorial substitutions. Gupta used a number of methods,
including the following hypergeometric representation [Gu, Lemma 4]:

(3.6) $(m,r) =,F(-m,-r;1,2).

Lemma 3.34 leads to a natural probabilistic interpretation of J(m, r).
Let

(3.37) a(m,i) = (2;,,,) B(r,i) = L’é)i

These denote the probabilities of i successes in m and r Bernoulli trials
with p = 1 and % respectively. As

(3.38) 22n3) = L) 0% a(m,1)B(r. 1),

one expects z(2™3") to be largest when the probability distributions peak
simultaneously; that is, when m/2 = 2r/3, cf. Proposition 3.41. As a
preliminary bound, note that a(m,i) < a(m,m/2) and B(r,i) <
B(r,2r/3), replacing factorials by I' as necessary. By Lemma 3.15,
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a(m, i) < yym™'/* and B(r,i) < y,r "'/ for appropriate y, > 0. Hence
(3.39) 2(23) < min(yym™/2,v,r7172).

Since log(2™3") = mlog?2 + rlog3, (3.39) implies that z(n) < y(logn) />
for some ¥ > 0 and all n.

Consider now the normal approximation to the binomial distribution,
see e.g. [F, v. 1, p. 170]. For fixed k,

a( m \/r7l—)~ 2 1 e_k2/2

’_+k b
™2 2 Vm V27
(3.40)
B( g5+kJZ)~ S
3 3 V2r V2@ '

Let A(m, r) = |m/2 — 2r/3|. We now show that if A(m, r) is comparable
to vm and Vr, then z(2™3") is quite a bit smaller than y(logn) '/~

PROPOSITION 3.41. Fix k, € > 0 and suppose

m ym  V2r

(3.42) Am,r)=|Z - 2] > ( oy 2 )
Then for sufficiently large m and r,

3 1 2
3.43 z(2m3") < 2(1 + ¢ ( ) e v /2
(43 ) s+ ]

Proof. If (3.42) holds, then for each i at least one of the inequalities

(3.44) ’———il %—i'> k‘/32_’

is valid. Suppose that m and r are large enough that the approximation in
(3.40) becomes an inequality after multiplication by 1 + &. Let

I={i:|ﬂ—i|>5‘g—"z};

2
then
(3.45)  z(2"3) <2(1 + s)( £ a(m,i))% ¢217 k2
#201 + o) T 8, ) o e
<2(1+ e)( = ‘[3_ ) \[1_ e ¥/, |
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We remark that, if » ~ am, where a # 3 /4, then this proposition
implies that

z(n) = 2(2™3") < hy(a)(logn) ™ 2n @),

where h,(a) and h,(a) are complicated positive algebraic functions of a.
We spare the reader the gory details. The asymptotic behavior of

()7

has been studied by Laquer [La]; more precise information than Proposi-
tion 3.41 can be found there, as can our final estimate, whose proof we
sketch.

THEOREM 3.46. For n = 432! = 2433

6 \'2 [6log4a32\'?
(3.47) z(n) ~ (E) B ( Swlogn )

Proof. After a reindexing, (3.38) becomes
(3.48) z(n) =Y a(4t,2t + i)B(3t,2t + i).

1

By Feller [v. 1, p. 170], the estimates (3.40) are valid for |i| < %/*7¢, so the
tails can be ignored. These approximations reduce to a Riemann sum:

~ 2 li -5i% /4 L
(3.49) z(n) \/—;W 7 Ye v/ 57 O

i
As a measure of the slowness of convergence of f and the accuracy of

(3.47), let n =432% =15 x 10, Then f(n — 1) = 1.8430, f(n) =
2.1175, so z(n) = .2745, whereas (6 /(257))!/? = .2764.
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