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In this paper we generalize a well-known result of Frankel which
relates the fundamental group of a complete Riemannian manifold with
positive Ricci curvature to the fundamental group of a compact immersed
minimal hypersurface. Here we consider the situation in which the Ricci
curvature of the ambient manifold is only assumed to be nonnegative,
and show that the conclusion of Frankel’s theorem can fail only under
special circumstances.

1. Introduction. The theory of minimal surfaces has provided a
powerful tool for studying the topology of complete Riemannian mani-
folds of low dimension with nonnegative scalar or Ricci curvature. In
general, it is a problem of basic interest to study the topological and
geometrical relationships between a minimal submanifold and the mani-
fold in which it is immersed. A well-known result of Frankel [1] asserts
that if ¥ is a compact immersed minimal hypersurface in a Riemannian
manifold M with strictly positive Ricci curvature then the homomorphism
of fundamental groups: II(X) — II(M) induced by inclusion is onto. As
the product of spheres S! X S? shows, the conclusion of Frankel’s theo-
rem is false if the Ricci curvature is only assumed to be nonnegative. The
purpose of this paper is to study the rigidity of Frankel’s theorem, i.e. to
study the extent to which Frankel’s theorem can fail when the Ricci
curvature is only assumed to be nonnegative. Our main theorem, stated
below, shows that the theorem can fail only under special circumstances.

THEOREM. Let M be a complete n-dimensional Riemannian manifold
with nonnegative Ricci curvature. Let ¢: A — M be a minimal immersion,
where A is a compact (n — 1)-dimensional manifold, and let £ = ().
Consider the homomorphism of fundamental groups iy: 11(Z) — II(M)
induced by the inclusion map i: 2 — M. Then either (a) below holds, or Z is
an imbedded totally geodesic submanifold of M and one of (b)—(e) holds.

(a) iy is onto.

(b) II(M) /i (I1(2)) = Z,. 2 separates M, and the closure of one of
the components of M — 2 has a double covering which is isometric to
[0, L] X Z.
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(¢) M is isometric to the ( possibly twisted) product of S* and =. (More
precisely, = is two-sided and M — Z is isometric to (0, L) X Z, where the
isometry is given by exponentiating normally from one side of Z to the
other).

(d) = separates M, and a double covering of M is isometric to the
( possibly twisted) product of S' and X.

(e) = is one-sided, and a double covering of M is isometric to the
( possibly twisted) product of S* and a double covering of =.

In addition, if i, is not onto, the Ricci curvature vanishes on all vectors
orthogonal to 2.

We remark that if one assumes M and 2 are orientable then case (e),
and only case (e), can be eliminated. There are simple models illustrating
each of the possibilities (a)—(e).

Case (a). M = projective 2-space realized as S with antipodal points
identified; = = equator with antipodal points identified.

Case (b). M = projective 2-space realized as S? flattened near the
equator, with antipodal points identified; = = circle of latitude near the
equator.

Case (c) (a twisted example). M = flat Klein bottle realized as a
square with horizontal sides identified in the opposite direction, and
vertical sides identified in the same direction; = = S! realized as a
horizontal line segment joining the vertical edges.

Case (d). M as in case (c); = = S' realized as two vertical line
segments symmetrically spaced around the central vertical line.

Case (€). M asin case (¢); = = S’ realized as the central vertical line.

Lawson ([4], Theorem 1) has obtained a result closely related to
Frankel’s. He proves that if M is a compact connected Riemannian
manifold with mean convex boundary dM and if M has positive Ricci
curvature then 0 M is connected and the homomorphism IT(0M) — II(M)
induced by inclusion is onto. Meeks ({6], Proposition 1) has considered the
rigidity of Lawson’s result in the case M is flat. He shows iy: I[I(dM) —
II(M) is onto unless 0M is totally geodesic, and observes that if i, is not
onto then II(M)/i (1I(0M)) = Z,. The proof of our main theorem
makes use of an appropriately generalized version of Meek’s result. We
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would also like to mention here the paper of Meyer [8] which is related to
various aspects of our work.

2. The proof. We begin with a number of preliminary results. The
first result is the principal geometric tool upon which the proof of the
main theorem relies.

LEMMA 1. Let M be a complete connected Riemannian manifold with
mean convex boundary 0M which has at least two components, 2, and Z,.
If M has nonnegative Ricci curvature and Z, is compact then OM = 2, U 2,
and M is isometric to [0, L] X 2, where the isometry is given by exponenti-
ating normally from 2, to 2,. In particular, 2, and 2, are isometric.

Ichida [2] and Kasue [3] have given proofs of this result by different
methods. The proof in a less general setting is implicitly discussed in
Meeks ([6], Proposition 1). The following lemma generalizes Proposition 1
in Meeks [6] and Theorem 1 in Lawson [4]. The idea of the proof is similar
to that of Proposition 1 in Meeks [6].

LEMMA 2. Let M be a complete connected Riemannian manifold with
compact connected boundary 2. Assume M has nonnegative Ricci curvature
and 2= is mean convex. Then, either

(a) iy: II(Z) —» II(M) is onto, or

b) II(M)/i(II(2)) = Z,, and M has a double covering which is
isometric to [0, L] X 2. In particular, 2 is totally geodesic and the Ricci
curvature vanishes on all vectors orthogonal to .

Proof of Lemma 2. The proof is an application of Lemma 1. Let
(M, p) be the Riemannian covering manifold of M such that
P+(IL(M, 5)) = i(TI(Z, 5)). Let 2, be the component of p~'(Z) passing
through 5. We mention two 31mple properties of (M, p): (i) Any loop in
M based at § is fixed end point homotopic to a loop in 2, based at §, and
(i) pls, : 3, — 2 is injective (and hence an isometry).

Suppose ix is not onto. Then there exists a component S of M
distinct from E By Lemma 1, dM = 2 U 2, and M is isometric to
[0, L] X £,. It follows that X is totally geodesic and that the Ricci
curvature vanishes on vectors normal to =. Since p|s: & > = is a
covering map, we have vol(2) = k vol(Z), where k is the number of
sheets of the covering (2, p| ). Thus, since 3 is isometric to 20, and 2,
is isometric to 2, (2, p|s) must be a single sheeted covering of I, i.e.
p|2: £ - = must be injective.
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Since p~}(Z) consists of two copies of = we have that (M, p) is a
double covering of M. Statement (b) now follows from the fact that, for
regular coverings, the group of deck transformations (which in the present
case is Z,) is isomorphic to II( M, s)/p,JI( M, 5).

The following lemma is the basic imbeddedness result needed for the
proof of the main theorem.

LeEMMA 3. Let M be an n-dimensional complete connected Riemannian
manifold with nonnegative Ricci curvature. Let ¢,: A, > M, a = 1,2, be
minimal immersions such that dim A, ,=n—1, and let 2, = @, (A,).
Assume A, is compact and 2, is closed. If 2, and 2, don’t meet then they
must be totally geodesic imbedded submanifolds of M, and 2, is compact.

Proof of Lemma 3. The proof is an application of the maximum
principle for the mean curvature equation (cf. Ichida [2]). Without loss of
generality we can assume that ¢,: A; —» M is a two-sided immersion, by
which we mean there exists a smooth nonvanishing normal vector field
defined along ¢, i.e., there exists a smooth map N: A; — TM such that
for each p € A,, N(p) is a vector at T, ., M orthogonal to do,(T,A,).
Indeed, if ¢, is not two-sided then by standard covering space arguments
there exists a two-sheeted covering (A, p) of A, such that ¢,o p:
A, = M is two-sided.

Let L > 0 be the distance between 2, and 2,. Let y: [0, L] - M be
any unit speed geodesic segment, with y(0) = ¢, € 2, and y(L) =g, €
2,, which achieves this minimum. (Since 2, is compact and X, is closed,
at least one such v exists). y strikes 2, and X, orthogonally. In particular,
there can be no transverse self-intersections at ¢, and ¢,. For each
a = 1,2, choose a point p, € ¢,'(g,) and a neighborhood U, of p, such
that @, |, : U, > M is an imbedding., Set V, = ¢,(U,). By the lemma in
Section 3 of Ichida [2], whose proof is an application of the maximum
principle for the mean curvature equation, there is a neighborhood W, C
U, of p, such that ¢,(W)) is totally geodesic and the map E: W, - M
defined by E(p) = exp,, ,)LN(p), where N is the normal vector field
defined along ¢, which equals y’(0) at ¢,, is a smooth isometric imbed-
ding such that E(W)) C V, and E(W)) is totally geodesic. (The metric on
W, is the pullback of the induced metric on V).

Now fix a geodesic segment y: [0, L] » M which minimizes the
distance from =, to 2,, and let N be the normal vector field along ¢,
which agrees with y’(0) at v(0). The set W = { p € Z: exp,, (,,LN(p) €
2,1} is closed by the continuity of the exponential map, and open by the
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discussion in the previous paragraph. Thus, by connectedness, W = A,
which implies that each geodesic issuing from X, with initial direction N
achieves the minimum distance between 2, and 2,. From the discussion
in the preceding paragraph X, is totally geodesic. Furthermore, by another
connectedness argument we see that 2, = {exp,, ,,LN(p): p € A}, and
hence 2, is compact and totally geodesic, as well.

We have shown that every point in 2, is the minimum distance L
from 2, (and vice-versa). Thus, any self-intersections in =; must be
tangential. Let x;, x, € 2, be such that ¢,(x;) = ¢,(x,) =y. Let S}, S,
be neighborhoods of x, and x,, respectively, such that ¢,:S, - M,
a = 1,2, are imbeddings. Since ¢,(S;) and ¢,(S,) meet tangentially at y
and are totally geodesic, there exist neighborhoods Q,c S,, of x,,
a =1,2, such that ¢,(Q,) = ¢,(Q,). Using this observation and the
compactness of A,, one can show that for each p € 2,, there exists an
open set o in M containing p and an open set W in 2 such that ¢,,y:
W — M is an imbedding and ¢,(W) = 2, N o. It follows that =, is an
imbedded submanifold. A similar argument shows that 2, is imbedded.

COROLLARY. Let the setting be as in the main theorem. If i, is not onto
then 2 is an imbedded totally geodesic submanifold of M.

Proof of the Corollary. Let (M, p) be the Riemannian covering mani-
fold of M satisfying p.(II(M,5)) = i,(TI(Z,s)). (This covering was
introduced in the proof of Lemma 2, but in a slightly different context.
The properties mentioned there hold in the present context as well.) Let
3, be the component of p~Y(=) containing 5. Since i, is not onto, there
exists at least one other component, 3, say, of p~}(Z). Using basic
covenng space theory (see e.g. Massey [S]) there exist immersions ¢;:
A->M and @,: A > M, where A is a manifold covering A, such that
¢, (A) =2, ¢, is proper, and p,(A) c 5. (Take (A, p,) to be the
covering manifold of A satisfying (p,)«(II(A)) = ¢ L( px(II(M)).)
Hence, by Lemma 3, £, is imbedded and totally geodesic. Since p:
M — M is alocal isometry the same conclusions apply to =.

Proof of the Theorem. In view of the corollary to Lemma 3 it is
sufficient to prove the main theorem under the assumption that = is a
compact imbedded minimal hypersurface in M.

Assume for the time being that X is two-sided. Suppose = does not
separate M. Since 2 is two-sided we can make a “cut” along = to obtain
a manifold with boundary M’, whose boundary consists of two disjoint
copies of =, 2, and 2, say, such that any curve in M’ from 2, to 2,
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corresponds to a curve in M from one side of 2 to the other. Lemma 1
implies that the normal exponential map ®: [0, L] X 2, — M’, where
L = d(Z,,Z,), is an isometry. Thus, part (c) of the theorem holds.
Suppose now that X separates M. Let M, and M, denote the closures
of the two components of M — 2. Hence, M; and M, are manifolds with
common boundary 2. Consider the following diagram of inclusion maps,

\

\M2
Set G, = iy(I(2)), H, = (i,)x(IL(D)), Ga = (j)+(I(M,)), & = 1,2. By
Lemma 2, either II(M,) = H,or II(M,)/H, = Z,. It then follows easily
that either G, = G, or G /G, = Z,, a = 1,2.

We now consider several cases. Recall by the Seifert-Van Kampen

theorem that IT( M) is generated by G, and G,.

Case 1. G, = G, and G, = G,. In this case, II(M) = G,, and state-
ment (a) of the theorem holds.

Case 2. G, # G, and G, = G,. In this case II(M) = G,. Statement
(b) of the theorem now follows from the equality, G,/G,= Z,, and
Lemma 2.

Case 3. G; = G, and G, # G,. As in Case 2, this leads to statement
(b) of the theorem.

Case 4. G, # G, and G, # G,. In this case, II(M)/H, = Z,, a =
1,2. Foreach a = 1,2, let (Ma, p.,) be the covering manifold of M, which
satisfies, ( pa)*(H(Ma)) = H,. Then (Ma, p.) is a double covering of M,
and M, is a manifold with boundary p;*(Z) which consists of two copies
of =. By appropriately “gluing” together the boundaries of M, and M,,
we obtain a double covering of M which contains two copies of =, neither
of which separates. But this situation was considered at the beginning of
the proof. From what was done there, one sees that we are now led to
part (d) of the theorem.

Thus if 2 is two-sided one of the cases (a)—(d) must hold.

Suppose now that 2 is not two-sided. It is then standard, using Mod
2 intersection theory, to construct a two-sheeted covering (M, p) of M
such that (£ = p™4(2), p 1) is a connected double covermg of 3 and 2 is
two-sided. In fact this construction actually implies that 3 separates M.
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Thus, cases (a)—(d) of the main theorem (and the arguments leading to
these cases) apply to & c M. We now observe that if i,: II(3,35) —»
TI(M, 3) is onto, so is iy: II(Z,s) - II(M,s) (where § € p~(s)). Let
g = (y) be any element of II(M, s), where v is a loop based at s. Let ¥
be the lift of y from § € £ to 2 € 3. Let 6 be a curve in $ from % to 3.
By assumption, (#8) € i,II(Z, §). Projecting via the covering map gives
{(v){o) = (vyo) € i,II(Z,s), where o =pos. Hence, since (o) €
iII(Z,5), g = (y) € i,II(Z, ). Thus, if case (a) holds for £ c M then
case (a) holds for = c M. Since the two components of M — 3 are
isometric (via a deck transformation), the discussion leading to case (b) in
the two-sided setting shows that case (b) is not applicable to 3 ¢ M. Case
(c) is also ruled out because 3 separates. It remains to consider case (d).

By our earlier arguments which led to case (d) we may assume that
there exists a double covermg (M @) of M such that (1) ¢™(2) consists
of two disjoint copies, 2, and £,, say, of < and (2) each component of
M — £ is double covered by a component of M — (2, U £,). (M, ),
where ¢ = p o ¢, is a four-sheeted covering of M. We use the “cut and
paste” method on M to obtain a new double covering of M.

Let U be a component of M- 5‘., and let U be the component of
M — (£, U £,) such that (T, p| ;) is a double covering of U. Since U is
one of the two components of p~(M — =), (U, p| ;) 1s a single covering
of M — 2. Consequently, (U, ¥|) is a double covering of M — =. The
closure of U, call it D, is a manifold with boundary 3, U £, = ().
Let V denote the manifold without boundary obtained from D by
identifying the points of £, and £, as follows: For all x, € £, x, € £,,
identify x; and x, if and only if ¢ (x;) = ¢(x,) and @(x;) # @(x,).
Then V (with covering map essentially given by ¢/) is a double covering of
M such that the inverse image of 2 with respect to the covering map is a
double covering of X which is two-sided, but which does not separate V.
(To visualize this construction, it is helpful to carry it out explicitly on the
example of case (e) given after the statement of the main theorem.) The
argument of case (c) applied to the present situation now leads to case (e)
of the theorem.

Thus, we have shown that one of the cases (a)—(e) must hold. If i, is
not onto then, by the corollary to Lemma 3, X is totally geodesic. The last
sentence in the statement of the theorem is a consequence of the product
structure in cases (b)—(e). O

The following corollary singles out the situation in which M is
noncompact. The imbeddedness result needed for this corollary has al-
ready been established in Kasue ([3], Theorem 1).



250 GREGORY J. GALLOWAY

COROLLARY. Let M be a complete noncompact n-dimensional Riemann-
ian manifold with nonnegative Ricci curvature. Let ¢: A — M be a minimal
immersion, where A is a compact (n — 1)-dimensional manifold. Then
2 = @(A) is an imbedded totally geodesic submanifold of M and one of the
following must hold.

(1) M is isometric to R X 2.

(2) M has one end, and there is a double covering of M which is
isometric to the product of R and a double covering of X.

(3) M has one end and 2 separates M. The closure of the component of
M — X containing this end is isometric to [0, 00) X 2 and,

(%) I(M)/iy(I(Z)) = 1 or Z,.

Proof. We begin by observing that (x) holds in all cases. Indeed, since
M is noncompact only cases (a) and (b) of the main theorem are
applicable. (However note in cases (1) and (2), i, is actually onto.) By
Theorem 1 in Kasue [3], = is imbedded and totally geodesic. Suppose Z is
two-sided. Then 2 must separate M (otherwise M would be compact as
in case (c) of the main theorem). M has at most two ends. If M has two
ends then (as observed in Meeks, Simon and Yau [7], §9) the splitting
theorem of Cheeger and Gromoll implies that (1) holds. If M has only
one end then Theorem C in Kasue [3] implies that the closure of the
component containing this end is isometric to [0, c0) X 2.

Suppose now that X is not two-sided. As discussed earlier, there is a
double covering (M, p) of M such that S =p(2) is connected and
separates M. Furthermore each component of M — £ must be noncom-
pact and hence M has two ends. Case (1) then applies to 3 c M, and
thus case (2) holds. O

Again, there are simple models illustrating each of the three cases. For
instance, the nontrivial line bundle over S (i.e. the Mobius band) is an
example illustrating case (2).

As a final remark note that if M is three dimensional and satisfies the
hypotheses of the corollary then, by Gauss-Bonnet, £ must have genus
zero or one. All three cases can occur in dimension three. (In the case M
is orientable, Theorem 6 in [7] overlooks the possibility that case (3) can
occur.)
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