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Let A be a set of m distinct integers with m > 2 and O e i . It is
shown that A possesses a simple Λ-base if and only if A is a complete
residue system modulo m and the elements of A are relatively prime.

The notions of simple and non-simple A -bases, due to de Bruijn, are
defined as follows.

DEFINITION 1. Let A be as above. The integral sequence B = {bi}i^1

is called an v4-base for the set of integers provided that every integer n
can be represented uniquely in the form

r(n)

Λ = X atbi9 ai G A Vz.
i = l

If (with possible rearrangement) B can be written in the form B =
{djjn'"1}z >xwhere the dt are integers, then it is called a simple ^4-base.

The notion of an A -base was generalized by Long and Woo to that of
an 2I-base where 9t = {At} and each At is a set of mi distinct integers
with O e ^ and mι > 2 for all /. The definition is as follows.

DEFINITION 2. Let 3Ϊ be as above. The integral sequence B = {bi}i^.ι

is called an 2l-base for the set of integers provided every integer n can be
written uniquely in the form

r(n)
n = Σ <*ibi9 at e^,.Vi.

ι = l

If (with possible rearrangement) B can be written in the form B =
{diMi_ι}i^.1 where the dέ are integers and where Mo = 1 and Mt =
Π/ = 1 Wj for i > 1, then it is called a simple 2ί-base.

De Bruijn has pointed out that it is not yet known for which A's there
exist simple A -bases nor it is known for which v4's there exist non-simple
A -bases. He gives several examples and then observes that if A has a
simple A -base it is necessary that A form a complete residue system
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modulo m and that the elements of A be relatively prime. He also

observes that it is necessary that (di9 m) = 1 for all i.

Long and Woo have given several sets of sufficient conditions for

both simple and non-simple A -bases and 2ί-bases, but no necessary and

sufficient conditions.

In the present paper, we shown that the necessary conditions of de

Bruijn for the existence of simple ^4-bases are also sufficient. Necessary

and sufficient conditions for the existence of simple 9ί-bases are still

lacking.

The results of de Bruijn noted above are contained in [1] and those of

Long and Woo appear in [3].

Before proving the main theorem a lemma will be needed.

LEMMA. Let m > 2 be an integer and let Abe a complete residue system

modulo m. If 0 e A and the elements of A are relatively prime, then every

integer n can be represented in the form

(1) n = aλdx + a2d2m + a3d3m
2 + +asdsm

s~ι,

where s > 1 and dv d2,...,dm are integers with (di9 m) = 1 and at e A

for all i.

Proof, Of course, zero is trivially representable in the desired form.

For n Φ 0, we distinguish two cases.

Case 1. (m,n) = 1.

Since A is a complete residue system modulo m, there exists a ^ A

such that n = a (modm). We set ax = a and denote the remaining

elements of A by a2, a3,..., am. Since (n, m) = 1 and n = ax (mod m), it

follows that (al9 m) = 1. Thus, since (av a2,..., am) = 1, it follows that

(av a2m, a3m
2,..., ammm~ι) = 1 and hence that the diophantine equa-

tion

(2) n = aλxλ + a2mx2 4- a3m
2x3 + +ammm~ιx

has a solution (dί,d2,...,d'm). This implies that aλd[ s n (modm) and

hence that {d{, m) = 1. For 2 < k < m, set ek = (d'k, a x). Then

and it follows from Dirichlet's theorem that there exist infinitely many

primes of the form

d'k a,
r
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where r is an integer. Hence, we may choose rk such that dk — aιrk = pek

where p is a prime and (pek, m) = 1. Setting dk = dk- axrk we have
that (dk, m) = 1 for 2 < k < m. Setting

dx = d[ + a2r2m + a3r3m
2 + -

it follows that (dl9 m) = 1 since (d[, m) = 1. Thus, (d^ m) = 1 for 1 < i
< m and

aλdλ + a2d2m + α3d3m2 + +amdmmm-1

= ax(d{ + a2r2m 4- a3r3m
2 + 4-α w r w m m ~ 1 )

Λ-a2\d2 — a^jm + cι3{d3 — a^jm2

since, as noted above, {d[,d'2,...,d'm) satisfies (2).

Case 2. (m,n) > 1.

It suffices to consider only the case where all prime factors of n
divide m. For, if n = «1/22 with («1? m) = 1 and

with (J/, m) = 1 for all /, then

n = wx«2

= a^nJi) + a2{nxd^m + a^dfim2 + - - +αw(n1d'm)mm-1

= axdx + a2d2m 4- a3d3m
2 -f +amdmrnm~1

with d; = nxέ// and hence (έ/,., m) = 1 for all /. Thus, assuming that all
prime factors of « divide m, there exists ί > 1, such that wlm'"1. Let

A' = a Θ mA Θ m2A Θ

where

and

with |̂ 4 θ 51 = |̂ 4115|. It is easy to see that ^4r forms a complete residue
system modulo m\ Thus, we can choose α E / such that

(3) n = a (modm r ),
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and there exists an integer q such that

(4) n = a + qmι\

Since a e A\ we can write

(5) a = aal 4- aa2m + aa3m
2 + +tf ί M m ί - 1

with α α , e A for all /. Since n \ m*~~ι

9 (4) implies that n \ a and hence that

1 = - + ^

where α/« and mr/w are integers. This implies that (a/n,q) = 1 and
hence, again by Dirichlet's theorem, there exists an integer s such that
q + (a/n)s is a prime and is relatively prime to m. Thus, by case 1, there
exist d[ with (di9 m) = 1 for 1 < i < m such that

(6) ? + — s = a\ά\ + cι2d2m +

where a[, a'2,..., a'm are the elements of A in some order. Moreover,

a [Λ mt \ , mt ( a \ a mt

 Λ— 1 s\ Λ a Λ— s = — I a = 1
n\ n j n \ n I n n

and hence

(7)

Since n \ m*'1, it follows that m ^m'/n) and hence that

l = (l-^.,,m).

Thus, from (5), (6), and (7), we have

— s
n

a'2d'2m
t+ι

2d2

where ^ f = 1 - (rrf/ή) s and α, = Λα f for 1 < i < t and di+t = d[ and
ai+t = a\ for 1 < / < m. Since, ai e 4̂ and (di9 m) = 1 for all /, this is a
representation in the desired form and the proof is complete.
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We now prove the main result.

THEOREM. Let A be a set of m distinct integers with 0 e A and m > 2.
Then A has an A-base if and only if A is a complete residue system modulo m
and the elements of A are relatively prime.

Proof. First let A = {al9 a2, . . . , am) and assume that A has a simple
^4-base, B = {dim

i~1}i>1. Then every integer n can be represented in the
form

(8) «= Σ a^m'-^a^eAVi.

Since n = anldλ (modm) and each of 0,1, . . . ,m — 1 is represented in
the form (8), it follows that {axdva2dv...,amd1] forms a complete
residue system modulo m and hence that {ava2,...,am} also forms a
complete residue system modulo m and that (dl9 m) = 1. The argument
can be repeated, and this leads to (d^m) = 1 for all i > 1. Also, if
(al9 a2,...,am) = d > 1, then only multiples of d can be represented in
(8). This is a contradiction and so (av 02> > am) = 1 as claimed.

Now suppose that the elements of A are relatively prime and form a
complete residue system modulo m. We must show that there exists an
integral sequence {di)i^ι with {dt, m) = 1 for all / such that every integer
n is uniquely representable in the form (8). Of course, 0 is trivially
representable in the desired form. Also, by the lemma, 1 can be repre-
sented in the desired form and will, in fact, appear in the sum

Sλ = dxA Θ d2mA Θ d3m
2A Θ ®dsm

Sl~ιA

for suitable integers dvd2,...,dSχ and sλ > 1. Sx is easily seen to be a
complete residue system modulo mSl since A is a complete residue system
modulo m and (di9 m) = 1 for 1 < i < sv Of course, all elements of Sλ

are represented in the desired form. Let rλ be the integer of least absolute
value such that rλ £ Sv If there are two such values, r and -r, we set
rx = r. Since Sλ is a complete residue system modulo mSl

9 there exists
s G Sv such that rλ s s (mod mSχ). Thus, rλ = s + gm*1 for some integer
# and, by the lemma, there exists an integer s2 > 1 and integers dSi+i with
(dSi+i, m) = 1 for 1 < i < s2 such that

q = β ί Λ + i + ^,2^+2"* + 1

with 0^, e y4 for 1 < i < s2. Also, since s



384 CARL SWENSON AND CALVIN LONG

with asj e A for 1 < j < sv But then

which is a representation of rx in the desired form. Now from the set

S2 = dxA Θ d2mA Θ ί/3ml4 Θ ΦdSi+S2m
Sl+S2"1A.

Note that Sλ c 5 2 since O e ^ and also note that all members of S2 are

represented in the desired form. We now iterate with r2 as the integer of

least absolute value not in S ,̂ and so on. In this way, we build our ^4-base

step by step and it is clear that any particular integer n will be properly

represented after at most 2\n\ steps. Since it is clear that such representa-

tions are unique, the proof is complete.
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