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The main result of this paper is to show that every operator T
commuting with a nest algebra modulo a two-sided ideal ¢ of £ (H) is
of the form 7 = AI + J for some A € C, J € ¢.

Introduction. The structure of commutators of non-selfadjoint oper-
ator algebras has received considerable interest in recent years [4, S, 6, 8,
9, 13, 16 and their references] ([7] contains a good survey of known
results). However, results for perturbed algebras in general and finite
perturbations in particular are not available except for the special case of
the ideal " of all compact operators. To put the results proven here into
perspective, we mention two well known and particularly useful special
cases. For any subalgebra &/ of #(H) and any subset # of Z(H),
denote by C(%7, #) the collection {T € #(H): AT — TA € # for
every 4 € o/ }. We now state:

I. (Calkin [3].) Given any ideal _# (two-sided) of £ (H),
C(#(H), f)=CI+/2.

Using the results of Johnson and Parrott [11} on C(%, X") for #, a
type I von Neumann algebra, Christensen and Peligrad were able to show
the following.

II. (Christensen and Peligrad [5].) For any nest algebra 7,
C(A, X)=CI+X.

It should be mentioned that II was shown to have an extension to the
von Neumann-Schatten p-classes in [7].

The central result of this paper is to show that I and II above are
“endpoints” of a very general theorem concerning commutators. This
result can be stated as:

I11. For any nest algebra &7 and any ideal ¢ of ¥ (H),
C(, f)=CI+ 2.
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Combining III with the main result of [4], we obtain:

IV. Any derivative of a nest algebra into an ideal (two-sided) _#Z of
Z( H) is implemented by an operator from _#.

I would like to thank C. Apostol for his helpful conversation.

For the purpose of this paper, 7 will denote the nest algebra of all
operators acting on a fixed separable Hilbert space H leaving invariant a
(complete) totally ordered nest of subspaces N. Denote by & the corre-
sponding totally ordered nest of orthogonal projections onto the members
of /. 1If &= {E,},< let A, be the orthogonal projection E, — E,_,. ¢
will denote an arbitrary but non-zero two-sided ideal of £ (H). It is well
known [10] that # C _¢ZC ¢, where % denotes the ideal of all finite rank
operators. (Note that all the results below are obviously true for ,#= (0).)

Essential use will be made of the identification between such an ideal
JZ and its corresponding ideal set _Z of s-numbers in c,(N) satisfying

() (A}, {r,) in 7 implies {\, + p,} in £.

(i) {A,}) € and 0 < p, < A, for every i € N implies {p,} €_7.

(1) For any permutation 7: N — N, {A;} in # implies that (Ao 18
in 2.

This identification is given by s: T — o((T*T)Y?). We will use the
standard notation s,(T) for the jth eigenvalue of (7*T)"/?. Given T in
L(H), denote by 6, the map from &7 to L(H) given by §,(A) = AT —
TA. Let x ® y be the rank one operator (x ® y)z = (z,x)y. Bycls. { S}
will be meant the closed linear span in the norm topology of the set S.

Commutants of nest algebras module _¢. In order to prove III, we
initially divide the problem into three cases:
(1) There exists a projection E into & with infinite range and kernel.
(ii) There exists an increasing sequence { £, }%_, of finite dimensional
projections in &, with E = sup E, having finite dimensional kernel.
(ii1) There exists a decreasing sequence { E, }%_, of finite co-dimen-
sional projections in &, with E = inf E, having finite range.

Case (1). As in [5] we note that there will exist a partial isometry V'
in & with V'V*=E and V*V =1 — E. Thus both EX(H)EV and
V(I — EYY(H)(I — E) are subsets of /. Let §; be a (bounded)
derivation from & into #. For any X in ZL(H), 0,(EXEV)=
S (EXE)V + EXES(V), it will immediately follow that 8, ( EXE)E is
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in Z. Define the ideal ¢, of #(EH) to be
FL={FETE:Teg}.
Consider the action of 8., on #(EH). For any X in £(H),
8,xz(EXE) = E(XEK — KEX)E = E8(EXE)E.

Thus 8z, derives Z(EH) into #,. An application of 1 above will show
that EKE = AE + T, for some T, in #,. An exactly similar argument
will show that (I — E)K(I — E) is of the form u(l — E) + T,, where
T,=(1—- E)T,(I - E) for some T, €. In addition, EK(I — E) =
ES (EXI— E)=ETy(I - E) with T, € ¢. Similarly, (I — E)KE =
(I — E)o6,(I — EYE=(I—- E)ET,E with T, € #. Therefore, K can be

written as:
A T, T,
+ 1 4:
p I, T,

where the second term 7T is in . All that remains is to show A = p.
Note, however, that since V € &7, we have

(NE+p(I-E)+T)V-V(AE+u(I-E)+T)e/f.
It immediately follows that (A — p)E € #, showing A = p.

K

Case (ii). In order to prove case (i), it will be necessary to further
subdivide case (ii) into (ii) (a) £# F and (ii) (b) #= . Before beginning
the proof of either, we note that it may as well be assumed that & is the
classical nest of one-dimensional jumps on /?(N). That is, with respect to
the usual basis {e;};_;, E, is given as the projection onto the closed

linear span of {e;}7_;.

Case (it)a. Let 8. Alg{E,} — #. It follows from II that we can
assume K is compact. Fix a cy(N) sequence {¢) in £ satisfying
& > & > --- >0. Define a partial isometry 4 in &/ by 4%, =e,,
where n, > n,_; and ||A, AK|| < 27'¢,. That this is possible follows from
the compactness of K and the observation that (I — E,) |0 strongly. It
can now be seen that AK is the operator with the property that A, 4K =
A, K. We claim that s(4K) is dominated by {¢;}, and thus AK € ¢ by
(iii). That this holds is an application of [1]. Indeed we have

o0
$.1(AK) <|(1 = E,)AK || <} ||A 4K < e,y

Jj=n+1l

since, in particular, rank E, 4K < n.
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Thus, necessarily K4 is also in _#. Moreover,
s(KA) = s(A*K*) = o[(KA4*K *)'?| = o[(KK*)"’] = 5(K),

showing K is also in Z.

Case (ii)b. It is not too difficult to show that this result follows from
case (ii)a using the fact that N{ #: #2 %} = %#. However, the following
proof is of independent interest in that it provides a concrete example of
an operator 4 such that {§,(4) € # for a given T & CI + %. Since

0,(A) € F if and only if §,.(A4*) C %, it may as well be assumed that
& is the algebra of all (bounded) lower trlangular matrices with respect to
the basis {e,}. Let 8;: &/ — %. Suppose, contrary to the assertion of III,
that T & CI + %. We shall construct sequences {x,}, {y,} of unit
vectors together with associated projections E,,,, and E;,, satisfying

@) (x;, x4y = (Tx,, x,) = 0for j # k.

(i) x, = E,yX, and y, = (E;,) = Epn)) V-

(iii) { Ty, — (Tx,, x)y, }#-, are linearly independent vectors for each
n € N. The construction is an inductive one.

k=1 Let x; = e,. If for every e;, j > 1, Te, = (Te;, e;)e,, it will
immediately follow that T = (Te,,e,)I + K for K, a rank two operator,
contrary to our assumption. Take y, = e,, where k is the first integer with
Te, + (Te,;,e;)e,. It is easily seen that (x,, y;) satisfies (i), (ii) and (iii)
above.

k = n implies k = n + 1. Suppose that {x,;}7_; and {y,}7-, have
been chosen to satisfy (i) through (iii). Let H, be cls. {x,,...,x,,
Txf,...,Txy} and note that E,, (H,) g E,,,,(H). From this we
deduce the existence of a unit vector x,,, = E,, X, satisfying (i) for
Jok<n+1.TakeE, ., =E,,

Define H, to be cls. {y,...,y,Ty¥ ..., Ty*} and A=
(Tx,41,%,41). Suppose that, for every I>E > Em(,,H) and y e
(E—-E,(,+1)H,, Ty —Ay isin H,. 1t would immediately follow that
(T — ML - Em(nﬂ))Eﬂ'. That is, T=AI+ F for some F in %,
contrary to our assumption. Thus, for some j(n + 1) > m(n + 1), we
have both y, y € (Ej,41) = E,ns1)Hand Ty, = Ay, € H,.

Let A4 be the operator

oo}
A= Z'xn®yn'

n=1
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Now each x, ® y, isin &/ and  is strongly closed; therefore, 4 € .
Consider the vector w, = (TA — AT)x, = Ty, — {Tx;, x;)y,. From (iii)
it follows that, for each n, { w, } %-1 are linearly independent vectors in the
range of 8,(A4).

Case (iii). If X derives &7 into ¢, then X * derives & * into #. Since
&* = Alg{I — E,}, where { I — E,} satisfies the hypotheses of case (ii),
we obtain case (iii). ‘

In order to prove IV, we simply combine III with the main result of
[4], which says that any derivation of a nest algebra into #( H) is inner.

COROLLARY. It easily follows that for any generalized commutator pair
AB, with AT — TBin ¢ for gll T in & implies A, B are both in CI + ¢.

REMARK. There has been considerable recent interest in automor-
phisms of perturbed algebras [14], determining under which circumstances
an automorphism of &/ + ¢ is inner. For nests indexed by N and #= .7,
it is shown in [14] that every automorphism is inner. In the general
situation there will exist outer automorphisms (for example, the bilateral
shift acting on the classical nest of one-dimenstonal jumps indexed by Z).
Indeed, it is shown in [16] and [6] that these have a rather rich structure
being isomorphic to the group of all dimension preserving order isomor-
phisms of the underlying nest. However, a key to all these results is the
fact [2] that &+ X is precisely all operators 7 in #(H) such that
E — (I — E)TE is continuous from & (strong operator topology) to X
(norm topology). In the situation of arbitrary (two sided) ideals, this does
not hold even for tractable classes such as symmetrically normed ideals
[12].
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