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In 1841 Delaunay proved that if one rolls a conic section on a line in
a plane and then rotates about that line the trace of a focus, one obtains
a constant mean curvature surface of revolution in R?. Conversely, all
such surfaces, except spheres, are constructed in this way. In 1981,
Hsiang and Yu generalized Delaunay’s theorem to constant mean curva-
ture rotation hypersurfaces in R"*!. In 1982, Hsiang further generalized
Delaunay’s theorem to rotational W-hypersurfaces of o -type in R"*!.
These are hypersurfaces such that the /th-basic symmetric polynomial of
the principal curvatures (k,(x)), namely,

a,(kl,...,k,,)=‘ X kg ok, 1<i<n,

i< e <iy

is constant.

Here we generalize Delaunay’s theorem to rotational 1W-hyper-
surfaces of o-type in hyperbolic (n + 1)-space H"*' and spherical
(n + 1)-space S"*!. Specifically we generalize the “rolling construction”
of Delaunay. Various geometrical properties of these surfaces and their
generating curves have been studied by Hsiang.

1. The reduced ODE of rotational o-W-hypersurfaces in R"*!,
H"*1 or $"*1, Following Hsiang [4], in this section we shall give a
unified treatment of the reduced ODE of rotational o-W-hypersurfaces in
a space form of constant curvature. In order to do so, we shall first give a
unified description of the orbital geometry of the O(n) transformation on
the simply connected (n + 1)-dimensional space of constant curvature c,
Mnt 1( C).

Orbital geometry of the O(n)-action on M"*1(c). Let M"*Y(c) be the
simply connected (n + 1)-dimensional Riemannian space of constant
sectional curvature ¢ and O(n) be an isometric transformation group on
M"*Y(¢) fixing a given geodesic line, namely, a rotational transformation
group of the usual type fixing a rotational axis M. Then (O(n), M"*(¢))
consists of only two types of orbits, namely, fixed points and orbits of the
type S”~! = O(n)/O(n — 1). Let O(n — 1) be an arbitrarily chosen and
then fixed principal isotropy subgroup of (O(n), M"*(c)), Z,=
N(O(n — 1))/0(n — 1) and M?*(c) = F(O(n — 1)). Then it is easy to see
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that the upper half-plane M?(c) consists of a fundamental domain of
(O(n), M"*Y(c)) which is perpendicular to all orbits. Hence

M (c)/0(n) = M*(c)/Z, = Mi(c),

where F(O(n)) = M' = the boundary of M?2(c). We shall parametrize
M2 (c) by the following coordinate system:

Choose a base point 0 € M' and let x be the arc length on M!
travelling in the positive orientation of M! = dM?2(c). To each point
p € M?(c), let pq be a geodesic arc which realizes the shortest distance
between p and M* (such a pq is unique except when p is the center of
M?2(c), ¢ > 0). We shall assign to the point p the coordinate (x, y) where
x is the coordinate of ¢ in M* and y = the length of pq. It follows from
the above definition that :

(In the case ¢ > 0, the coordinate of the center of M2(c) is (x, 7/ Vo), x
arbitrary, and hence non-unique.)

Let G(p(x, y)) be the orbit of p(x, y). Then it is not difficult to
show that G( p(x, y)) is isometric to the (n — 1)-sphere of radius f(y)
where

y if ¢ = 0 (euclidean case),

1 sinyc y if ¢ > 0 (spherical case),

fy)=<{Vc

1

sinhvy—c¢ if ¢ < 0 (hyperbolic case).
7= Sinhy—cy (hyp )
Moreover, the orbital distance metric on M"*!(c)/O(n) is the same as
the restriction metric of M2(c) and hence it can be given in terms of the
coordinates (x, y) as follows:

dx?* + dy* if ¢ = 0 (euclidean case),
ds? = { cos®ycy - dx? + dy? if ¢ > 0 (spherical case),
cosh’?yY—cy - dx? + dy* if ¢ < 0 (hyperbolic case),

Reduced ODE. Let 2" be a given O(n)-invariant hypersurface in
M™Yc), y=2"/0(n)c M""Yc)/O(n) = M?(c) be the generating
curve of 2" and II be the second fundamental form of 2" at y(x) =
(x(s), y(s)) # 0. Then it is easy to see that II is O(n — 1)-invariant and
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hence it has only two distinct eigenvalues corresponding to the two
non-conjugate O(n — 1)-invariant subspaces of the tangent space of X”

of y(s).

PROPOSITION 1 [4]. The principal curvatures of 2" at y(s) are given as
follows:

ky= da - f"(y ) d ,  multiplicity 1,
f'(y) i
k, = —coso , multiplicity (n — 1),

where o is the angle between 3 /dx and the tangent vector of .

Suppose =" is a rotational oW-hypersurface in M"*1(c). Then its
generating curve y = 2"/0(n) is a curve in M2 (c) which is characterized
by the following ODE, namely

" “:%Hﬂm“%ﬁyﬂ(%~F%w%9
A7 (e

=(—1)l[n_l_1]hl, 13]3}1—1,

(u)(—mwf8§) (%) &) = (<vh, 1=,

where h, is the normalized Ith mean curvature of the o W-hypersurface Z".

REMARK. In the case of / odd, the normalized /th mean curvature, 4,,
changes its sign if one reverses the orientation of the hypersurface. Here
we shall always choose the orientation so that 4, > 0.

2. The rolling construction and a generalization of Delaunay’s theo-
remin H"*1 and S"*1.

ReMARK. The constructions, theorems, and proofs are similar for the
hyperbolic and spherical cases. Hence we carry out the details only in the
hyperbolic case. After the main theorem we will state the corresponding
result for the spherical case.

ReMARK. For simplicity and comparison we follow the format of
Hsiang [2, §3].
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Since all M"*!(¢), ¢ < 0, are obviously homothetically equivalent, it
is easy to reduce our investigation to the special case of ¢ = —1. There-
fore, in this section, we shall always assume that ¢ = —1 and denote
M"*Y(—=1) simply by H"*1,

Rolling construction. Suppose I' is a curve in M?2(—1) given as a
geodesic polar coordinate graph of r = r(@). If one rolls I' along the
x-axis, then the locus of the origin of the geodesic polar coordinate system
attached to T' plots another curve 2. As indicated in Figure B, one has the
following geometric relationship between I' and :

xv
~

0 QE, 0

FiGURe B

Let s and £ be the respective arc length parameters of € and T
starting at a pair of corresponding points P, and Q,. Let ¢ be the angle
between Ox and QP and ¢’ be the angle between —9d /9y and PQ. Then

dy

. dx
(2.0) -, = sino, cosh y 75 = coso,
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thus dy /dx = cosh y - tano and by hyperbolic trigonometry,
(A) cos¢ = tanh(x — ¢) - cothr

(B) sinhy =sin¢ - sinhr

(C) dr= —cos¢pdt

(D) coshr = cot¢ - cot¢’

(E) cos¢’ =tanhy - cothr

(F) cos¢ = sing¢’ - cosh y.

(2.1)

Differentiating (A) and (B) gives

(AY) —singdp = —tanh(x — ¢) - csch? rdr + sech?(x — £)
-cothr(dx — d§)

(B) cosh ydy = sin¢ - coshrdr + cos¢ - sinhrdé.

Substituting (A) in (A’) and (B) in (B’) gives

(A”) —singdp = —cos¢ - sechr - cschrdr

+ (cothr — tanhr - cos?)(dx — d¢)
(B”) cos¢pdep = cschr - cosh ydy — sing - cothrdr.
(A”) and (B”) combined give
(%)

(—cos¢ - sechr - cschrdr +(cothr — tanhr - cos*) - (dx — dg))cos ¢
+ (cschr - cosh ydy — sing - cothrdr)sing = 0.
Using (C), the coefficient of dr in (*) becomes
—cos?¢ - sechr - cschr + cothr — tanhr - cos?>¢ — sin’¢ - cothr
which by a simple computation is 0. Hence (*) becomes
(/) (cothr — tanhr - cos®¢)cospdx + cschr - cosh y - sinpdy = 0.

Using (2.0), another simple computation yields

(%) coshr = —cot¢ - coto.
This combined with (D) finally gives
(2.2) o= —¢.

Geometrically this corresponds to the fact, as in the euclidean case, that
the tangent vector to © is orthogonal to PQ.
Hence
tanhy tanhy
cos ¢’ "~ coso

tanhr =
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and
dr = —sin¢’ - cosh yd§ = sino - cosh y d§.
By differentiating with respect to s, one obtains
dr = cosh’r - tano(sechzy + tanhr %) ds,

(2.3) d§ = sech y - cosh’r - seco(sech2 y + tanhr 52%) ds,

do

_ 1 (e do
= tanhr(sech y + tanhr ds)ds'

PROPOSITION 2. Suppose Q is a C*-curve given by y = f(x) > 0. If the
center of curvature of §) never lies on the x-axis, then there exists a unique
geodesic polar coordinate graph T such that Q) is the trace of the “pole” by
rolling T along the x-axis.

Proof. Under the assumption of the proposition, one always has
sech? y + tanhrds/ds # 0. Therefore it never changes its sign. Choose a
starting point (x,, y,) and assign the corresponding values of s =0,
0 = 0, r = r, = arctanh(tanh y,/cos g,), then

- _ (1 2 do
0—0(3)—_/(; talnhr(sechy+tanhr 7 ds

is clearly a strictly monotonic function of s. Hence one may solve for s in
terms of @ and substitute it into = arctanh(tanh y /cose) = r(s). It is
rather straightforward to verify that if one rolls the curve I' (defined by
the above geodesic polar coordinate graph r = r(#)) on the x-axis, then
the trace of the origin of its attached geodesic polar coordinate system is
exactly the given (. O

Rolling construction of solution curves of (1,). Let y be the generating
curve of an O(n)-invariant hypersurface 2" in H"'! satisfying the
W-condition o,(ky,..., k,) = h. Then vy is a solution of (I,), namely

n—11}_ cosh y =1 ds . cos o
(L) [l—l]( cosa sinhy) ds Slnhycoshy

n—1 coshy\" . fn-1
+[ ! ](-—coso sinhy) = ( 1)[ ]h,,

coshy)”‘l(do . coso

sinh y E—smhy coshy)=(—1) h,, l=n.

(1,) (~coso
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Note that (I,) (resp. (I,)) has the “circular” solution tanhr =
((n/(n — D)h,)Y" (resp. tanhr = (h,)/™).

LeMMA 1. Let y be a solution curve of (1,). If there exists a point,
Y(8,), on vy whose center of curvature lies on the x-axis, then v is a circular
solution.

Proof. Suppose y(s,) = (x,, ¥,) is such a point of y. Let @, = (§,0)
be the center of curvature and R, be the radius of curvature of y at
(xg> Yo)- Then it follows easily from equation (I,) that R, =
arctanh((k,)/") if I=n and R, = arctanh(((n/(n — 1))h)/") if I <
n— 1. Therefore, the circular solution of radius R, and center at Q,is a
solution curve of (I,) which tangents y at (x,, y,). Hence it follows from
the uniqueness of (I,) that y must coincide with the above circular
solution. O

THEOREM 1. Suppose v is a non-circular solution curve of (1,). Then vy
can be obtained by the above rolling construction with respect to the geodesic
polar coordinate graph T of r = r(8), where 1 /tanh r is the inverse function
of the following integral, namely

6=+ [b(w) " dw, w=1/tanhr,
where

2/n
alnw' —(n -1k -(w2-1), 1<l<n-1,
b[(w)={| (n = Dh[" = (w? = 1)

aIw"—l[z/"—(wz—l), l=n.

Proof. By Proposition 3 and Lemma 1, there exists a unique geodesic
polar coordinate graph I' of a suitable function r = r(8) such that y can
be obtained by the rolling construction of TI'. It follows from (2.2) and
(2.3) that

tanhr = tanh y
coso
dr . d
(2.4) 20 = sinhr - coshr - tano, or W(ln tanhr) = tanc
do _ tanh rdo /ds
df 1+ tanhr{de/ds + sinh ycoso/cosh y}’
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Since coso = cos¢’ = tanh y - cothr, (I,), / < n — 1, becomes

n—1 1 \"Ydo cos o
(L) [l—l](tanhr) {ds Slnhycoshy

[P I Gl e

or
— do . _ Coso _ .
=1 tanhr{ s sinh y coshy} + 1 =tanh'r- A,
or
do . cos o n—1 /
tanh r g—smhy e (1——tanhr-h,).
Also:
do  n—1 / ) )
tanhr—gs—= ] (1—tanhr-h,)+tanh ¥ Cos“o

Combining all the above relations, one obtains the following corre-
sponding ODE of r = r(8) by differentiation and substitution.

2
II, (ln tanh r 1 + tan’c do _ 1+ do In tanh r
0 do

(n— 1)/1 )(1 — tank'r - &,) + tanh®r - cos’>o
+((n = 1)/0)(1 — tank'r - k) '

Next, let us proceed to integrate the above ODE explicitly by a suitable
substitution of variables. Set

du 1 dr
(25) u = Intanhr, U—Ea_an_h_;@'
Then
iilntanh do _ du dv _ do
FTE a0~ d0 du” Udu

and hence (II,) becomes
(n=1)(1—e™ h,)+e*/(1+ 0?)
n—(n-1)e'™-h,

dv )
Udu—(1+v)
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or
2u AT I h
U@=1+v2+ le (n = 1)( e/ )
du (n=0)(1—e™-n) n—(n—1)e™h,
or
2n =11 = e - h
(2.6) iln(l + v? — ) = (n-D(1-e )

du n—(n—1I)e™- h

Integrating both sides of (2.6), one gets

n—1

2.7) (1 + v* — &) = 2{ u+ %lnln —(n = I)e- h,} +a

That is,

(28) 1+0v2—e®=ae?{en—(n—1)e"- h1|}2/n,

a=e% >0,

Solving for

1 dtanhr
tanhr dé

== +{ae2“(e""|" —(n—1)e™- htl)m -1 - ezu)>l/2

= i{atanhzr(tanh"’rln —(n = tan'r - h,l)z/n

12
-(1- tanhzr)>

Set w = 1/tanh r. Then

(2.9) dw _ d(1/tanhr) _ 1 dtanhr
’ de dé tanh? r de

= ?F{a|nw —(n— l)h,|2/n —(w? - 1)}1/2.

Therefore, § = pf b,(w)~'/?dw, where b(w) = ajnw — (n — I)h|*/" —
(w? — 1). The case / = n is similar. 0
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The spherical case. Similarly, in the spherical case we may assume
¢ = 1, and we have

THEOREM 1’. Suppose v is a non-circular solution curve of (1)), in
M?2(1). Then y can be obtained by a spherical rolling construction with
respect to a spherical geodesic polar coordinate graph T of r = r(8), where
1/tanr is the inverse function of the following integral, namely, @ =
+ [ b(w) Y ?dw, w = 1/tanr, where

almw' —(n = D" =(w2+1), 1<isn—-1,

b(w) =
2/n—(wz-t-l), l=n.

alw” — 1|

Proof. Similar to that of Theorem 1 and hence omitted.

REeEMARK. For the case n =2, [ =1, i.e. constant mean curvature
hypersurfaces in H> we have
bi(w)=02w—h)—-w?+1 or (h —2w)—-w?+1
which can easily be integrated to obtain the equation for the rolling curve

1
tanh r

=w=a+ bcos(d + c), a, b, ¢ constants,

i.e.
1

tanhr = a+ bcos(8 +c)’

Similarly for S* we have
1
a+ bcos(6 + ¢c)’

Recall in R3, in the classical Delaunay theorem, the rolling curve is a
conic, which in polar coordinates is

tanr =

1
r—a+bcos(0+c)'
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