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A geometric function, which measures the relative distance of a
vector to an extreme point of the unit ball of a normed space, is defined.
This function is calculated explicitly for certain classical function and
sequence spaces. Radial limits and continuity properties of this function
are investigated and some applications are given.

Introduction. There are many normed spaces X, which are geometri-
cally very different, whose closed unit balls have the following geometric
property, called the A-property, in common: each member x of the unit
ball is a convex combination of an extreme point e of the unit ball and a
vector y, where ||y|| < 1 and e is assigned a positive weight. If we vary e
and y, looking for the “largest possible” weight in such a representation
of x, we obtain a geometric function of x, called the A-function, which
measures how close x is to being an extreme point of the unit ball. In
Section 1, we make these ideas more precise and calculate explicit for-
mulas for the A-function for the classical spaces Cy(T), [,( X), [ (X) and
c¢(X). It is also shown when the “largest possible” weight is attained in
these spaces. Section 2 investigates continuity properties of the A-function.
These include existence of radial limits (Theorem 2.2) and Lipschitz
properties (Corollaries 2.8 and 2.9). In Section 3, it is shown how the
uniform A-property is related to uniformly convergent series expansions
of vectors in terms of infinite convex combinations of extreme points of
the unit ball (Theorem 3.1). Local boundedness of the A-function away
from zero (Theorem 3.5) is also discussed. Section 4 contains a list of
questions and open problems.

0. Notation. If X is a normed space, the closed unit ball, open unit
ball and unit sphere will be denoted by B, U, and S, respectively. The
symbols /;(X), [ (X) and c(X) denote the spaces of all X-valued
sequences x = (x,) which are absolutely summable, bounded and conver-
gent, respectively. /;( X) is endowed with the norm ||x|| = X°_,||x,,||, while
the norm in /_(X) and- ¢(X) is given by ||x|| = sup,||x,|l. If T is a
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compact Hausdorff space, C(T) denotes the space of continuous X-val-
ued functions on T endowed with the sup norm. If x, y € X, then (x: y)
denotes {Ax + (1 —A)y: 0 <A <1}, ((x:y] has the obvious corre-
sponding meaning). A point e of a convex subset A4 of X is an extreme
point of A if x,y€ A and e € (x:y) imply e = x = y. The set of
extreme points of A4 is denoted by ext(A4). The convex hull of a subset B
of X is denoted by co( B). Recall that X is strictly convex if ext( By) = Sy.
A convex set A is called a polyhedron in case ext(A4) is finite and
A = co(ext(A)). We denote the set of positive integers by N and, if X is a
normed space, Xy denotes X considered as a real vector space. The
function r: X\ {0} — S, is defined by r(z) = z/||z|. If z, z’ are non-zero
vectors, then

’ ’ . - Tt
(1) Ir(2) = r(z) < 2z = 2’ min{ 2] 27 ).
1. The A-property and computation of the A-function.

DerFINITION 1.1. Let X be a normed space and x € B,. If e €
ext(By), ||yl £ 1,0 <A <1and x = Ae + (1 — A)y, we say the ordered
triple (e, y, A) is amenable to x. In this case, we define

(2) A(x) = sup{A: (e, y, ) is amenable to x }

X is said to have the A-property if each x € B, admits an amenable
triple. If X has the A-property and, in addition, satisfies inf{A(x):
x € By} > 0, we say X has the uniform A-property.

There are several elementary facts which we record for future use.

PRrROPOSITION 1.2. Let X be a normed space.

(a) If e € ext(By), then A(e) = 1.

(b) If (e, y,N) is amenable to x and A\ <1, ||y|| <1, there exist
N > MNandy' € Sy suchthaty € (y': x)] and (e, y’, X') is amenable to x.

(¢) If (e, y,\) is amenable to x and 0 < XN < A, there exists y' €
(y:x) such that (e, y’,X') is amenable to x.

(d) If X has the A-property, then A(x) < (1 + ||x|))/2 for all x € By.

(e) If X is a strictly convex space, then N(x) = (1 + ||x|))/2 for all
x € By and \(x) is attained.

(f) If X has the A-property and Y is a linear subspace of X such that Y
has the A-property, and ext(By) C ext(By), then Ay (x) < A y(x) for all x
in Y, where Ny, and A  are the A-functions defined by (2) in By and By.
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Proof. (a) This is clear since (e, e, 1) is amenable to e.

(b) Since A <1, x # e and so there is a # > 0 such that y’ =y +
t(x — e) has norm one. A straightforward calculation shows that X' =
(A+1t—1tAN)/(1 + t — t\) works.

(c) We may take

ro AN o AN
TN =N A1-N) )7

(d) This follows from the fact that if (e, y, A) is amenable to x, then
x—Ae=(1—-A)yandso
A=|lx]<llx = Aell<1-A.
(e) If x € By and x # 0, then (x/||x|, —x/|x|, (A +||x])/2) is
amenable to x so that A(x) > (1 + ||x||)/2. An appeal to (d) completes

the proof. On the other hand, it is clear that A(0) = 1/2.
(f) This is clear from (2).

Before computing the A-function for C,(T'), we will need the follow-
ing version of the Borsuk-Dugundji extension theorem.

LEMMA 1.3. Let T be a compact metric space, let T, be a non-empty
closed subset of T and let X be an infinite-dimensional normed space. If
g: Ty, — Sy is a continuous mapping, there exists a continuous mapping
g: T — Sy such that g|; = g.

Proof. This follows from Theorem 4.1 and 6.1 of [3] (a considerable
strengthening of Theorem 6.1 is found in [1]).

If e is an extreme point of the unit ball of Cy(T), one cannot
conclude that e(t) € ext(By) for t € T (see [2] for a four-dimensional
space X in which this fails for C, ([0, 1])). However, all we need here is
the following elementary result whose proof is given for the sake of
completeness.

LeEMMA 1.4. Let T be a compact Hausdorff space and let X be a normed
space. If e is an extreme point of the unit ball of Cy(T), then |le(t)]| =1
forallt € T.

Proof. Suppose there exists ¢, € T such that ||e(¢,)]| = a < 1. Let
0=(01-a)/4 and set V={teT: |e()|<a+d}, W={teT:
lle(¢)]l =1 — 8}. Then ¢, € V and, since |le|| = 1, W # @. By Urysohn’s
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lemma, there is a continuous function f: T — [0, 1] such that f(V) = {1},
f(W)={0}. Fix x, € Sy and define u,v € Cy(T) by u(t) =e(t)+
8f(t)xy, v(t) = e(t) — 8f(t)x,. Then u,v are in the unit ball of C,(T),
u# e+ vand e = (u+ v)/2, contradicting the fact that e is an extreme
point of the unit ball of C,(T).

REMARK 1.5. If e € Cy(T) and e(?) € ext(By) for all t € T, then e
is an extreme point of the unit ball of C,(T). Consequently, if X is a
strictly convex normed space, the converse of Lemma 1.4 is true.

THEOREM 1.6. Let T be a compact metric space and let X be an
infinite-dimensional strictly convex normed space. Then C,(T) has the
uniform A-property. In fact, if x € Cy(T) and ||x|| <1, then A(x)=
(1 + m)/2, where m = inf{||x(¢)||: t € T'}. Moreover, if x(t) # 0 for all
t € T, A(x) is attained.

Proof. Suppose x = Xe + (1 — A)y, where0 <A <1, |y||=1and e
is an extreme point of the unit ball of C (7). By Lemma 1.4, |le(¢)]| =1
for all 1 € T. Since Ae(t) = x(t) — (1 — A) y(¢), we have

A=[Re(@)<lx()]+1 =My =<lx()]+1-A.
Taking the infimum over all ¢t € T yields A < (1 + m)/2. Taking the
supremum over all such A yields A(x) < (1 + m)/2.

In order to obtain the reverse inequality, first note that if m = 1, then
llx(2)]l = 1 for all ¢+ € T. Therefore, x is an extreme point of the unit ball
of C(T) and A(x)=1=(1+ m)/2. Hence, we may assume m < 1.
Next, suppose x(¢) # 0 for all # € T. In this case, we define e, y € C(T)
by

_ () (21 -1-m],
cW=or Y= e mxan O

Then e is an extreme point of the unit ball of C(T'). Also, foreacht € T
we have

”y(t)us iz‘lx(q”‘_n} — m|

= ml ] x()= 1] _
- 1-m -

1+m 1—m
x‘( 2 )”( 2 )y’

proving A(x) > (1 + m) /2.

L,

and
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Finally, suppose x(¢) =0 for some ¢t € 7. Then (1 + m)/2 =1/2
and we want to show A(x) > 1/2. To see this, let 0 <A <1/2 and
choose 8 > 0 such that 46 <1 — 2A. Let the closed subset T, of T be
defined by

Ty={te T: |x(¢)]| < 8or|x(t)|=28}.

Fix x, € X, ||x,l| = 1, and define e: T;, = S, by

X0, if fx(2)| <9,
elt) = ||z8;|’ if Jlx(1) | = 2.

Since e is continuous on T;,, Lemma 1.3 guarantees that there exists a
continuous mapping e’: T — S, that extends e. e’ is clearly an extreme
point of the unit ball of C,(T'). Define y € C,(T) by

=(x—-Xe’)/(1 =1).
To see that || y|| < 1, observe that ||x(¢)|| > 28 implies

()= O =ADAON_xOI=N

while ||x(¢)|| < 26 implies

Nx()+A 28+ A 1/2
Ip() < AR 284N 172

Since x = Ae’ + (1 — A)y and 0 < A < 1/2 is arbitrary, we have A(x) >
1/2.

< 1.

ReMArK 1.7. If X is a finite-dimensional strictly convex space, the
conclusion of Theorem 1.6 may fail. In fact, C,(7") may even fail to have
the A-property. For example, let 7= {z € C: |z] <1} and let X = C.
Define x in the unit ball of C(T') by x(z) = z for all z € 7. Assume
(e, y,A) is amenable to x. Then |e(z)|=1forall ze Tand 0 <A < 1.
If |z} = 1, we have z = x(z) = Ae(z) + (1 — A) y(2) so that

|z —Xe(z)]<1—-A.

This means that Ae(z) lies in both and closed disc with center 0 and
radius A and the closed disc with center z and radius 1 — A. It follows
that Ae(z) = Az; that is, e(z) =z for all z on the unit circle. The
contradiction is reached by observing that e must then be a retract of the
unit disc 7 onto the unit circle. This example clearly generalizes to show
that Cg.(T) fails to have the A-property if T is the closed unit ball of R".
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Although Remark 1.7 suggests that infinite dimensionality of X is
needed in order to obtain results similar to Theorem 1.6, this is not always
the case. If T is given stronger properties, infinite dimensionality of X can
be relaxed. To see an example of this, we will need

LeMMA 1.8. Let a < b and let X be a normed space satisfying dim Xy
> 2. If u,v € Sy, there exists a continuous function f: [a, b] = Sy such
that f(a) = u, f(b)=v. If, in addition, ||v — u|| <1, then f may be
chosen so that for t,t' € [a, b]

(3) 1) = ()] <

2e = !lllu—o
(b—a)1 - ju— o)’

Proof. If v # —u, then (1 — s)u + sv # 0 for any s € [0,1]. We let
f(t) = r(h(t)), where

b—1t t—a
h(t)_(b—a)u+(b~a)v’ a<t<b.

Then f: [a,b] > S, is continuous, f(a)=u, f(b)=v and by (1) f
satisfies

1£() = £ = 2] m(e) = h (e min{J (o) ]

If ||lv — u|| < 1, we obtain (3) by observing that

()|

() = r(e) | = E=Lju — o] and

In(e) =

If v = —u, choose w € S,, w# tu, and let ¢ = (a + b)/2. By the
preceding observation, there are continuous functions f;: [a,c] — Sy, f5:
[c, b] = Sy such that fi(a) =u, fi(¢)=w=f,(c), f,(b)=v. In this
case, combine f; and f, to obtain f.

>1—|u-nvf.

r—a
u+b_a(v—u)

THEOREM 1.9. Let X be a strictly convex normed space satisfying
dim Xy > 2. Then Cy([0,1]) has the uniform A-property. In fact, if
x € Cx([0,1], |Ix|l <1 and m = inf{||x(2)|: ¢t €[0,1]}, then A(x)=
(1 + m) /2. Moreover, if x(t) # 0 for all t € [0,1], A(x) is attained.

Proof. One proceeds exactly as in the proof of Theorem 1.6, noting
that only the case in which x(#) = 0 for some ¢ € T needs to be modified.
In this case, let 0 < A < 1/2, choose 8 > 0 such that 46 <1 — 2A and let
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the closed subset T, of [0,1] be defined by T, = T} U T,, where T, =
{t€[0,1]: |Ix()|| <8}, T, =({te[0,1]: |x(#)|l = 28}. Fix x, € Sy
and define e: T, — S as before. The set [0, 1]\ Tj, is a countable disjoint
union of open intervals (a, b), where a, b € T,. Extend e to &: [0,1] — S,
defining & on each such interval (a, b) by é(¢) = f(¢) for all ¢t € (a, b),
where f is chosen as in Lemma 1.8 with u = e(a), v = e(b). By uniform
continuity of x on [0, 1], there exists 7 > 0 such that ||x(z) — x(¢")|| < /2
whenever ¢,¢" € [0,1] and |t — ¢’| < 5. Hence, if £, € T; and |t — ¢'| <
1, we have t,t' € T; or t,t' € T,. Consequently, the endpoints a, b are
both in the same set 7; or 7, for all but finitely many of the open
intervals (a, b). By the uniform continuity of e on T;,, we may also assume
lle(?) — e(t')|] < 1whenever ¢t,t’ € Ty and |t — t'| <.

We now show that é is continuous. It is clear that & is continuous at
each point of [0,1]\ 7, and at each point interior to 7;. If 7, is in the
boundary of T, then ¢, is an endpoint, say a, of one of the distinguished
intervals (a, b) mentioned above. Consequently é is continuous from the
right at ¢,. On the other hand, let (¢,) be a sequence in [0, 1] such that
t, 1ty Since e is continuous at t,, we may assume that each 7, lies in
[0, 1]\ T;. If ¢, is also a right-hand endpoint of one of the distinguished
open intervals whose disjoint union is [0, 1]\ 7;, é is continuous from the
left at t,. Thus, by taking n sufficiently large, we may assume that
t, € (a,,b,), where (a,,b,) is one of the distinguished open intervals,
to—n<a,<b,<t, and a,, b, are in the same T. If 7, € T}, then
a,, b, € T}, which implies é(z,) = x, = e(t,) for all n. If ¢, € T,, then
a, b, €T, and |le(a,) —e(b,)|| <1 for all n. By Lemma 1.8, we may
assume

, 2lle(a,) — e(b,)|
leta,) - &(n.)] < (1 - lle(a,) ~ e(b)I)*

Since ||é(1,) — é(t,)ll < lle(ty) — e(a,)|| + |le(a,) — é(z,)], the facts that
e(a,) — e(ty,) and e(a,) — e(b,) — 0 imply é(z,) — e(¢,), establishing
continuity of é. The last part of the proof of Theorem 1.6 now completes
the proof.

REMARK 1.10. The conclusion of Theorem 1.9 fails if dim Xz = 1. In
fact, Cx([0,1]) fails the A-property, since in Cgx([0, 1]), the only extreme
points of the unit ball are the constant functions + 1. Thus, if we define
the unit vector x € Cy ([0,1]) by x(z) = 1 — 2¢, it is easy to see that there
is no triple (e, y, A) amenable to x. Also, see Remark 1.7.
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THEOREM 1.11. Let X be a strictly convex normed space. Then I,( X)
has the A-property but not the uniform A-property. In fact, if x = (x,) €
L(X), llx|| < 1 and M = sup{||x,||: n € N}, then

AMx) = (1= Ixl| + 2M),2.

Moreover, A(x) is attained.

Proof. Suppose (e, y,A) is amenable to x. We may assume A < 1.
Write e = (e,), ¥ = (y,) and observe that there is a positive integer m
such that e,, € ext(By) and e, = 0 if n # m. Therefore,

_ _ Il = 1l [ = el
L= Y Inl+lyal="—F=""+ "=

n#m

which implies1 — A > ||x|| + A — 2]|x,,||. It follows that
Ax) < (1 — x| +2M) /2.
On the other hand, if x = 0, the result is clear. Hence we may assume
x # 0. In addition, if x has a coordinate x, with ||x,|| = 1, then x is an
extreme point of the unit ball of /;(X) and the result is clear. Conse-

quently, we assume ||x,|| < 1 for all n. Pick a positive integer N such that
lxyll= M. Let A = (1 — ||x|| + 2M)/2, e = (e,) and y = (y,), where

0, n#*N,
en = xN ) n = N’
1wl
2
T+ xl = 2M n* N,
Yy = B
] 1 .

1+ |lxl| — 2M)M ™™

Then (e, y, A) is amenable to x. This shows that /;( X) has the A-property,
establishes the formula for A(x) and proves that A(x) is attained. In
order to see that /;(X) does not have the uniform A-property, fix
x’ € Sy. If n is any positive integer then the unit vector

x = x’/n,...,x’/n,0,0,...)

n

of /,(X) satisfies A(x) = 1/n.

ReMARK 1.12. Only a minor change in notation is required to show
that Theorem 1.11 is valid for (&%, X,),, where each X, is a strictly
convex normed space.
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THEOREM 1.13. Let X be a strictly convex normed space. Then I _( X)

has the uniform A-property. In fact, if x = (x,) € [ (X), ||x]| <1 and

= inf{||x,|l: n € N}, then A(x)= (1 + m)/2. Moreover, A(x) is at-
tained.

Proof. First, suppose x, =0 for some index n, If x =2Ae+
(1 —A)y, where 0 <A <1, e =(e,) is an extreme point of the unit ball
of I.(X) and y = (y,) has norm one, then Ae, + (1 —-A)y, =x, =0
implies A/(1 — A) = ||y, || < 1. Thus, A < 1/2 which yields A(x) < 1/2.
On the other hand, if n # n, then by (e) of Proposition 1.2, we may write
x,=Ae,+@1—-A)y, where e, € ext(Uy), |lyJl=1 and A, =
A +{|x,l)/2. Since A, = 1/2, part (c) of Proposition 1.2 shows that
(e,, z,, 1/2)is amenable to x, for some z, € B,. Let

e=(ep..., €no~1€ng—15€ny+15 €nyr2s - - ),

z= (Zl’ ceesZpots T 15 Zpit1s Engrase - )
Then e is an extreme point of the unit ball of / (X), ||zl =1 and
x = 3e + 3z. This, together with A(x) < 1/2, yields A(x) =1/2 and
establishes our assertion in this case. Hence, we may assume 0 < ||x,|| < 1
for all n. The assertion is also true if m = 1 because this implies x is an
extreme point of the unit ball of /_( X). Thus, we also assume m < 1. We
claim A(x) < (1 + m)/2. To see this, choose a subsequence (x,, ) of (x,)
such that ||x, || = m (in case ||x,|| = m for some n, the claim is proved in
a manner similar to what follows). If e = (e,) is an extreme point of the
unit ball of / (X), y =(y,) has norm at most one, 0 <A <1 and
x=2Ae+ (1 —A)y, then A <1, since A =1 forces x =¢ and m = 1.
Then x, = Ae, + (1 —A)y, implies
A Dl Ix ,.kn
T—x < 1-x Thnl=7=%
Letting k — oo yields

+ 1.

A cm
1-A 7" 1-2A
or A < (1 + m)/2, which proves the claim.
In order to see that A(x) > (1 + m)/2,let A = (1 + m)/2, e = (e,),
y = (y,), where
(4) €, = xn/“xn”9

+1

x fx,ll =1,

=i Qi =1-m)
@ =mllx, I ="

o, [l < 1.
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Then ||y|| < 1 becauseif ||x,|| < 1, we have

_ Rlxull =1~ m

1—-—m
Hxll =m| +|lx =1 1-m _
= 1—m S1—m_—1'

Since (e, y, A) is amenable to x, the proof is complete.

REMARK 1.14. Only a minor change in notation is required to show
that Theorem 1.13 is valid for (&L, X,), , where each X, is a strictly
convex normed space.

The next result is essentially a corollary to Theorem 1.6. Since,
however, A(x) can be attained under more general circumstances than
indicated in Theorem 1.6, we present this result as

THEOREM 1.15. Let X be an infinite-dimensional strictly convex normed
space. Then c¢(X) has the uniform A-property. In fact, if x = (x,) € c(X),
Ixl| <1 and m = inf{||x,|: n € N}, then AM(x) = (1 + m)/2. Moreover,
if im, x, # 0, then A(x) is attained.

Proof. Since c¢( X) is isometrically isomorphic to C,(7T), where T is
the one-point compactification of N when N has the discrete topology, all
of the assertions above, except the last one, follow from Theorem 1.6. In
order to complete the proof, write x = lim, x, and assume x_ # 0. We
may assume m < 1; otherwise, x is an extreme point of the unit ball of
c(X). If m >0, define e = (e,), y =(y,) as in (4). Then e, y € c(X)
because lim e, = x_ /||x || and
2 xQll =1 —m

X
(1 = m)llxl
As in the proof of Theorem 1.13, (e, y,A) is amenable to x, where
A = (1 + m)/2. Next, suppose m = 0. Fix x, € X, ||x,]| = 1, and note
that the set D = {n: x, = 0} is finite. Define e = (e,), y = (y,) € c¢(X)
by

lim y, =

Xg, ne€bD,
e = xn < N\D
" TR n 3
EA
—Xg, neD,
Vo= 2lx,ll =1
" ———x_, neN\D.
R \

Then (e, y,1/2) is amenable to x, completing the proof.
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By Theorems 1.11 and 1.13, the dual spaces /; and [/, have the
A-property and uniform A-property, respectively. Since unit balls of dual
spaces are rich in extreme points, one might expect (or at least hope) that
dual spaces satisfy the A-property. To see that this is not the case in
general, let X = Cg([0, 1])*, which, using the Riesz representation theo-
rem, is identified with the Banach space of regular Borel measures on the
Borel subsets of [0,1]. If m denotes Lebesgue measure on [0,1], then
m € By. Assume there exists a triple (e, g, A) that is amenable to m. Then
we can write e = %9, for some ¢ € [0, 1], where §, is point evaluation at ¢.
If 4 =1[0,1]\{¢}, we obtain 1 = m(A4) = (1 — A)u(A4) or ||p| = p(4)
= 1/(1 — A) > 1, which is a contradiction. Consequently, C([0,1]) and
Cr([0,1])* both fail to have the A-property.

We close this section by showing that all finite-dimensional normed
spaces have the uniform A-property.

THEOREM 1.16. Let X be a finite-dimensional normed space. Then X has
the uniform A-property. In fact, if x € By, then A(x) > 1/(1 + dim Xy).

Proof. Let n = dim Xg. Then each x € B, can be written as x =
YrElN,e,, where e, € ext(By), A, = 0 for all k and Z21A, =1 (see p.
10 of [4]). There is an index k, with A, >1/(n+ 1). If A, =1, then
x € ext(By) and A(x) = 1. Otherwise,

is amenable to x, completing the proof.

2. Continuity properties of the A-function. The A-functions which
were explicitly calculated for the classical normed spaces of §1 are all
continuous. However, it is not difficult to construct norms in the plane for
which the A-function fails to be continuous on B,. For example, in
X = R?, let u,, v, denote those points having polar coordinates

naw nw
T d 1.0 22"
(1’2(n+1)) . (’" W+ 1))
respectively, for n = 0,1,2,.... Take || - || to be the norm on X whose

unit ball is the closed convex hull of all the points +u,, *v,. If
w,=(u,+ u,,,)/2 and e has polar coordinates (1,7/2), then e €
ext(By) (so that A(e) = 1), w, = e and A(w,) = 1/2 for all n. Although
the A-function may fail to be continuous at some points of By, it does
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possess some continuity properties in important general cases. Such
properties are investigated in this section.

LEMMA 2.1. Let X be a normed space with the A-property. If x € By
and x # 0, then

SIENES
Mx)z —3 A(nxu)'

Proof. The assertion is trivially true if ||x|} = 1, so we assume ||x|| < 1.
Write z = x/||x|l, y = —x/||x||. Then ||z|| = ||y|| = 1 and

X = (%)z +(1 - l—_%ux—”)y

Given ¢ > 0, there is a triple (e, y’,A) that is amenable to z for which
A(z) — & < A. Letting

N = (1——+—ZM)A and

= A+ 1xDA = A)y" +(1 — lIx)y
2 — (1 +|Ix[)A ’

a routine computation shows that (e, y”’, X') is amenable to x. This shows

s (150

completing the proof.

THEOREM 2.2. Let X be a normed space satisfying the A-property, and
let v be a Hausdorff vector topology on X which is weaker than the norm
topology. If ext(By) is t-sequentially compact (respectively, T-compact)
and By is T-sequentially closed (respectively, T-closed), then radial limits of
A satisfy

A(x)= lim A(rx), x€S8y.

r—1-

Proof. First, assume ext(By) is 7-sequentially compact and B, is
r-sequentially closed. Let x € S, and (7,) be a sequence of positive
numbers increasing to 1. It suffices to show A(r,x) = A(x). For each
n € N, there is a triple (e,, y,, A,) amenable to r,x such that A(r,x) —
1/n <A,. By Lemma 2.1, A(r,x)=[(1 + r,)/2]A(x) which implies
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liminf A(r,x) > A(x). Write A = limsupA(7,x) and choose a subse-
quence (A, ) of (A,) such that A, — A. By passing to a subsequence of
(e, ), we may assume there exists e € ext(By) such that e, — e relative
to 7. Then A, e, — Ae relative to 7, which implies (1 — A, )y, — x — Ae
relative to 7.

If A =1, then x = e and we have

A(x) < liminf A(r,x) < limsupA(r,x) =A =1 =A(x),

implying A(7,x) = A(x).

If A<1, then y, = (x—Ae)/(1 —A) relative to 7. Since By
is 7-sequentially closed, y = (x — Ae)/(1 — A) € By. Then x = Ae +
(1 — A)y implies A(x) = A. Therefore, A(r,x) = A(x).

In case ext(By) is T-compact and By is 7-closed, pick A and (A, ) as
before. Then there is a subnet (e, ) of (e, ) and e € ext(By) such that
e, — e relative to 7. The argument of the preceding case now applies

Nia

(using subnets instead of subsequences).

COROLLARY 2.3. Let X be a Banach space with the A-property. Then
radial limits of A satisfy

Alx) = lirtfl~ Arx), xe8y

in the following cases
(a) X = Y*, where Y is a normed space and ext( By) is weak *-sequen-
tially compact (in particular, dim X < oo and ext(By) is norm closed).
(b) X = Y*, where Y is a normed space, and ext(By) is weak *-com-
pact.

ReMARk 2.4. If dim X < oo and ext(B,) is not norm closed, the
conclusion of Corollary 2.3 may fail. To see this, let C’ denote the convex
hull of the union of the sets {(x, y,0): |x|, |y] <1} and {(x,0,z):
x?+z*=1,z2>0)inR% Let C = (0,0,1) + C’ and let || - || denote the
norm on R® whose unit ball is B = co(C U — C). The unit vector
u = (1,0, 1), which is not an extreme point of B but is a limit point of the
sequence u,, = (cosm, 0, 1 + sinm), m € N, from ext(B), satisfies A(u)
=1/2and lim, ;- A(ru) = 1.

r—1

In order to consider additional results related to continuity of the
A-function, it is necessary to introduce some auxiliary functions. If u € S,
we let

(5) AMu,x)=sup{M:0<A<landx=Au+(1—-A)y

for some y € By}, X € By,
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(6) a(u,x)=sup{a:a=0,[x+a(x—u)| =1}, xe&By\{u},
(7) y(u,x)=x+a(u,x)(x —u),  x&By\{u}.

Geometrically speaking, if x € By \ {u}, y(u, x) is the unit vector which
lies on the line from u through x and is “farthest” from u. These

functions have some elementary properties which are now stated and
whose proofs are left to the reader.

LEMMA 2.5. Letu € Sy.

(a) If x € By\ {u}, then A(u, x) = a(u,x)/(1 + a(u, x)).

(b) If x € By \ {u}, then x = A(u, x)u + (1 — AM(u, x)) y(u, x).

(©) If x € By\ {u), then N(u, x) = ||x — y(u, x)l|/llu = y(u, x)].

(d) If X has the A-property and x € By, then A(x) = sup{A(e, x):
e € ext(By)}.

THEOREM 2.6. Let X be a normed space.
(@) If llull = 1 and ||x]}, |Iz|| < 1 then

la(u,x) - a(u,z)[

< [max{ a(u,x)l(%-%l-lxolcl(u, z)) ’ alu, z)l(lgﬁlzolcl(u, x)) ””x 2

(b) If Jlull = o] = 1 and |Ix|| < 1, then

a(u, x)a(v, x)
T —ix]]

la(u, x) = a(v,x)| < llu = of.

Proof. We provide the details for (a) and note that the proof of (b) is
similar. By (7),

y(u,z)=x+ a(u, z)(x —u) +(1 + alu, 2))(z — x).
It follows that
@) | ly(u,x) | —llx + a(u, 2)(x — u) |||
= ly(u,2) = lIx + a(u, 2)(x — u) [ |
<ly(u,z) = x = alu, 2)(x — w)|| < (1 + au, 2))]|x - z|.

We may assume X is a real normed space. Choose f € X* such that
I/l = 1and

1=f(y(u,x)) = f(x) + a(u, x) f(x — u).
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We obtain

_1-f(x) _ 1—x]
©) flx—uy = LA oL
By (8),

(10) (e(u,z) — a(u, x))f(x — u)

=f(x + a(u, z)(x — u)) — f(x + a(u, x)(x — u))

= f(x + au,z)(x = u)) = | y(u, x)|

<llx + a(u, 2)(x = w) || = y(u, x) | < (1 + alu, 2))|x - z|.
An application of (9) to (10) yields

1) a(uz) - alux) < “(“’x)l(l_]x"l‘l(“’z)) I — 2.

Interchanging the roles of x and z in (11) yields a similar inequality
which, when used with (11), produces (a).

COROLLARY 2.7. Let X be a normed space.
(a) If |lull = 1 and ||x|} l|z|| <1, then

3 AMu,x) Au,z) ] B
A(u,x) = A(u,z)| < [max{ T’ 1= ||z||} lx — z].
(b) If llull = ||vll = 1 and ||x|| < 1, then

Au,x)A (v, x)
1 —lx||

A(u,x) = A(v,x)| <

llu = .

Proof. These both follow from Theorem 2.6 and (a) of Lemma 2.5.

COROLLARY 2.8. Let X be a normed space and let 0 <r <1. If

llull = lloll = 1 and ||x|}, ||z|| < r, then
1+r
A (u,x) = A(v,2)] < m[”x = z| +]u - o]

Consequently, the mapping (u,x) = A(u,x) on Sy X By is a Lipschitz
mapping.

Proof. This follows from Corollary 2.7 by observing

IN(u, x) = A(v,2)| <A (u,x) = X(u, z)| +|A(u,2z) — A(v, 2)]
and thatif ||w|]| = 1 and ||y|| < 1, then A(w, y) < (1 +||y])/2.
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An immediate consequence of part (d) of Lemma 2.5 and Corollary
2.81s

COROLLARY 2.9. Let X be a normed space with the A-property, and let
0<r<1 If x|, |z]| < r, then

M) =M s gyl =2l

Consequently, the A-function is a Lipschitz mapping on rBy and is continu-
ous on Uy.

Although the A-function is continuous on U, when X is a finite-di-
mensional normed space, the example of Remark 2.4 shows that points of
discontinuity may exist on S,. In that particular example, the point of
discontinuity (u = (1,0, 1)) is a limit of extreme points of B but is not an
extreme point. We now show that this situation always leads to points of
discontinuity of the A-function.

THEOREM 2.10. Let X be a finite-dimensional normed space. If x
€ ext(By) \ ext(By), then A(x) < 1. Consequently, the \-function is not
continuous at x.

Proof. Assume, to the contrary, that A(x) = 1. Since x & ext(By),
there is a triple (e, y;, A;) that is amenable to x for which e; # x # y,.
Choose &, > 0 such that e, y; € U(x, ¢;), where U(x,¢,) denotes the
open ball with center x and radius ¢,. Since A(x) = 1, there exists a triple
(e,, ¥5, A,) that is amenable to x for which A, > max{A,, (2 — ¢)/2}.
The equality x = A,e, + (1 — A,) y, implies

lx — el = (L= A)lyy — eyl <2(1 = A,) < .
Then x is in the relative interior of co(e,, y;) in M|, the one-dimensional

linear manifold containing x and e, and e, & M,.
Assume that triples (e;, y;,A,), 1 <i < n + 1, amenable to x, have

been selected, where A; < --- < X,,; <1, the linear manifold M, con-
taining x and e,,...,e, is n dimensional, e, , € M, and x is in the
relative interior of co(ey,...,e,, y;,...,y,) in M,. Then the linear mani-

fold M, ,, containing x and e,,...,e, ., is of dimension n + 1 and there
exists g, > 0 such that M, N U(x,¢,) C co(ey,...,e,, Yi---, V) It fol-
lows that there exists 0 < ¢,,, < min, _, _,{|lx — €|, ||x — ||} such that
M, NU(x,&,.1)Ccoley,...,0, 15 Vis---» Vyu1) Since A(x) = 1, there

n
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exists a triple (e, , V,+2>A,+) amenable to x such that A, , <
Miva and |[x — e, ol < g,y If e,., € M, then e, , €

co(€qy-.-5€,.15 Vis-- -5 Vus1) Which implies e, , , is one of the e’s or y,’s,
1 < i < n + 1. Since this is impossible by the choice of ¢, ;, we obtain
€nt2 & Mn+1'

By induction, we obtain an increasing sequence (M, ) of linear sub-
manifolds of X such that M, has dimension # for all n. Since dim X < oo,
the contradiction establishes A(x) < 1.

We do not yet know what general conditions will guarantee continuity
of A on B,. In the simplest of cases (i.e., By a polyhedron), however, A is
well behaved and it is this result we now proceed to demonstrate.

LEMMA 2.11. If By is a polyhedron and e € ext(By), then the A-func-
tion is continuous at e.

Proof. Let e,e,,...,e, denote the distinct extreme points of B,.
There exists § > 0 such that ||e — y|| > § for y € co(e,...,e,,). Suppose
(x,) is a sequence in B, such that x, — e. For each n, write x,, = A e +
Xy e, where A A, >0and A, + X7 A, =1If A, <1, then

A
y, = 3 —k"—-ek € co(e,,...,e,) and
s 1A,

n = Aﬂe +(1 - An).))}'l'
In this case, ||x, —e||=1 = A)lly, —ell =1 —A,)8. From this, we
have A, — 1 which implies A(x,) = 1 = A(e).

REMARK 2.12. Let B, be a polyhedron and let e, e,,..., e, denote
the distinct extreme points of By. If x € B,, A(e,, x) is attained. Thus,
we may write

x=A(eg,x)ey +(1 = A(eg, x)) X Ney,
k=0

where A, > 0 for all k and X]"_ A, = 1. Suppose x & ext(By); that is,
A(eg, x) < 1. If Ay, > 0, choose a positive number 8 small enough so
that A(eqy, x) +8 <1 and 6/(1 — A(ey, x) — 8) < Ay, Write p =
8/(1 — A(ey, x) — 8). A direct computation shows that if y is taken to be
the convex combination

y= (7\0 - .“)eo + Z Aey + Z pA e,

k=1 k=0
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of eq,€,...,e,, then (e, y,A(ey, x) + 8) is amenable to x. The con-
tradiction shows A, = 0. Geometrically, this means that if one considers
the line L from e, through x, then the unit vector u on L that is farthest
from e, lies on a face of B, that does not contain e,,.

THEOREM 2.13. If X is a finite-dimensional normed space such that B,
is a polyhedron, then the A-function is continuous on B .

Proof. By Corollary 2.9 and Lemma 2.11, it only remains to show that
the A-function is continuous at each x € Sy \ ext(By). Since ext(By) is
finite and A(-) = max{A(e,): e € ext(By)}, it suffices to show that
each function A(e,-) is continuous at each such x. To this end, fix
e € ext(By) and x € Sy \ ext(By). Let (x,) be a sequence in By such
that x, — x. All of the numbers A(e, x), A(e, x,,) are attained. We first
consider two special cases.

Case. I ||x,]| = 1 for all n.
We write

x=MA(e,x)e+(1—A(e,x))y(e,x),
x,=A(e,x,)e+(1-A(e,x,))y(e, x,).
Let (A(e,x,)) be any convergent subsequence of (A(e,x,)), say
(A(e,x,,)) converges to A. Since x # e, it follows that A <1 and
(y(e, x,,)) converges to y = (x — Ae)/(1 — A). Thus, ||y|| =1 and x =
Ae + (1 — A)y which implies 0 < A < A(e, x). Assume that A < A(e, x).
By (a) of Lemma 2.5, a(e,x, )~ a, where a <a(e,x) and A=
a/(1 + a). Choose € > 0 such that
(a+e)/A+a+e)=(A+A(e,x))/2.
For each k, write
(12) y,=x,, +(a(e,xnk) + e)(xnk ~e)=yle,x,) +e(x, —e).
If F,,..., F, denote the distinct faces of By, there exist f; € X*, ||f]l = 1,

such that F, = By N f7'(1), 1 <j < p. Moreover, by Remark 2.12 for
each k, there is a face F,, that contains y(e, x, ) but not e. Therefore,

fi(e) < Land fi,(y(e, x,,)) = 1. Since

xnk -—e= (1 - >\(e’xnk))(y(eaxnk) - e):
we obtain from (12) that
(13) fj(k)(yk) =fj(k)(y(e’xnk)) + “"fj(k)(xn,c —e)

=1+¢(1 - }\(e,xnk))(l ——fj(k)(e)).
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By finiteness of the number of faces, we may assume, by (13) and by
passing to a subsequence, that there is a common index j, among the
J(k)’s satisfying

() =1+ 5(1 — }\(e,xnk))(] —fjo(e))

for all k. Consequently, ||yl > 1 + &(1 — A(e, x, ))(1 — f(e)) for all k.
But y, > y+ex—e)=x+(a+e)x—e)and a + & < a(e, x). This
implies ||y + &(x — e)|| =1 from which we obtain A(e, x, ) — 1. The
contradiction shows that A(e,x,) — A(e, x), implying A(e, x,) —
A(e, x).

Case I1. ||x,|| < 1 for all n.

The obvious notational modification of the proof of Lemma 2.1 yields

1+
Ae,x,) = ———Z-II—{"—“}\(e,xn/||xn||) for all n.

Case I then gives A(e, x,./|[x,|)) = A(e, x). This implies liminf A(e, x,,) >
A(e, x). On the other hand, the same argument as in the first part of the
proof of Case I shows that any cluster point A of (A(e, x,)) satisfies
A < A(e, x). Therefore, limsup A(e, x,,) < A(e, x) completing the proof in
this case.

The proof of the general case follows from Cases I and II.

3. Further properties of the A-function.
THEOREM 3.1. Let X be a normed space having the uniform A-property.
If 0 < A <inf{A(x): x € By}, then for each x € By, there is a sequence

(ey) in ext(By) such that

<(1-A)", n=1,2,....

x— L A1 =A) e,
k=1

Proof. By (c) of Proposition 1.2, there is a triple (e, x;, A) amenable
to x; that is, x = Ae; + (1 — A)x;. Note that ||x — Ae;|| < 1 — A. By the
same reasoning, there is a triple (e,, x,, A) amenable to x,. This yields

x=Ae; + A1 = A)e, +(1 — A)’x,,
and

[x —Ae; ~A(1 = ANe,|| < (1 = A)%
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The sequence (e, ) is obtained by repeating the preceding observations in
a simple inductive argument.

REMARK 3.2. If 0 <A < 1, then £2_;A(1 — A)*~! = 1. Thus, if X
has the uniform A-property, Theorem 3.1 shows: (a) each x € B, admits
an expansion X.3_; A e, as an infinite convex combination of members of
ext(B,) and (b) the sequences of partial sums of these series converge
uniformly for x € B,. It is easy to check that (a) implies X has the
A-property. Moreover, the converse of Theorem 3.1 holds; that is, if (a)
and (b) hold, then X has the uniform A-property. To verify the last
assertion, note that if (a) and (b) hold, then X (by (a)) has the A-property
and (by (b)) there is a positive integer N such that if x € B, we can write
x = X¥_1A e, where (e,) is a sequence in ext(By), A, > 0 for all %,
T2 A, =1and ||x — Z¥_, Ae,ll < 1/2. In particular, if x € Sy, 1/2 <
XY-1 A, which implies 1/2N < X, , for some index k. If A, =1, A(x)
=1;if A, <1, then

A
e,, ——e,, A
is amenable to x and so A(x) > 1/2N. By Lemma 2.1, A(x) > 1/4N for
all x € B,.

We do not know if the A-property implies (a). As the following result
shows, however, it does imply a similar but weaker statement.

THEOREM 3.3. Let X be a normed space satisfying the A-property.

(1) If a convex function f: By — R attains its maximum value, then it
attains its maximum value at a member of ext(By).

(ii) If X is a Banach space, then B is the closed convex hull of its set of
extreme points.

Proof. (i) Suppose that f attains its maximum value at x. Pick a triple
(e, y,A) that is amenable to x. Since x =Ae+ (1 —A)y and f is a
convex function, we have f(x) < Af(e)+ (1 —A)f(y). The fact that
0 < A < 1 implies f(e) = f(x).

(ii) Assume, to the contrary, that there exists x € B\ co(ext(By)).
Then there is a continuous linear functional f on Xi and a number M
such that ||f|| = 1 and |f(y)| < M < f(x) for all y € co(ext(By)). By the
Bishop-Phelps theorem, there is a continuous linear functional g on Xy
such that ||g]l=1, ||f — gll < (f(x) — M)/4 and g attains its norm on
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B. A straightforward computation shows

g < p+ LB

for all y € co(ext(By)). Consequently, g does not attain its maximum
value on B, at a member of ext(By). This contradiction of (i) completes
the proof.

REMARK 3.4. Recall that a normed space X has the Krein-Milman
property if every closed and bounded convex subset of X is the closed
convex hull of its set of extreme points. Theorem 3.3 shows that if X
satisfies the A-property, then X satisfies a restricted version of the
Krein-Milman property; namely, B, is the closed convex hull of its set of
extreme points. The converse, however, is false. For example, the space
C,(T) of Remark 1.7 fails to have the A-property. On the other hand,
since X is the set of complex numbers, the unit ball of C,(T') is the closed
convex hull of its set of extreme points (see [5]).

THEOREM 3.5. Let X be a Banach space with the A-property. If ext( By)
is countable, then the A-function is locally bounded away from 0 in the
following sense: Given any x, € By and any open neighborhood W of x, in
By, there exists a point x; € W, a neighborhood W' of x; in By and
XN > 0 such that A(x) > X forallx € W'.

Proof. Let (e,) be an enumeration of the members of ext(B,) and let
(r,,) be an enumeration of the rational numbers in (0, 1). If x € W, there
is a positive integer n and a triple (e,, ¥, A) amenable to x. Choosing m
such that r, <A, there is a triple (e,, y’,r,,) amenable to x. Conse-
quently, x € W,,,, where W, = Wn (r,e, + (1 —r,)By). This shows
that W =Ug ,_, W, and, since each set W,,, is closed in W, the Baire
category theorem guarantees the existence of indices m’, n’ such that
W, has non-empty interior in W. Therefore, there is a point x; € W,
and e > O such that W, contains W' = W N {x € By ||x — xg| < &}.
It follows that if x € W’, we have A(x) > r,,, completing the proof.

If X has the A-property and the members of ext(B,) are separated,
then points in B, that are close to being extreme points of B possess a
unique representation property. In order to make this precise, we need the
following,
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LEMMA 3.6. Let X be a real normed space with the A-property. Assume
there is a number 8 > 0 such that ||e — e’|| > 8 whenever e,e’ € ext(By)
and e # e’. If x € By and (e, y,\), (e’, y’,X') are amenable to x, where
AN >3/(340),thene=e’.

Proof. Wehave x =Ae + (1 = A)y = Ne’ + (1 — X)y’ and so

(14) AMe—e)=(N=-XNe' —(1-A)y+(1-X)y".
If e + ¢’, then (14) and the fact that |le — e’|| > 6 imply
38 ’ ’ —_ _ — 4
3 36
<3(1” 3+8)_ 3+

The contradiction shows e = e’.

THEOREM 3.7. Let X be a real normed space with the A-property.
Assume there is a number & > 0 such that |le — e’|| > § whenever e, e’ €
ext(By) and e # ¢’. If x € By\ ext(By) and A(x) > 3/(3 + §), then
there exists a unique pair of vectors e € ext(By), y € Sy such that x =
A(x)e + (1 — A(x))y.

Proof. Let (e,, y,, A,) be a sequence of triples that are amenable to x
and for which A, 1 A(x), A, > 3/(3 + 8) for all » and ||y,|| = 1 for all n.
By Lemma 3.6, all the e,’s are equal, say to e. Since x = A,e + (1 — A )y,
for all n,wehave(l — A,)y, = x — A(x)e. Also, x # e implies A(x) < 1.
Thus, if we let z = x — A(x)e, ||z]| = 1 — A(x). Letting y = z/|z|| shows
x = A(x)e + (1 — A(x))y, proving existence. If we also have x = A(x)e’
+ (1 — A(x))y’, wher e’ € ext(By) and |y’|| =1, Lemma 3.6 implies
e = ¢’ Since 1 — A(x) # 0, we also obtain y = y’.

4. Questions and open problems. The following list of questions is
not meant to be exhaustive. Rather, it represents those questions which
are of most interest to the authors.

1. It would be useful to calculate the A-function for other classical
spaces with the A-property. In particular, what spaces of operators
have the A-property and what does the A-function look like for these
spaces?
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If (X,) is a sequence of normed spaces, each having the A-property,
when do (®X5_, X,),, (®X_; X,), have the A-property and what
do their A-functions look like?

If X is a normed space having the A-property, characterize the points
of continuity on Sy of the A-function. Characterize those x € B for
which A(x) is attained.

If X is a Banach space, is the A-function of the first Baire class on
B,?

If X is a normed space having the A-property, can X be renormed so
as to have the uniform A-property?

If a normed space X has the A-property, does X* have the A-prop-
erty? In considering the converse, note that /, has the A-property and
¢y, one of its preduals, does not. However, c¢ is a predual of /; that
has the A-property.
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