Pacific Journal of

Mathematics

(s)-NUCLEAR SETS AND OPERATORS

KARI ASTALA AND M . S. RAMANUJAN




PACIFIC JOURNAL OF MATHEMATICS
Vol. 127, No. 2, 1987

(5)-NUCLEAR SETS AND OPERATORS

K. ASTALA AND M. S. RAMANUJAN

The purpose of this paper is to demonstrate considerable similarities
in the behaviour of compact and (s)-nuclear operators. More precisely,
we obtain for (s)-nuclear operators results resembling previously known
properties of compact operators; sometimes a word for word translation
of a “compact theorem” holds for (s)-nuclear operators. However, we
wish to emphasize that different methods for the proofs are now needed.
For example, the often applied Ascoli-Arzela theorem does not have a
(s)-nuclear counterpart (see §5).

1. Introduction. Given a bounded subset D of a Banach space E,

denote by
8,(D) =inf{r > 0: D C F, + rB;}

its nth Kolmogorov diameter, n € N. Here the infimum is taken over all
subspaces F, C E of dimension not greater than n and Bj denotes the
closed unit ball of E. For an operator T € L(E, F) define §,(T) =
8,(TBg). Now, D is (relatively) compact if and only if (8,(D))} € c,.
Analogously we define the (s)-nuclear sets when we replace ¢, by the
space (s) of rapidly decreasing sequences,

(s) = {(}\n)f’: sup n¥|A,|< 0o Vk € N}.

In other words, D is called (s)-nuclear if (8,(D))y € (s). Note that we
have no need for a separate notion for “relative” (s)-nuclear or non-closed
(s)-nuclear sets.

A bounded operator T € L(E, F) is said to be (s)-nuclear if the set
TB; is (s)-nuclear, ie. (§,(T))Y € (s). That happens if and only if (see
[11]) T has a representation

Tx = Y. N(x, )z,

i=1
where ||y/|l, llz;]]l <1 and (A,)? € (s). This is the historical reason for
using the term (s)-nuclear rather than (s)-compact.

Besides the whole class of all (s)-nuclear operators we discuss the
properties of a class of sub-ideals, the A(a)-nuclear operators. Here
a=(a)?,0<a;<a,< --- and

1) A(a) = {(A,)7": sup R*

A< oo VRER.|.
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If a,=1logn and R = e, then R* =n* and so for this exponent

sequence A(a) = (s5). In general, we assume that A(a) is a nuclear space
and equivalently that A(a) C (s) or that

(2) logn < Ma,, n € N.

A(a)-nuclear sets and operators are then defined in the obvious manner.
For further information on A(«)-nuclearity we refer to [9], [10], and [11].

First we study (s)-nuclear sets of (s)-nuclear operators. For compact
operators the problem was solved by Palmer [7]. He proved that, for
instance, the following conditions are equivalent for a bounded closed
subset H C L(E, F):

(3) H is a compact set of compact operators.
(4) H(B;) and H'( B;.) are both relatively compact.

Here H(B;)={Tx: T€ H,x € By} and H' = {T": T€ H}. We
shall give a similar result for (s)-nuclear operators. However, the implica-
tion (3) = (4) which is trivial in the compact case is, considered with a
verbatim translation, false for (s)-nuclear operators (see Example 3.7).
Hence we define the notion of uniform (s)-nuclearity; we say a set
H C L(E, F) consists of uniformly (s)-nuclear operators if the sequences
of the diameters (8,(T))"_,, T € H, form a bounded set in (s). The

topology of (s) is, of course, given by the seminorms
(5) pi(A)=supnf|A, |, A=(A,)", keN.
Now we have

1.1. THEOREM. Let E and F be Banach spaces and assume H C L(E, F)
is bounded. Then the following conditions are equivalent.

(a) H is a (s)-nuclear set of uniformly (s)-nuclear operators.

(b) H(Bg) and H'(By) are (s)-nuclear.

(c) H(Bp) is (s)-nuclear and H is of equal (s)-variation.

(d) The sets H(x), x € By, are uniformly (s)-nuclear and H is of equal
(s)-variation.

For the undefined notions in (c) and (d) we refer to §§2 and 3. The
equivalence of (b) and (c) follows from characterizations of collective
(s)-nuclearity, given in Theorem 2.5, which are presumably of indepen-
dent interest. The corresponding results for compact operators were
obtained by Palmer [7] and Geue [6]; see also [4].
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As in the compact case we get as corollaries a number of new proofs
for (known) permanence properties. For example, Theorem 1.1 implies
that T ®, R and T ®, R are (s)-nuclear if and only if both 7" and R are
(s)-nuclear.

Finally, we study how far one can generalize Theorem 1.1 to the
subspaces A(a) of (s). It will turn out that the results of Theorem 1.1
hold for the A(a)-nuclear operators if and only if the exponent sequence
a satisfies
(6) a,.<Ca, neN,

a condition which is known to be equivalent to A(a) ® A(a) = A(a) (see
[3] or [12]).

2. (s)-nuclear sets. We start with yet another characterization of
(s)-nuclearity.

2.1. DeFINITION. For a bounded set D C E, the nth entropy number
e,(D) is defined as the infimum of all r > 0 such that there are points
Yis--+» ¥, With ¢ < 277! and

q
D cU{y + rBg}.
1

If Te L(E,F), we write e, (T) = e, (TBg). For more details on
entropy numbers of operators see [8].
Recall that a set is called balanced if AD C D for |A| < 1.

2.2. LEMMA. A convex balanced subset D C E is (s)-nuclear if and only

if (e,(D)7-1 € (9).

Proof. We may assume that D is separable. Let {x,: i € N} be a
dense subset of D, write e, for the ith canonical basis vector of /' and
define the operator T € L(I', E)by Te, = x;, i € N. Since §,(T) = §,(D)
and e, (T) = e, (D), we must show that (s)-nuclear operators are char-
acterized by rapidly decreasing entropy numbers. For this we apply the
results of [8], Chapter 12, where only real Banach spaces are considered.
The complex case can be treated similarly.

According to [8], 12.3.2 we have the inequality

(7) 8,(T)<ne (T), neN.
To prove a converse we reason as in 8], 14.3.11. First, combining (8],
11.12.2 and 12.3.3, we get

87|

So—nim-pe ML

(8) e, (T) <2mé, (T) +
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Then, if (n — 1)/logn < 2km < 2k + (n — 1)/logn and m?*§ (T) <
C,,

n—1

1-2k —k
(9) e, (T)<Cm + 8| T|n % < Ck(_klogn

| " s

< (4, +8]T|)n"%, n>1,

for some constants C,, 4, depending only on k. a

2.3. COROLLARY. If D C E is bounded and J € L(E, F) is an isome-
try, then D is (s)-nuclear if and only if JD is (s)-nuclear in F.

Proof. Since D is (s)-nuclear if and only if the balanced convex hull
of D is (s)-nuclear and since e, (/D) < e, (D) < 2e,(JD), the claim
follows from Lemma 2.2. a

Another proof of Corollary 2.3 is given in [10].
The next result is well known (see, for instance, [8], 11.7.4 and 11.12.)

2.4. LemMa. If T € K(E, F), then 8,(T') < 2n8,(T) and 8,(T) <
2n8,(T").

In approximation theory a collection of operators H C L(E, F) is
called collectively compact if HB; is relatively compact in F (c.f. [1] and
the references therein). Hence it is natural to use the term collectively
(s)-nuclear for sets of operators H such that HBj is (s)-nuclear. As the
main topic of this section we prove some equivalent conditions for
collective (s)-nuclearity.

We introduce, for each bounded set H € L(E, F), the notion of its
sequence of equi-variation measures v,(H). For n = 1,2,... the number
v,(H) is defined as the infimum of those r > 0 for which there exists a
cover A;, A,,..., A1 of By by at most 2"~ ! sets such that for each i,
1<i<2"},

sup{|Tx — Ty|: T€ H, x,y €4} <r.

As is easily seen H is of equal variation in the sense of Vala [13] exactly
when (v,(H))Y € c,. Therefore H is said to be of equal (s)-variation if

(v,(H)T € (5).
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2.5. THEOREM. Let H C L(E, F) be bounded. Then the following
conditions are equivalent.

(a) H(By) is (s)-nuclear.

(b) H' has equal (s)-variation.

(c) There exists a sequence of subspaces F, C F' and a sequence of real
numbers X, such that

IH | gl=A,,codimF, <n and (X,)] € (s).

Proof. (a) = (c). If H(Byg) is (s)-nuclear and A, = 24,( HB;), we can
find for each n € N an n-dimensional subspace G, C F such that H(B;)
C G, + A, Bg. Let P, € L(F) be a projection onto G, with norm [|P, || <
n. (cf. [8], B.4.9). Then the subspace F, = (I — P,)F’ has codimension n
in F’ and for any T € H we have

171 || <IT(1 - P)|

=[|(I = P)T|<ANI-PJ<(n+ DA,

where (1 + n)A )T € (s).
©=0®) U ||H|gll=A,and F' = F, ® E,,dim E, < n, let P, and
Q, be projections onto E, and F,, respectively. We may assume that
WPl <n, ||l <(n+1)andthat P, + Q, = I; then T" = T'P, + T'Q,,.
Since e, (P,) < 4||P,|2M~™/" < 4n21~™/" (see [8], p. 171), B, can
be partitioned into sets 4,, 1 <i <2™ ! such that ||P,x — Pyl <
8n20-m/nforall x, y € A,.Soif x, y€ 4,and T € H,

17x = T'y| <[ T°Qu(x = )| +IT" I P.x — Pyl

<2n+ DA, + 8nl| H|20-m/n

where ||H|| = sup{||T}: T € H} < 0. Thus v,(H') < 4nX, +
8nj|H|22~™/" and in the same way as we proved the implication (8) = (9)
we deduce (v,(H))? € (s).

(b) = (a). Denote by L*(H, E’) the space of all bounded mappings
from H into E’ and equip L®(H, E’) with the supremum norm. More-
over, define

J: F' - L*(H,E"), (Jx')(T)=Tx".
Since ||Jx" — Jy'||, = sup{||T"x" — T'y'||: T € H}, we have e,(J/By) <
v,(H"). As H’ is assumed to have equal (s)-variation, we see that J is
(s)-nuclear.
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Next, let m,: L*(H, E’) > E’ be the evaluation at T. Then 7 Jx’ =
T'x" or mpo J = T' which gives J'o(m;) = T". Thus H"(By.) C J'(Bg),
where G = L*(H, E’), and so according to Lemma 2.4, H"” is collectively
(s)-nuclear. But if I,: E — E” is the canonical isometry, I H(B;) =
H"I,(Bg). Therefore the (s)-nuclearity of HBy follows from Corollary
2.3. a

2.6. REMARK. In a similar fashion one proves the equivalence of the
three conditions (a)-(y) below:

(a) H' is collectively (s)-nuclear;

(B) H has equal (s)-variation;

(v) There exists a sequence of subspaces £, C E and as equence of
real numbers A, such that

|H|g =X, codimE,<n and ()\,,)fe(s)

We leave the details to the reader.

3. (s)-nuclear operators. We are now ready for the proof of Theorem
1.1; we devide the proof into five steps.

3.1. LeMMA. Let H C L(E,F) be bounded. If both H(B) and
H'(By.) are (s)-nuclear, then H is an (s)-nuclear set in L(E, F).

Proof. Since the mapping 7 — 7" is an isometry, by Corollary 2.3 it
suffices to show that H’ is an (s)-nuclear subset of L(F’, E’).

If we let §,=6,(HB;) and A, =8, (H'B.), then by assumption
(86,)5_1, (A,)X_, € (s). Furthermore, there exist for each n € N n-dimen-

n=1»

sional subspaces F, C F and E, C E’ such that
(10) H(B,)C F,+28,B,, H(B.)CE,+2\B.

Now, choose projections P € L(F) onto F, and Q € L(E’) onto E, with
1P|, 1QIl <n. If T € H,

T"=TP +T(I—-P)=QTP +(I-Q)T'P'+T(I—-P),
where, by (10), |T"(I — P)||=|({ — P)T|| < 26,(1 + n) and
(7 = Q)P | <[l(1 = Q)T"[n < 2n(1 + n)A,.

On the other hand, since P’ and Q have the rank », one easily sees
that the operator Hom(P’,Q): § — QSP’ has rank equal to n, i.e. the
set {QSP’: S € L(F',E’)} is an n’>-dimensional subspace of L(F’, E’).
Hence 6,:(H’) < 2(n + 1)§, + 2n(n + 1)A,. Consequently, if k € N is
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fixed, we choose for each p € N a natural number 7 such that n*> < p <
(n + 1)%; then

p¥8, (H') < (n + 1) 8.(H') < 4¥*1n 41§, + 4k+1p2k+2) < M, < oo

where M, depends only on k (especially, not on p). O

3.2. LEMMA. Let D C E be convex, balanced and bounded. If 6, =
0,(D), there are points x; € D,1 < i < n, such that
n~'D c beo{x;}; + 5(n + 1)8,B;.

(Here bco denotes the balanced convex hull.)

Proof. There exists an n-dimensional subspace E, C E such that
D CE,+ 28,B;. Let P, € L(E) be a projection onto E, with ||P,|| < n.
Then

DCcPD+(I-P)DcCPD+2n+1)3,B,.

Let F be the space spanned by P,D having as it norm the Minkowski
functional p of P,D. The Auerbach lemma applied to F shows that there
are vectors y;, 1 <i < n, with p(y;) <1 such that any y € P,D has a
representation N

n

y= Z ;Y la;[ < 1.
i=1

Furthermore, for each A € (0,1) we can find vectors x; € D with P,(x;)
= Ay, € P,D. Then

lx; = yill < @ = M)yl +llx; = Ayl
< (= N|PDI+|(I = P)x,] < 3(n + 1)8,,
if and only if A is chosen so that (1 — A)||P,D|| < (n + 1)4,. In that case
n~'P (D) c beo{x,}; + 3(n + 1)§,B;. O

3.3. LEMMA. Let H C L(E, F) be an (s)-nuclear set of uniformly
(s)-nuclear operators. Then HBy is (s)-nuclear.

Proof. We may clearly assume that H is balanced and convex. Then,
if 6, = 6,(H), by Lemma 3.2 there are operators T, € H, 1 < i < n, for
which

n"'H C beo{T;}; + 10n8,B,x r)-
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Next, by the uniform (s)-nuclearity we have for the sequence p, =
sup{8,(T): T € H} that (pn,)7 € (s). Hence there exists for each i an
n-dimensional subspace F; C F such that

T,(Bg) C F, + 2p,Bp.

Consequently, if G is the linear span of { F: 1 < i < n}, then dim(G) < n?
and

H(B;) € G +(2np, + 10n%,) B;.

This gives §,:(HBy) < 2np, + 10n28, which shows, like in the proof of
Lemma 3.1, that (8,( HBy))Y € (s). g

3.4. LEMMA. Suppose that H C L(E, F) has equal (s)-variation and
that the sets H(x), x € Bg, are uniformly (s)-nuclear (that is, for p, =
sup{8,(H(x)): x € B;} we have (p.,)° € (s)). Then HBy, is (s)-nuclear.

Proof. Since H has equal (s)-variation, by Remark 2.6 there exists a
sequence of subspaces E, such that ||[H ||| = A,, co-dim(E,) < n and
(A, € (s). Hence, if P, € L(E) is the projection onto the co-summand
of E, with ||P,]| < n,

HB, C HP,B, +(n + 1)A B,.

Moreover, as rank(P,) < n and ||P,Bg|| < n, there are vectors x; € E,
1 <i<n, with ||x,|| < n? such that P B is contained in the convex
balanced hull of {x;}}. If F/ C F is a subspace for which dim(F}) < n
and

H(x;) € F, + 2n°u,By,

then we see that HB; C G + (2n*u, + 2n),) By where G = span{ F:
1 <i < n} with dim(G) < n*. Thus 8,:(GBg) < 2nu, + 2nX, and we
get (8,(HB))T € (s). 0

3.5. The proof of Theorem 1.1. To prove that (a) and (b) are equivalent
assume that H is an (s)-nuclear set of uniformly (s)-nuclear operators.
Since the mapping T — T” is an isometry and since 6,(7") < 2nd,(T), H’
is a (s)-nuclear set of uniformly (s)-nuclear operators. Then Lemma 3.3,
applied to H and H’, shows that both HB, and H'B, are (s)-nuclear.
The converse follows from Lemma 3.1.

For the other conditions the equivalence of (b) and (c) follows from
Theorem 2.5 and Remark 2.6, the implication (c) = (d) is trivial and
finally, Lemma 3.4 gives the converse (d) = (¢). O
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3.6. ReMARK. If HB; is (s)-nuclear, then H'B, (and thus H as a
subset of L(E, F)) need not be (s)-nuclear. Take, for instance, a fixed
vector y in a Hilbert space E with an orthonormal basis { f,: k € N} and
define T, x = (x, f,)y, H= {T,: n € N} C L(E). As HB is bounded
and 1-dimensional, it is (s)-nuclear. However, H'B;. is not even relatively
compact since it contains all the f,’s.

3.7. ExaMPLE. Let { A,: k € N} be a partition of natural numbers,
ie. N=U¢_ 14, and 4,N 4, = & when j + k. Assume that #(4,),
the cardinality of 4,, satisfies 2e* < #(4,) < 2e**1. Now, let E be as
in Remark 3.6 a Hilbert space with an orthonormal basis { f,: k£ € N}.
Denote by P, € L(E) the orthogonal projection P,: E — span{ f;: i €
A}

If T, = e %P, clearly ||T,|| = e %, k € N. Thus, if H = {T,: k € N},
for any k we have §,(H) < e~**D, As the T,’s are finite dimensional
operators, we see that H is a (s)-nuclear set of (s)-nuclear operators.
However, if e < n < e* + 1, then

8,(HBy) = 6,(T)=e*>nt.

Hence sup{n?8,(HBg): n € N} = oo and HB;, is not (s)-nuclear. Conse-
quently, the requirement of uniform (s)-nuclearity in Theorem 1.1(a)
cannot be replaced by mere (s)-nuclearity.

4. A(a)-nuclear sets of A(a)-nuclear operators. The proof of Theorem
1.1 was based essentially on the following three properties of the space
(s).

@A) if (A,)T € (s), then (nA )Y € (s).

(i) if (A, € (5),0 < p,2 < A, and g, is decreasing, then (p,) €
(s).

(iii) (6,(T))¥ € (s) if and only if (e (T)HT € (s).
It is easy to see that if the subspace A(a) of (s) has the same three
properties, then A(a)-nuclear sets of A(a)-nuclear operators admit a
description as in Theorem 1.1.

Now the condition (i) is automatically satisfied if A(a) C (s), i.e. (2)
holds. Furthermore, a natural assumption to guarantee (ii) is the condition
(6), a2 < Ca,. It turns out that the same requirement gives (iii), too.

4.1. LEMMA. Suppose logn < Mea, and a,» < Ca,, n € N. Then for
any T € L(E, F),

(8,(T));" € Aa) ifand only if (e,(T));" € A(a).
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Proof. Since §,(T) < ne,(T), cf. (7), the sufficiency part is trivial. To
prove the necessity we first show that

(11) lim —— = oo

= (a,)
For (11) define ¢q(n) € N by loggq(n) = 2"log2. As «a,» < Ca, and
g(n)? =q(n + 1), ay, < Cay,qy < Clayp < v < Clayg =
C'a,.

If now g(n)<p<g(n+1), then a,<a,,,;)< C""'a, which

yields loga, < (n + 1) logC + loga, < (n + 1)Cy; here G is a positive

constant. However, 2" log2 < log p and therefore we can estimate
log(p/af,) =logp — 2loga, = 2"log2 —(n + 1)2C,

Letting n (or p) tend to infinity gives (11).

Secondly, if kK € Nisfixedand (n — 1)/a, < km < k + (n — 1)/a,,
then it holds
(12) (i) ka, < (n—-1)/(m—1) and (ii) a, < ra,,
if only r € N is large enough. Indeed, the first inequality in (12) is
obvious while for the other take a number n, € N such that
(n—1/(ka,)* =22, n=2ny. Asn<2n—1)<(n—1/(ka,)*> <m?
for n > max{n.,2}, there exists a constant C; (depending on k) such
that a, < Ca,,2 < C,Ca,, for all n € N. If we choose r € N larger than
C,C, we obtain (12).

The proof of the necessity follows from the formulae (8) and (12). If
sup{ R*$,(T): n € N} < oo for each R € R, the claim is that then also
R%e, (T) < Cg for some constant C, independent of n. We may clearly
assume that R has the form R = 2%, k € N. Moreover, if for each n € N
we pick m so that (12) holds we obtain from (8)

R%e, (T) < 2%*2ms, (T) + 8| T||

< G2k 27ken 1 8T < Cp, + 8||T| < 0. a

Analogous to the (s)-nuclear case we say that a subset H C L(E, F)

consists of wuniformly A(a)-nuclear operators if for the sequence p, =

sup{6,(T): T € H} we have (1,) € A(a). Also, in a corresponding

way we define the notions of equal A(a)-variation and uniformly A(a)-

nuclear sets, cf. Chapters 2 and 3. Combining the above results we get
now

4.2. THEOREM. Let A(a) C (s) and suppose a,» < Ca,. Then the
following conditions are equivalent for any bounded subset H C L(E, F).

(a) H is a A(a)-nuclear set of uniformly A(a)-nuclear operators.

(b) HBy and H'By. are A(a)-nuclear.
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(¢) H has equal A(a)-variation and the sets H(x), x € By, are
uniformly A(a)-nuclear.

4.3. REMARK. As is easily seen also the counterpart of Theorem 2.5
holds for the ideal of A(a)-nuclear operators if only A(a) C (s) and
o, < Can.

Theorem 4.2 has a converse, too. Applying a result of H. Apiola [3]
we shall show that if « is any nuclear exponent sequence such that
Theorem 4.2 holds for the A(a)-nuclear operators, then necessarily a,; <
Ca,.

4.4. THEOREM ( Apiola [3], Theorem 3.2). Let A(a) C (s) and suppose
that for any pair of A(a)-nuclear operators T, R also the product
Hom(7, R): S — RST is a A(a)-nuclear map between the corresponding
operator spaces. Then we must have a,» < Ce,, for alln € N.

4.5. COROLLARY. Let A(a) C (s) and suppose that the conditions (a),
(b) of Theorem 4.2 are equivalent for any bounded subset H C L(E, F).
Then a,. < Ca,,

Proof. We shall show that “Hom-stability” is a consequence of
Theorem 4.2. The claim will then follow from Apiola’s theorem. A similar
reasoning, based on the notion of equal variation, is given for compact
operators in [2].

Now, suppose T € L(E,, F;) and R € L(E,, F,) are both A(a)-
nuclear. If we define

H =Hom(T,R)B, 5 p,= {RST: |S|< 1, S € L(F,, E,)},

then we need to show that H is a A(a)-nuclear set. But obviously
HB, C||T||RBg, and H'Bg, C ||R||T"Bp,. Since also T is A(a)-nuclear
(Lemma 2.4) and since the implication (b) = (a) of Theorem 4.2 is
assumed to hold H is, indeed, a A(a)-nuclear subset of L(E,, F,). m]

Above we could have shown that, under the assumption of the
equivalence of (a), (b) for A(a)-nuclear maps, if Hom(7, R) is A(a)-
nuclear then both 7T and R are A(a)-nuclear; the suitable subset H
would have been H = { RST: rank § = 1, ||S}| < 1}.

Stating this remark differently we see that the following known result
is a consequence of Theorem 4.2.
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4.6. COROLLARY. Suppose A(a) C (s) and a,» < Ca,. Then the prod-
uct Hom(T, R) of the operators T and R is A(a)-nuclear if and only if both
T and R are A(a)-nuclear.

Since (T ®, R) = Hom(T, R) and since T ®, R can be identified
with a restriction of Hom(7”, R), Theorem 4.2 yields stability results also
for tensor product operators.

4.7. COROLLARY. Let A(a) C (s) and a,» < Ca,. Then T, R are
A(a)-nuclear if and only if T ® , R (or T ®_ R) is A(a)-nuclear.

For the standard proof of Corollary 4.7 see [12] or [2].
Finally we mention a result whose compact version was proved by
Bonsall [S].

4.8. COROLLARY. Suppose A(a) C (s) and a,» < Ca,. If T € L(E)
denote by C; the centralizer of T, C, = {S € L(E): TS = ST}, and
define K € L(C;) by K(S) = ST.

Then, if T is A(a)-nuclear, so is K.

Proof. Let H= {ST: S € Cy, ||S|| < 1}. As HB; C TB; and H'B;,
C T'Bg., Theorem 4.2 shows that H is A(a)-nuclear in C;. g

5. Concluding remarks. One can easily see that the method of Theo-
rem 1.1, the use of finite-dimensional projections, does not work without
serious modifications for general compact operators. On the other hand,
the known proofs for characterizations of compact sets of compact
operators are all based on one form or another of the Ascoli-Arzela
theorem. Such methods, however, fail in the (s)-nuclear case.

5.1. REMARK. The (s)-nuclear version of the standard (scalar valued)
Ascoli Arzela theorem is not valid: Take

H={feclo,1]: f(0) =0,

|7(x) = f(») I <|x = y| Vx, y € [0,1]}.

Then it is readily seen that H has equal (s)-variation but it is not
(s)-nuclear.
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5.2. REMARK. The proofs of the several implications in Theorems 2.5

and 1.1 and the proof of Theoorem 6.5 in [4] also yield inequalities of the
following type (Here H C L(E, F) is any bounded subset):

8,.(H') < 4n8,(HBy) + 4n%5,( H'B}.)

8| H |
’ 2
en(H'Bp) < An’o,(H) + 2005

v,.(H) < 2e,(H'B) +% for all m,n

8n| H |

2 , LU LN N
v,,(H) < Cn’,(H'B;) + 2(m=1/(n-1)

for all m,n.

The numerical constants or exponents of » in the above are not claimed
to be sharp.
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