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UNBOUNDED EXPONENT

B. I. EKE

The present paper considers the problem of choosing a maximum
subfield having a subbasis over K among subextensions of L/K, when
L/K is purely inseparable but of unbounded exponent.

Throughout L will be a purely inseparable extension field of a field K

of characteristic p Φ 0. For the case when L/K is of bounded exponent

e > 0 Weisfeld [6, Theorem 3, p. 442] has shown that among the subfields

of L having a subbasis over K there is a maximal subfield with respect to

set inclusion. This theorem fails in the unbounded exponent case since

such a maximal subfield would not always exist [6, p. 442]. An open

problem was, therefore, posed in Weisfeld's paper regarding a necessary

and sufficient condition for the theorem to hold for extensions L/K of

unbounded exponent. The present paper seeks to provide a solution to

this problem.

Let M be a given subset of L. The subset M will be said to be in

canonical form when M is put in the form M = Ax U A2 U where At

consists of the elements of M having exponent / over K. M is called a

canonical generating set over K if M is a minimal generating set for K(M)

and when M = AλU A2U in canonical form, then the subsets M

defined by Mt = U^L/+1^4y, i = 0 , 1 , . . . , Mo = M, satisfy Mf' is a minimal

generating set for K(MP')/K. The set M is called a distinguished subset of

L/K if M is a canonical generating set over K and, for each nonnegative

integer w, K Π Lp" c Kp(Ap

n U Ap

+ι U ) where M = Ax U A2 U

in canonical form. Finally, M is called a subbasis over K if for every finite

subset {a l 9..., ar) of M, ^ ( α ^ . . . , α r) is the tensor product of the

simple extensions K{at), i = 1,.. ., r, and when this happens, the exten-

sion K(M) is called an extension having a subbasis over AT.

The main result is that if L/K is any purely inseparable extension,

then L/K has a maximal subfield 7 having a subbasis over K if and only

if L/K has a distinguished subset M.

LEMMA 1. If L/K has a subbasis, then every subbasis for L/K is

distinguished.
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Proof. Let L/K have a subbasis B = Bx U i?2 U in canonical
form. Let u be any element of L with exponent n over Γ̂. Then

UP"-1

 G K{Bpnl) = ϋ:(U°Lrt5/7'ι~1) which shows that the exponent of u
over AXU^l?;) is less than n. Hence B is distinguished.

LEMMA 2. //* the subset M of L is a canonical generating set over K,
then M is a subbasis over K.

Proof. Suppose M is a canonical generating set over K but M is not a
subbasis over K. Let M = AXU A2U in canonical form and let e be
the smallest positive integer such that there exists an element b e Ae for
which 6/?e x e ί ( M - fe). Clearly e Φ 1 otherwise we contradict the
minimality of M over K. There exists a smallest positive integer t such
that

(1) b*"1

where M,_x = U*L,Λy. Also there exists an element a e At such that
b""1 eK(Mt_x -b) but

(2) bP"ι€K{Mt_x-{a,b}).

Let s be the highest integer such that

(3) J^-1 etffM,.!-{*,£>},a*1)-
Then Λ ^ e ^(Λf^! - {α, b}9 a

pS+\ bp6~ι). Consequently apS is separable
and purely inseparable over K(Mt_ι — {a,b},bpe L) which says that

(4) fl^ϊ^-ίfl^},^1].

In expression (1) above it must be the case that e > t and in (4) it is the
case that s > t both because of [3, Cor. 1.31, p. 28]. But if s > t, then
in expression (3) we have K(Mt_λ — {a,b},apS) = K(Mt_λ — {a,b})
so that bpβ * e K(Mt_1 — {a, b}) contradicting the expression (2).
Therefore s = t. So, we have s = t < e. But then (4) implies that ap' e
K(Mt_λ — a) Q K(M - a) where t < e contradicting the minimality of
e for this purpose. This contradiction proves the assertion.

THEOREM 3 {Main result). The extension L/K has a maximal sub field
J having a subbasis over K if and only if L/K has a distinguished subset M.

Proof. Suppose L/K has a distinguished subset M. By Lemma 2 M
is a subbasis over K. Moreover, M is distinguished in L/K implies that
any element of L having exponent r over K must have exponent less than
r over KfjJfL^^ where M = Ax U A2 U in canonical form.
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Denote K(M) by /. Let F be any modular subfield of L over K
containing / and suppose u e F — J has exponent r over k. Then one
can write

(5) H^^f+ +αX1

where al9...9ane K9 uv...,un e /, s < r, and « is chosen minimal.
Using arguments similar to those of Weisfeld in [6, Theorem 4, p. 442]
and the concept of /7-freedom as defined in that paper one can get a
maximal /?-free subset {al9...9ak} of {al9...9an} relative to Jp and a
maximal ^-free subset {al9...9aj} of {al9...9ak} relative to Fp where
j < k. Consequently we have a relation

(6) a
J+1

0 < im<p,m = 1,...,

Let 5 be the set consisting of the coefficients j ^ . . . , - . Let i^ be the
modular closure of K(B) as defined in [4, p. 408], and let F2 = F Π Fv

Then JP2 must have a subbasis over K. Therefore by [4, Theorem 1, p. 403]
there exists a higher derivation D of F2 relative to which K is the field of
constants. Using this in (6), one can violate the /̂ -freedom of {al9..., aj}
relative to Fp. Therefore J = F.

Conversely let N be a maximal subfield of L/K having a subbasis
over K and let M = Aλ U A2 U (in canonical form) be any subbasis
for N/K. As usual, for / = 0,1,... we let Mi = \JjLi+1Aj. We must show
that M is a distinguished subset of L/K. Clearly M is a canonical
generating set over K. We shall prove, by induction, the statement P(n):
If u is any element of L having exponent n over K, then the exponent of
u over K(Mn_1) is less than n. Now P(l) is trivial. Hence assume
P(n — 1) holds and suppose an element W G L has exponent « over K
and same exponent over K(Mn_ι). Let ̂ 4 = {w} U Mn_v Then yί is a
subbasis over # . Let T{n~ι) = { K ^ n _ χ u ^41B D ,4 and B is a subba-
sis over K). Clearly Λ is in T(n-λ\ So, T^~l) Φ 0 . Let M^n~l) be a
maximal element (with respect to set inclusion) of the set Γ^" 1 ^ We now
proceed to let M ("~2 ) be a maximal element of

jψi-2) = { f i c An_2 U M ( "- χ ) IB D M ( "- 1 } and 5 is a subbasis over # } .

In general, for 1 < k < n — 1, we let Mw be a maximal element of

Γ w = {£ c 4̂̂  U M{k+1) 15 2 M{k+l) and 5 is a subbasis over K}.

It is our ambition to show that K(M{1)) = N.
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Let v be an element of M and suppose v G Ar (1 < r < n). If

v ί ^ ( M ( r ) ) , then it must be the case that υ has an exponent s < r over

K{M{r)) by the definition of M{r\ Consequently we can write

(7) υ*' = cιv{'+ ••• + cmvpS

where c l 5 . . . , c w G ϋΓ, i^,.. ., vm G X"(M ( r )), s < r, and m is minimal.

This relation now allows us to apply an argument similar to that in the

first part of this proof between K(M(r)) as / and the modular closure of

K(M(r\ v) as F (F and / in this case both contained in their composite

F(J) as L). The contradiction which will then arise as in the first part

shows that v G K(M(r)). Consequently, K(M(l)) contains K(M) = N,

and, by the maximality of TV, K(M(1)) = N. This shows that u G N. By

Lemma 1 the exponent of u over K(Mn_ι) is less than n. This shows that

M is a distinguished subset of L/K.

COROLLARY 4. Let J be a subfield of L/K having a subbasis over K.

Then J is a maximal subfield of L/K having a subbasis over K if and only if

J Π Kp ' is a maximal subfield of L Π Kp ' having a subbasis over K,

Proof. Let / be a maximal subfield of L/K having a subbasis over

K, and let B = Bι U B2 U (in canonical form) be a subbasis for

J/K. Fix the integer i > 1 and let B(ι) = {af~ ι \a e Bs and s > i}. Then

W = BλU 115,1) 5 ( i ) is a subset of / Π Kp" which is also a subba-

sis over K. We shall show that W is a distinguished subset of L Π Kp~'/K.

Let u ^ L Π Kp" have exponent e < / over iΓ. We note that by Theorem

3 the subbasis B is a distinguished subset of L/ίΓ. Let

where 0 < ik < pβk, ek = exponent of uk over iΓ, and uk G U^L^^.

Since w^ G .SΓ it must be the case that ik > pek~ι, and since ek — i <

ek — 1, it must be the case that /?**"' < ?^"1 < ik < p6k whenever ek >

i. Hence wj* G K(B{i)) when ^^ > / and, of course, uk G J5ê  if efc < /.

This shows that if W = Bx U UBt in canonical form, then up* i G

ί ( 5 , U ••• U5 f ) . Consequently W is distinguished in LΠKp~ι/K

and, by Theorem 3, .fiΓ(H )̂ is a maximal subfield of L Π j ^ " ' having a

subbasis over ΛΓ. Now it is obvious that K(W) c / Π ^ " ' . Now let x G

/ Π icΓ77". Then x = Σah... ί;̂  vι™ where 0 < /y < pej, e} = exponent

of Vj over K, and Vj G 5, 1 <j < m. Since xp' <E K we must have,

for each 7, lJ>pe^~i and hence uθ G ίΓ(ϊΓ). This shows / Π ^ " ' c

K(W), and equality follows.
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Conversely suppose / Π Kp" is a maximal subfield of L Π Kp"
having a subbasis over K. Let T be any subfield of L/K having a
subbasis over K and suppose TDJ. Then for each i T Π Kp" ΏJΠ KP~\
If Γ Π JK77"" Φ J Π JK7"' we contradict the maximality of / Π JRΓ̂ ~' as
stated earlier since Γ Π j£p ' is also a subfield of L Π Kp"' having a
subbasis over J£. Consequently / = Γ. D

It was shown in Lemma 1 that if L/K has a subbasis over K, then
that subbasis must be a distinguished subset of L/K. It is not true,
however, that an extension L/K must be modular in order to have a
distinguished subset as the following example shows.

EXAMPLE. Let K = Zp(xvx2> ) where the xt are algebraically
independent indeterminates over Zp. Let

L = K(xfιχf2 + xf\xf\xf\xί"\xf\...).

First, we show that L/K is not modular. We note that

KC\Lp = Z^xf, xf, x3, x4 ? - )

Now the set {I, x{\ xλxξ~ι -f x2} is a subset of L^ which is linearly
independent over K Π Lp. For suppose c0 + cxxf H- c2Xχxξ + c2x2 =
0, c, G iΐf n L^7 and not both cx and c2 are zero. We have

cξ + φ c 3 + cfxfJC3 4- cfxf = 0

or

If c{ + cξx{

There exists

' Φ 0, then

X 3 c{ + ci

a finite n such

c 3 e Z (jcf,...

>xp

that

1

) c

Consequently JC3 is separable algebraic over Zp(x1, JC2, JC4, . . . , xΛ) violat-
ing the algebraic independence of the xf. over Zp. Therefore c[ 4- cf x{ == 0.
This again leads to a contradiction unless cλ = c2 — 0. Consequently we
must have c0 — cλ = c2 = 0 as required. On the other hand, it is obvious
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that the given set {1, xf\ xλxfι + x2} is linearly dependent over K. This
shows that L/K is not modular.

Now the set S = {xξ~2, xξ~\ x{\...} is a subbasis over K. Besides,
S is distinguished in L/K.

DEFINITION. An extension field F/K is called Galois if it is modular

LEMMA 5. If a purely inseparable extension F/K has a subbasis then it
is Calois.

Proof. Let M = Bx U B2 U (in canonical form) be a subbasis for
F/K. Let x G ΠfLιK(Fpi). Then x = g^f1,..., 6/) for some bl9...9bn

e M; = UyLi+1J?y- and w is chosen minimum. Since M = U°?βl2?y. is part of
a linear basis for F/A' the set {bv...9bn} must be contained in every Mt

otherwise we contradict the unique representation of x relative to the said
linear basis. This shows that

since ΠfLιMt = 0. This shows ΠfLιK(Fpl) = K and F/K is Galois. D

THEOREM 6. The purely inseparable extension L/K has a maximal
subfield F having a subbasis over K, if and only if there exist in L a maximal
modular subfield F which is Galois over K.

Proof. Suppose F is a maximal modular subfield of L/K which is
also Galois over K. Let Al9 Al9... be subsets of F constructed in the
manner of [2, Theorem 11, p. 339]. Let

Q^C\K(F^)9K(AιUA2U'^)

as defined in [2, Theorem 13]. Then F is relatively perfect over Q and has
a subbasis over Q. By Lemma 5, F = (Y*LιQ(Fpl) = Q. From the fact that
F/K is also Galois we have

00

F = Q = p | K(Fpi) 0 K(Aλ U A2 U - ) = ̂ ( ^ U 4 2 U - ).
i - l

Consequently F has a subbasis over K. The converse is immediate.
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