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PIERRE BARRUCAND, JOHN LoxTON AND H. C. WILLIAMS

Explicit upper bounds are developed for the class number and the
regulator of any cubic field with a negative discriminant. Lower bounds
on the class number are also developed for certain special pure cubic
fields.

1. Introduction. Let ¥ be any cubic number field with discriminant
A < 0 and regulator R. Since either 4|A or A =1 (mod4), we may
assume that A = df2, where d is the discriminant of a quadratic field.
Further, since d < 0 and either 4|d or d =1 (mod4), we must have
|d} = 3. Let @, be the ring of all algebraic integers of %" and let & be the
number of ideal classes of 0,

From a classical, general result of Landau [11] we know that

hR = O(Y|A] (log |A])?).

More recently Siegel [19] and Lavrik [13] have given general results from
which an explicit constant ¢ can be easily determined such that

hR < cf|A] (log|A])>.

However, in the case of a pure cubic field (d = —3), Cohn [6] has shown
that

hR = 0(\/|A| log|A| loglogIAl).
In this paper we will develop an explicit upper bound on AR which
depends on d and f (= JA/d). In the pure cubic case our results give
VIA|
hR < ——=log|A|.
63 o8 l

We make use of the well-known fact that

o(1) = fim 28) _ .

s=1 {(s)

where
k=CR and C=27n/y|A|.

209
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Now

D(s) = §x(5)/8(s) = {21 a(n)n”’,
where
(1.1) a(n) =) p(j)F(n/j)

Jin
and F(k) denotes the number of distinct ideals of @, with norm k. Also,
@(1 - 5) = C>*(T(s)/T(1 - 5))®(s);
hence, by using a result of Barrucand [1], we get

®(1) = X a(j)j e’ + C Y a(J)E(C),
j=1 Jj=1
where
E(x)= fw etV dt < e /x.
Thus,

) <2 Z la(j) e,

and, if we put

(12) 0= X Jaj) e,
we get
(1.3) hRC < 24(C)

It follows that we can easily bound R once we can obtain an upper
bound on A(C).

2. The function a(k). As a(k) is a rather difficult function to work
with, we will develop a simpler function S(k) such that

(2.1) la(k)| < B(k).

We first note that since F(k) is a multiplicative function and F(1) = 1,
then a(k) is also a multiplicative function and «(1) = 1. We need now
only consider the problem of determining a( p”), where p is any rational
prime. By (1.1) we have

(2.2) a(p") = F(p") — F(p"™1);
hence, it suffices here to determine F( p"). In order to do this we will need

to know how the ideal ( p) splits in @,.. A convenient summary, describ-
ing the five different types 4, B, C, D, E of possible rational prime
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factorization in @, can be found in Hasse [11] or Barrucand [2]. In Table
1 below we present those results which will be useful in the sequel. As
usual we use the symbol (a/b) to denote the Kronecker symbol. We also
use the symbols p, p’, p” to denote prime ideal factors of ( p) with norm
p and the symbol g to denote a prime ideal factor of ( p) with norm p2.

TABLE 1
Type Factorization of ( p) Quadratic Characters Remarks
A pp'p"” (A/p)=1 —
B (p) A/p)=1 inert
C pa (A/p)=-1 —
D p’p’ (d/p)=0,(f/p)# 0 ramified
E p3 (f/p)=0 ramified
Define
B(k) when(k,f)=1,
gy = [ B when (k. 1)
0 when (k, f) > 1,
where
(2.3) B(k) =2 (d/j).

Jlk
If p is of type A4, we see that F( p”) is the number of possible triples of
non-negative integers k, j, k such that i +j + k = n; that is, F(p") =
(";%). By using similar reasoning and (2.2) we get the results listed in
Table 2.

TABLE 2

Type n F(p") a(p") B*(p")
A any (n+2)(n+1)/2 n+1 n+1
B n = 0 (mod 3) 1 1 n+1
B n =1 (mod 3) 0 -1 n+1
B n = 2 (mod 3) 0 0 n+1
C n =0 (mod2) (n+2)/2 1 1
C n =1 (mod?2) (n+1)/2 0 0
D any n+1 1 1
E any 1 0 0

Since B( k) is multiplicative and B(1) = 1, we get
B(k) = B*(k) =|a(k)|= 0.
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3. An upper bound on CRh. If we put
(3.1) B(x) = Z B(j)j e,

then by (1.2), (1.3), (2.1), and (2.3) we get
(3.2) hRC < 2B(C).

In this section we will determine an explicit upper bound on B(C). If
we take x and ¢ to be positive real numbers, by an inverse Mellin
transform

[>2]

1 c+ico s
B(x)=—27l.f__ xT(s)

- L/C*”” x—T(s)¢(s + 1) L(s + 1) ds,

2ai c—ioco

where L(s) is the associated L function

o0

L(s)= Y (d/n)n".

n=1

Now the functions { and L satisfy the functional equations

OSTF(S)f(S),

= 2 C
(27)°

s— 1/2

(33) L(l-s)= in > T(s)L(s)  (d<0)

(2 )’
(see [8] Ch. 9); thus, by using the relation
I'(s)I(-s) = —7/(ssin7s),
we see that the integrand
A(s) =xT(s)¢(s + 1)L(s + 1)
satisfies

|dls 1/2 e
~—2s—1f(5)§(S)L(S)-
s(2m)

As s =0, T(s)=s'—=vy+ O0(s) and {(s + 1) =s' + v+ O(s).
(v here is Euler’s constant .577215665 .. ..) (See [16], §§12.1, 13.21.) Thus,
A(s) has a double pole at s = 0 and if we write L(s + 1) = a + bs +
O(s?) with a= L(1), b= L(1), we find, by expanding the various

(3.4) A(-s) =
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functions about s = 0,
A(s)=(1 —slogx+ - )(st—y+--+)
X(st+y+---)a+bs+--)

_a  b—alogx
=St

+ + 0(1)

s

as s » 0. From the functional equations for { and L we see that
$(s + 1) L(s + 1) has simple zeros at integral values of s < —1; hence,
A(s) has no poles except for the double pole at s = 0 and the simple pole
at s = —-1. Also, the residue at s = -1 is

kx = lin_ll(s + 1)A(s) = -¢(0)L(0)x.
Since {(0) = -1/2 and, by (3.3), L(0) =|d|'’L(1)/7 = |d|"*a/7, we
have
k=ald|"/2m.

Let S be a positive real number > 1. By Stirling’s formula in the
form

(o + it) = O(e(1|" "7
as |t| = oo, and standard estimates for { and L (as in [20] §13.51),
Ao + it) = O(e™7s[")

as |t} = oo, uniformly for —S < 6 < ¢ and for each fixed x. We can
therefore move the line of integration in the integral for B(x) from
Re(s) = ¢ to Re(s) = —S. This gives

-S-+ico
(3.5) B(x)=b-alogx+ks+5—[ """ A(s)ds (s> 1).

2mi -S—ico

By (3.4) The integral here is

s=1/2

T(x) = Lf“m lal xt

- 2ai S i s(2W)2s—1

s—1/2 0
1 fs+ioo ld| /xSI‘(s) 5 B(n)d
27 s i s(277)2s’1 n=1 1

27 & 1 s+io [472n | T(s)
d Elﬁ(n)(z_mf ( ) —ds)'

-
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Thus, by evaluating the Mellin transforms above, we get

i:‘,ﬁ(n (4772;1).

|d|x

(3.6) T(x) = =2
\/_

Since E(y) < e™”/y when y > 0,

T(C %i :8 n) -277fn/\/_

from (3.6) we have

Put! N = [|d|/47%f?], and set

G = __1 ZN ,8(11) —2’”f"/‘/m
f on ¢ ’
1 (n) —7Tin
H= ? n}N:H Bn e~ 2m/n/Vldl

Since B(n) < n, we have _
FH < e~ 2l (midl Z 1) < om2anAldl g /(af) < 1.
Also,

N
fG < X 8(n)/n,
n=1

where &8(n) is the number of divisors of n. It is well known (see for
example Shapiro [18]), that there exist constants ¢, and ¢, such that

N
(3.7) Y 8(n)/n < (logN)*/2 + 2ylogN + ¢, + ¢,/VN .

n=1
Indeed, (3.7) is true with ¢, = 0 and ¢, = 7.442. It follows that

(3.82) fT(C) < (log(|d|/47%2))* /2 + 2ylog(|d|/An?f?) + 8.442
< ilog?d|+ 2vylogld|  (|d|> 8),

when |d| > 47%f? and

(3.8b) fT(C) <V|d| y2af <1

when |d| < 47%f2.

1By [a] we denote that integer such that a — 1 < [a] < a.
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By (3.2) and (3.5) we get
V4| ( a
K

f

By using these results we can derive an explicit upper bound on RA in
terms of L(1) and L'(1). In fact, if we use the formula following (3.8a), we
get

(39)  Rh< Z10glA|+ b ~ alog2m + 5 + T(C)).

(3.10) Rh<

V|A] (alog|A| log?|d| | 2ylog|d]
~ S—+b+ >f + 7 .

4. The main results. We need now to discuss bounds on a = L(1) and
b = L’(1). It is well known (see, for example, Chandrasekharan [5], p. 157)
that

(4.1) 0<L(1) <logld|+ 2;
indeed, if we use the result of Pintz [16] we get
(4.2) L(1) < (X + o(1))log|d]|,

where A = 3(1 — e™V/?) /4 = .295102. However, since (4.2) is not an
explicit result, we will make use of (4.1) here.

Also, by a simple refinement to the argument given in [5], p. 158-159,
we can derive

(43) |/(1)| < (logld ).

By using (4.1), (4.3), (3.9) and (3.8b) or (3.10), we get for |d| > 200
(4.4) Rh < 453/|A|log|Allogld]  (|d] < 47%f?)

and

(4.5) Rh < .767/|A[log|Allogld|  (|d|> 200).

When |d| is small compared to |A|], these results are better than the results
mentioned in §1.
We can also give a and b as finite sums. It is well known that

3/2 ldl
(4.6) a=LQ1)=-ald|™” gln(d/n).

(see [8] Ch. 6). When |d| is large, however, it is often easier to compute a
by finding 4’ and using

(4.7) 2ah’ = wy|d| L(1),
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where A’ is the class number of the quadratic field of discriminant d and
w is the number of roots of unity in that field. Buell [4] has described how
h’ can be efficiently computed.

In terms of the Hurwitz Zeta-function

((s,) = X (n+a)”,
n=0
we have
_ ldl
L(s)=ld| X (d/n)¢(s,n/|d);
n=1
whence,
| d|
g‘. (d/n)$'(0,n/1d]) = L(0)log|d|
|d]
Z (d/n)logT(n/|d]) — L(0)log|d]|.
n=1
(see [20], §13.21). From the functional equations for L,
a|"*L(1) = 7L(0),

|47 L/() = [ L'(0) + (l0g(ld] /27) ~ ) L(0)].
So we obtain

L, M)
(48) b=1L'(1)=(y+log2m)a—ald|"" Y, (d/n)logT(n/|d]).

n=1

In the case where X is a pure cubic field we have A = -3f2,
a=L()=7/3/3 and

vy + log27 + 3log 5(2/3) = 222662987

b=L(1)= 1/3)

3f
by (4.8). It follows from (3.9) and (3.8b) that
VIA|
6/3

Other results of this type for |d| < 200 can be easily derived by using
Table 3 below together with the formulas (3.8) and (3.9).

(4.9) hR < log|A|= (2f log f + flog3) /6.
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TABLE 3

d L() L) d LQ) L(1)
—3 0.6045997881 02226629870 —103 1.5477516108 —0.8809087714
—4 0.7853981634  0.1929013168 —104 1.8483510282 —1.4168771966
—7 11874104117 00185659811 —107 0.9111276756 —0.3227283614
—8 11107207345 —0.0230045879 —111 2.3854942292 —2.0120281805
—11 0.9472258251 —0.0797737528 —115 0.5859100510  0.0021206331
—15 1.6223114704 —0.4272680579 —116 1.7501373307 —1.3044164518
—19 0.7207307841 —0.0611999045 —119 2.8798932638 —2.6880771121
—20 1.4049629462 —0.4460960312 —120 11471474419 —0.5084996029
—23 1.9652020541 —0.8295529542 —123 0.5665357400  0.1051756228
—24 12825498302 —0.4226371999 —127 1.3938563455 —0.6756070246
—31 1.6927400922 —0.7636917993 —131 13724111229 —1.0129497686
—35 1.0620521591 —0.3841359021 —132 1.0937621702 —0.4421925820
—39 20122297265 —1.1251079939 —136 1.0775573904 —0.4920159080
—40 0.9934588266 —0.2795058488 —139 0.7993992331 —0.3215125571
—43 0.4790883882  0.1195240860 —143 2.6271317553 —2.4098111988
—47 22912419285 —1.4690506571 —148 0.5164746508  0.3635813641
—51 0.8798219250 —0.2759159416 —151 1.7896142906 —1.2898755068
—52 0.8713210307 —0.1705046261 —152 1.5289008746 —1.0381270761
—55 1.6944490680 —0.9400942441 —155 1.0093551772 —0.4772813436
—56 1.6792519084 —1.0135002063 —159 2.4914450356 —2.3185606656
—59 1.2270015789 —0.6541524535 —163 0.2460685276  0.5335570640
—67 0.3838066289  0.2526843656 —164 1.9625373721 —1.7270709177
—68 1.5238962757 —0.8855692531 —167 2.6741411208 —2.5496223412
—71 26098691772 —2.0424190523 —168 0.9695165413 —0.2486118800
—79 17672839421 —1.1177717634 —179 11740682982 —0.7410094492
—83 1.0345037784 —0.4748405533 —183 1.8578656914 —1.3440359401
—84 13711034417 —0.7765396209 —184 0.9264051326 —0.2653014650
—87 2.0208845180 —1.4284849560 —187 0.4594720151  0.1890727660
—88 0.6697898042  0.0872717101 —191 29551296636 —3.0461589353
—91 0.6586567884 —0.0879919892 —195 0.8998964910 —0.4200739607
—95 25785648429 —2.1505771251 —199 2.0043143873 —1.7042768578

By a result of Cusick [7] we know that
R = 3log(|A]/27);

hence we can use this result in (4.4) or (4.5) to get an upper bound on A.
In the case of the pure cubic field we can use (4.9) to get

VIAl  log|A| f( log27 )
23 log(|Al/27) 2\ " log(£%/9)

Thus, when f > 9¥3, we have h < f. It can be verified by direct computa-
tion that h < f also holds for f < 9V3. We remark here that if the
radicand D of X satisfies D = +1 (mod9), then f < D. Hence » < D in
this case and D + h. Also D + h if D # +1 (mod 9) and the cube free part
of D has a non-trivial square factor.

(4.10) h <
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We also point out that in the pure cubic case with f > 61 we have

2, 2T¢(1C)

f

< .048819144

by (3.8b). Hence

b 2 2T(C)
2(10g277—;)—7— P > log18

and by (3.9) we get

(411) Rh < 6|£‘/A§_|log(lA|/l8) = (2flogf— flog6)/f  (f> 61)

and

f|1 - 3logé/log f
(4.12) h<§[ 1_10g3/logf] (f > 61).

5. A lower bound on the class number. In this section we will derive a
lower bound on the class number of J¢". This, unfortunately, will involve
R, and another function 7,(x); however, as we will illustrate for the case
of a pure cubic field, when |d|is small and R can be bounded from above,
we can get some interesting inequalities on 4.

Let a be any ideal of @,.. Denote by M(a) the least positive rational
integer in a. We say that a is a reduced ideal of 0,, if a is primitive (a
has no rational integer divisors) and there does not exist a non-zero
element a € a such that all of

la| < M(a), |o'|<M(a), |a’|< M(a)
hold. Here o’ and a” are the conjugates of a in J#". (Of course, because
A < 0 two of |a], |a'|, |a”| are equal.)

If b is any ideal of @,, there always exists a reduced ideal a such
that a ~ b. Also, if a (= a,) is any reduced ideal of 0, then Voronoi’s
continued fraction algorithm can be used on a basis of a, to produce a
sequence of bases of ideals

Qps Gy Qgynnes Qpy Gppgynns
such that a;, ~ a, and a, (i = 1,2,3,..., p) are all distinct reduced ideals
which belong to the same ideal class. In fact, if we assume that the

generator of X is real, Voronoi’s algorithm can be used to produce
elements §{” (> 1) of A" such that

(M(a,)8,)a, = (M(a,))a;,
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where

n—1

6,=I1 6.

i=1

In this case (A < 0) Voronoi’s algorithm is completely periodic; that is,
a,44 = a, forall k € Z™. It follows that

P
&y = 1_[1 05",
ju

where ¢, (> 1) is the fundamental unit of J". The value of p is the period
length of Voronoi’s continued fraction algorithm expanded on a basis of
a; (= a). For the proofs of the above statements, we refer the reader to
Delone and Faddeev [9] or Williams [21].

We remark here that by using an earlier (non-explicit) form of our
result (4.9), Dubois [10] has shown that

(5.1) p = O(/|A]log|A|)

when X is a pure cubic field. More recently Buchmann [3] has given the
explicit upper bound

(5.2) p < 4|A]log?|A|

for any cubic field X" with A < 0. This was obtained by using the upper
bound on AR given by Siegel [18]. Now Williams [22] has shown that

g, > T2,
where
r=(1+V5)/2; hence
(5.3) p <2R/logr.

Thus, by using (5.3) with (4.5) we can get an improvement on (5.2). In the
pure cubic case we can use (4.9) and (5.3) to get

(5.4) p < .4\/m10gl Al

an explicit form of (5.1).

By referring to Table 1, we note that for those primes p such that
(A/p) = (d/p) = -1, we have (p) = pq and N(q) = p*, M(q) = p; put
8§ = q in this case. For those primes p such that p|f, we have (p) = p>;
thus, if 8 = p2, we get N(38) = p?, M(3) = p. Suppose p is any prime

such that (d/p) = -1 or p|f and suppose further, that p < {|A|/27.
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For the ideal 8 which we have defined above we get

M(8)* < V|A|/27N(3).

By a result of Williams [22], we know that 8 must be a reduced ideal of
0.1/.

Let 7,(x) be the number of primes up to x for which d is a quadratic
non-residue. If T is the number of all ideals of @, which are reduced and
p, is the number of reduced ideals belonging to the ith ideal class, we have

h 4
T=Y o2 m(/1al/27).
i=1
Since p, < 2R /log T, we get T < 2Rh/log T and

(1og 7)1 ({14127
2R ’

When X" is a pure cubic field, then d = -3 and (d/p) = -1 when p = 2
(mod 3); thus,

(5.5) h>

”Td(x) = W(xi 3,2),

where 7(x; 3,2) denotes the number of primes p < x such that p =2
(mod 3). From a result of McCurley [14], we can easily deduce that

7(x; 3,2) > .460517x /log x
when x > 4. Thus, if A < —6912, from (5.5) we get

(5.6) h > .444\/|A|/27 /(Riog(|A|/27)).

Hence, in a pure cubic field )" with discriminant A < —6912, we have
h > 1 whenever

4
R < 44|A|/27 /log(|A]/27).

When ¢ is a pure cubic field with radicand D, where D (= §°%) =
K?*+ k and k|3K?, then for § =& — K, we have § <1, N(9) = k.
Hence 63/k € 0,, and N(6°/k) = 1. It follows that

g, < (8% + K& + K2)’ /k2.

In fact, in the case where |k| = 1, we have ¢, < §2 + K8 + K. When D
is cube-free, we can replace these inequalities by equalities, for all but 6
values of D (see Rudman [17]). Also,

|A]> 3D > 3(K*®—3K?) > 3(8%+ K& + K?)
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when 8 > 6. Thus, |A| > 3el/® and R < 3 log(|A|/3); by (5.6) we get

14y]A]/27
log(|A|/3)log(|A]/27)

an explicit lower bound for #. We notice here that 2 > 1 for all |A| that
are sufficiently large. Also, the bound given in (5.7) is much larger than
those obtained by Mollin [15] in the analogous case of certain real
quadratic fields 2(YD) when D = K2 + k and k|4K.

(5.7)
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