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We consider derivations of an abstract Witt ring R. Denote the
collection of derivations by Der(i?); it is a Lie algebra under the usual
bracket operation. The structure of Der(JR) is closely related to the
structure of the torsion part of R, which is the part least understood.
After a lengthy computation of Ώeτ(R) for finitely generated Witt rings
of elementary type, we classify the Witt rings in the following cases: (i)
Όeτ(R) = 0, (ii) Ώeτ(R) is a simple algebra, and (iii) the fundamental
ideal of R is not differentiate.

All Witt rings considered here will be finitely generated abstract Witt
rings (in the sense of Marshall [5]). The most important examples are the
Witt rings WF of non-degenerate quadratic forms over a field F with
chari7 Φ 2 and F/F2 a finite group. The basic problem is to classify these
Witt rings. To date this has been done only for Witt rings that are small in
some sense (e.g., the number of generators is < 32) and for torsion-free
Witt rings. Indeed the part of a Witt ring R that is least understood is its
torsion ideal Rr

We study here the derivations of a Witt ring R, namely, additive
m a p s D: R -> R such that D(rs) = sD(r) + rD(s) for all r,s e R. We
denote by Der(i?) the collection of all derivations of R. Der(i?) is a Lie
algebra, called the derivation algebra of i?, under the usual bracket
operation: if D, Df e Der(Λ) then [D, D'\ = D ° D' - D' ° D e Der(Λ).

The usefulness of derivations appears to stem from the (easily checked)
fact that the image of any derivation of R lies in Rr Thus the structure of
the derivation algebra Der(i?) sheds some light on the structure of Rr We
have obtained only some partial results however. We do classify the Witt
rings in the following cases: (i) Der(i?) = 0, (ii) Der(i?) is a simple
algebra, (iii) the fundamental ideal IR is not differentiate (i.e., D(IR) <£ IR

for some D e Der(i?)), and (iv) every derivation on R is integrable (but
here we require some restrictions on R).

All of our classification results are special cases of a general classifica-
tion of finitely generated Witt rings proposed by Marshall. We describe
this. Start with the fundamental Witt rings Z/TL, Z/4Z, Z and certain
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Witt rings of local type, namely, L2n0, L2nl and L2n_v (n > 2). The last
three families arise as the Witt rings of suitable local fields (see [5] for
details). We can form new Witt rings from old in two ways. If R is a Witt
ring and Δ is a (finite) group of exponent 2 then the group ring i?[Δ] is
again a Witt ring. If Rv R2 are Witt rings then the Witt product (or fibre
product over Z/2Z) is Rx Xw R2 = {(rl9 r2) \rx e Rl9 r2 e R2 and dimrλ

= dim r2 (mod 2)}, which is also a Witt ring. A Witt ring is of elementary
type if it can be built up from the fundamental Witt rings listed above by
a sequence of group ring extensions and Witt products. The proposed
classification is simply that every finitely generated Witt ring is of
elementary type.

The first section of this paper presents elementary results and reduc-
tion theorems. The second section computes the derivation algebra for any
Witt ring of elementary type. An important step here is deriving some
short exact sequences relating Der(L2rt 0 ) , Όer(L2nl) and Der(L2/7_1).

The third section examines some examples. We give an example of
two non-isomorphic Witt rings on 8 generators with Lie isomorphic
derivation algebras. We also give an example of derivations arising natu-
rally in the theory of quadratic forms. Let F c K be a quadratic field
extension and let s* denote the usual Scharlau transfer and z* denote the
map on Witt rings induced by inclusion. Then, in many cases i*s*\
WK -» WK is a derivation.

The fourth section is devoted to proving L = Der(i?) is a simple
algebra iff it is a group ring over Z/2Z and L = Wn> the generalized Witt
algebra, for some n.

The fifth section examines when a derivation on a Witt ring R is
integrable (in the sense of Matsumura [6]). We show that if R is of
elementary type then every derivation is integrable iff R is not a group
ring extension of a ring of characteristic two.

The notation for Witt rings generally follows [5]. R will always denote
a finitely generated Witt ring. There is an associated group G (of one
dimensional forms) with distinguished element —1. Every element of R
may be expressed as a form (gl9..., gn) with each gi e G. There is also
an associated linked quaternionic mapping q\ G X G -> B, where B is
some set. If there is a group H and a linked quaternionic mapping q:
H X H -> B' onto some set B\ then there is induced a Witt ring which
we will denote WH. IR denotes the fundamental ideal of R, that is, the
collection of even dimensional forms.

If r = < g l , . . . , gn) G R then D(gl9..., gn) (or DR(gι,..., gn) if the
ring R needs to be specified) is the set of elements of G represented by r.
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This should be distinguished from D((gv..., gn))—note the parentheses
—which will indicate the image of r under the derivation D.

We will write Zn for Z/nZ. Δw will always denote a group of
exponent 2 and order 2n. A universal round form in R is a form r G i ί
such that gr = r for all g in the associated group G. We let ur(i?) denote
the collection of all universal round forms; ur(i?) is an ideal. If / c R is
an ideal, annΛ / denotes the annihilator of / in R.

1. Reductions. We begin an elementary observation:

LEMMA 1.1. Let D G Der(iί). Then:
(1)D(1) = D(-1) = O;
(2) Z)(i?) c ann«l , l» .

Proof. (1) D(l) = 2)(1 1) = Z>(1) + D(l), so D(l) = 0. And 0 =
D(0) = D « l , - 1 » = D(l) + 2)( -1), so D( -1) = 0.

(2) It suffices to show D(x) e ann((l,l» for all J C G G . NOW 0 =
D(l) = i)(jc JC) = xD(x) + JCD(X). Hence (1, l)D(x) = 0. D

It will frequently be easier to define a map on G and show it extends
to a derivation on R. The appropriate restrictions on the map on G are in
the following:

DEFINITION. Let R be a Witt ring and G its associated group. A
G-deriυation is a map d: G -+ R such that

(i) J ( - l ) = 0;
(ii) </(xy) = xd(y) + ̂ ( J C ) , for all JC, j e G;

(iii) d(xy) = d(jc) + rf(>;) if x G D<1, y).
Let Der(G) denote the collection of G-derivations. Note that for

d G Der(G), rf(l) = 0 and d(G) c ann«l, 1» (namely, the proof of (1.1)
carries over).

PROPOSITION 1.2. Every G-derivation induces a derivation on R. In
particular, there is a bijection Der(G) <-> Der(i?).

Proof. Let d G Der(G) and define D: R -> R by ^ ( ( α ! , . . . ? an)) =
ί/(αx) 4- +rf(έϊw). Note that D((l, - 1 » = 0. To show D is well-
defined it suffices to check on binary forms (cf. [5, p. 31]). Suppose
(xv x2) = (yv y2) in R. Then xλx2 = yxy2 and xxyλ G D(l, x ^ ^ . Then
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d(x2yi) = <*(*iJΊ *i* 2) = dix^i) + d(x1x2), and d(x2y1) =
Expanding these equations yields:

x1d{y2) + y2d(x1) = xλd{yλ) + J1</(x1) + x^M + x2d(Xl),

) = (ylt y2, -

= XlD((Xl,x2)),

(In the second step we have used d(z) = — d(z) for any z G G.)
Now D is clearly additive. And

D((xl9..., xn) (^ , . . . , ^ ) ) = Σ ^ K J'y) = Σ ( V ( Jy) + yjd(

= (xl9..., χn>/)((Λ,..., J O ) + ( ^ ' ' ym)D((χι> -•-> χn))

Hence Z) G Der(i?).
Lastly, suppose D G Der(i?) and set J = D\G. Then J is a G-deriva-

tion. Namely, condition (i) holds by (1.1), condition (ii) holds by defini-
tion and if x e D(l, y) then D(x) + D(xy) = D(x (1, y)) = D((l, y))
= D{y). Thus d(xy) = d(x) + d(^), since 2)(x) = -D(x) by (1.1). D

REMARKS. (1) We will identity G-derivations with derivations on R.
(2) Combining conditions (ii) and (in) for a G-derivation yields:
If x G ΰ ( l j ) then (l,x)d(y) = (1, y)d(x). This will be used

frequently.

DEFINITION. Let jβbea Pfister form of R such that iG(D(β)) < 2
and (1,1)/? = 0. Let H be a subgroup of index 2 in G containing — 1 and
contained in D(β). For c, y G G define:

The derivation (induced by) <i(/ί, JC>S) is the derivation ofH and xβ.
We check this definition makes sense.

LEMMA 1.3. d(H,xβ) is a derivation.

Proof. Let d denote d(H, xβ); d(-l) = 0. Let yv y2 G G. We check
conditions (ii) and (iii) for a G-derivation at the same time. Since we may
switch the roles of yv y2 there are three cases to consider:

Casel. yl9 y2 G H.

Here d{yλ) = d(y2) = d{yλy2) = 0. So
= d(yx)
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Case 2. yλ <£ H, y2<E H.

Here d{yλ) = xβ, d{y2) = 0 and d(y1y2) = xβ. Note that since
y2 G H c £>(/?), j>2;cβ = JC/?. Thus we have:

Case 3. ̂  £H, y2£ H.

Here j ^ G // since iG(H) = 2. We hae d{yx) = xβ = d(y2) and
= 0 = x <l,l)j8 = d(yτ) + d ( Λ ) . Since yγy2 e Z>(j»), V ( Λ )

D

PROPOSITION 1.4. Der(Λ) = 0 iff R is reduced or R = Z 2 or R = Z 4 .
In particular, R is of elementary type.

Proof. If i? is reduced then Der(i?) = 0 by (1.1)(2), and if R = Z 2 or
Z 4 then G c { ± 1} and so Der(i?) = 0 by (1.1)(1). Now suppose R is not
reduced, Z 2 or Z 4 .

Since R is not reduced we can choose w G f l ( l , l ) \ { l } . Then
β0 = (1, — w) G ann((l,l)) and β0 # 0. We can find a non-zero Pfister
form β, divisible by β0, such that D(β) = G. Namely, suppose otherwise
and choose a non-zero Pfister form β with D{β) maximal among those
divisible by βQ (β exists since |G| < oo). If D(β) Φ G take x G G\ D(β).
Then (l,-x)βΦ0, β0 divides (1, -x)β and - 1 , -x, D(β) c
D((l, -x)β), so {1, x}D(β) c D((l, -*>/*), contradicting the maximal-
ity of β.

Now G C (1, -1}, since G c {1, -1} implies R is isomorphic to Z 2,
Z 4 or Z [5, p. 41-42] and Z is reduced. Choose a G G\{1, -1} and
choose // a subgroup of index 2 in G containing — 1 but not a. Then
d(H,β) is a derivation (1.3) and non-zero since d{H,β)(a) = β. Thus
Όcτ(R) φ 0. D

We begin the computation of Der(i?) for R of elementary type by
decomposing Der(i?) when R is a group ring or a Witt product.

PROPOSITION 1.5. Let R = i ί J Δ J w#A Δ = {1, t) and let Go be the
group associated to Ro. Set:

L o = {D G Der(Λ)|Z)(0 = O

Lx = {i) G Der(i?)|£(G 0) = 0

: (1) Lo is a subalgebra of Der(i?) isomorphic to Der(i?0);
(2) Lλ is an abelian subalgebra isomorphic to annΛ o((l, 1));
(3) Der(i?) = Lo Θ tLQ Θ Lλ Θ /Lx.
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Proof. (1) Lo is closed under addition and if Dl9 D2 e Lo then
(Dλ o D2)(t) = 0 and (Dλ o D2)(G0) c /^(ΛQ) C RO. SO L O is a subalge-
bra. If D G Lo then D | Λ o G Der(iϊ0). Let </eDer(i?0) and define
£)(r0 + trλ) = d(r0) 4- td{r^), for r0,/^ G i?0. This is well-defined since
each r G i? uniquely determines r0, rx G i?0 with r = r0 + trv It is
straightforward to check D G Der(Λ). Since /)(/) = taf(l) = 0 and d(G0)
c i?0 we have D G L O . Also 2)|Λ o = rf and so Lo is isomorphic to
Der(i?0).

(2) Lλ is closed under addition and if Dv D2 e Lx then (Dλ o D2)(G)
= D^D^GQ)) C D^iϊo) = 0. Thus Lx is an abelian subalgebra.

For w e ann Λ o « l , l» define J(w): G -> iϊ by έ/(w)(g0) = ° a n d

^(^X^oO = ^o^' f°Γ a^l §0 G ^o We check that d(w) is a derivation.
First, d(w)(-l) = 0. Next, let x,y e G. If JC,J; G GO then JJ(W)(JC) +

= 0 + 0 = d(w)(xy). lί x = gQt G ίG0, 7 G GO then yd(w)(x)
^go^ = d{w){xy). And if x = goί, y = gx/, with g0, gx G

Go then >;J(w)(x) + xέ/(w)(y) = g o gi^ + go^i^ = 0 = J(w)(xy), since

(>
Now suppose x, 7 G G and x G D(l, y). Then either x, ^ G GO or

Λ: = >; G ίG0, since / is 2-sided rigid [5, 5.19]. If x, y G Go then rf(w)(x)
+ <*(*0(j0 = 0 = rf(w)(jcy). And if x = j ; then d(w)(x) + d(w)(y) =
(1, l)d(w)(x) = 0 = d(w)(xy). Thus ί/(w) is a derivation.

We have inverse homomorphisms Lx -> annΛ ((1,1)) by /) *-» /)(/)
and annΛ ((1,1))-> Lx by w *-> d(w). Hence Lλ is isomorphic to
annΛo«l,ί».

(3) It suffices to show Der(i?) = Lo + tL0 + Lx + ίLx since the sum
can easily be shown to be direct. Let D G Der(iϊ). If r G i?0 there exist
unique r1? r2 G i?0 such that D{r) = rx + ίr2. Let ^ ( r ) = ^ and d2(r) =
r2. Extend these maps to i? by setting dt{r + r'ί) = dt{r) + td^r'), where
/ = 1,2 and r,r'^R0. Also, by (1.1), there exist unique w1 ?w2e
annΛ o((l, 1» such that Z)(ί) = wλ + tw2. Then D = dx 4- /rf2 + rf^) +
ίί/(w2), where the d{wt\ i = 1,2, are the derivations defined in (2). So it
suffices to show dv d2 G LO .

Now dx and rf2 are additive and dt(t) = 0, έ/,.(G0) c Ro (i = 1,2).
Let r, r' G i?0. Then:

D(rr') = rD(r') + r'D(r),

di(rr') + ^ 2 ( r r 0 = rdλ(r') + irrf2(r') + rWx(r) + /rW2(r),

^.(rrO = ^ . ( r O + rW/(r), (/ = 1,2).

Hence dt\RQ G Der(iί0) and, as in (1), ^ G L O (I = 1,2). D

COROLLARY 1.6. pDetfliJA^I = |Der(i?o)|2 |annΛo((l, 1» | 2 . D
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DEFINITION. An ideal / c R is differentiable if D(I) c I for all
D e Der(iϊ).

THEOREM 1.7. IR is not differentiable iff char(iί) = 2 and R is a group
ring.

Proof. (->). Let r = ( α ^ . . . , fl2ll) and </ e Der(i?) such that Z>(r) €
JΛ. Then for some ai9 say 01? Z ) ^ ) ί IR. By (1.1), (1, l)D(α1) = 0. Since
dim DiaJ is odd, (1,1) = 0 [4, p. 250] and so char(i?) = 2. Now let
x e D(l, «!>. Then

Since D ί ^ ) is odd dimensional, the discriminant of (1, x)Z)(«1) is x. But
the discriminant of (\,aι)D(x) is 1 or av Hence x = l or a P So

Further, D(a1) = J?( —ax) ί /Λ so the same argument shows
D(l9 —ax) = (1, —ax}. Hence ax is two-sided rigid and by [5, 51.9] R is
a group ring.

(<-) Let JR = i?0[
Δi] where Δx = {1, /}; note that / is two-sided

rigid. Now char(jR) = 2 implies 1 e ann Λ o ((l , l». Let D = ίd(l), where
d{\) is the derivation constructed in (1.5) with d(ΐ)(R0) = 0 and d(l)(t)

We next consider Witt products. Let R = Rλ X w R2 with correspond-
ing groups G = Gx X G2. Let L = Der(iί). We form the following sub-
sets of L:

Lλ= [D e L|D(1 X G2) = 0, ^ ( G ! X 1) c /Λ i x θ},

L2 = {D ^L\D(G1 X 1) = 0, D{1 X G2) c 0 X / ^ } ,

£ x = {£> G L|D(1 X G2) = 0, D(G1 X 1) c 0 X IRi},

E2 = [D ^L\D(G1 X 1) = 0, D{\ X G2) c 7Λi X θ}.

Suppose char(iί) Φ 2. i?x and R2 cannot both have characteristic 2; we
will assume char(i?x) Φ 2. Then (— 1,1) Φ (1,1) in G. Fix a subgroup 5 of
index 2 in G with (-1,1) £ B. Set:
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PROPOSITION 1.8. Let i? = RλXwR2 and L = Der(i?). With the
notations given above, we have:

(1) Li is a subalgebra isomorphic to

{D e Der(i?z) \D(R0) c IRι) fori = 1,2.

(2) Eλ and E2 are abelian subalgebras and

Eι = Hom(Gι/{±l},m(R2))

(3) // char(i?) Φ 2 then F is a subalgebra isomorphic (as a group) to
m(R).

(4) // char(i?) Φ 2 then L = Lx Θ L2 Θ Ex θ E2 θ F.
(5) // char(i?) = 2 then L = LλΘ L2 θ Eλ Φ E2.

Proof. (1) Straightforward.
(2) We prove the result for Eλ; the case for E2 is similar. Let

Dy D' e £ x . Then (D o D'){G) c 2)(0 X /*2) = 0. Thus Eλ is an abelian
subalgebra. Now D ( - l , l ) = D(l, -1) ='θ and i)(G) c 0 X ur(i?2).
Namely, if Λ e Gx and A: e G2 then since (1, fc) e D((l, 1), -(A, 1)> we
have

((1,1), -(l,/c)>i)(A,l) =((1,1), -(A,l))2)(l,/c) = 0.

So if D(h, 1) = (0, r), with r e /^2, then (1, -/c)r = 0 for all K G 2 and
s o r G ur(i?2).

We thus have D ( - l , l ) = 0 and D(G1 X 1) c 0 X ur(i?2). So D
induces a map e: Gλ/{ ±1} -> ur(i?2). Lastly,

0 X e(hh') = D(hh\l) = (A,1)7)(A/,1) +(A r,l)i)(A,l)

= D(h',ϊ) + D(A,1) = 0 X e(A') + 0 X e(A).

Hence e e HomίGi/ί ±1}, ur(i?2)).
Conversely, let e e H o m ί g ^ ±1}, ur(i?2)); e lifts to a unique map

e in Hom(G1?ur(i?2)) sending - 1 to 0. Define D(gv g2) to be (0, e(gλ)),
for all gλ G G1? g2 e G2. Then D ( - l ) = 0 and

l, g2) + i)(gί, gθ = (gί, gθ^(gi, g2)

since D(G) c 0 X ur(i?2). By (1.2) D e L and clearly £> induces e.
(3) That F is a subalgebra follows from the definitions. We map

ur(iί) -> F by w •-> J(5,w), where J(5,w) is the derivation of 5 and w.
The map is additive and injective. To show the map is surjective we first
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prove the

Claim. If D e L then D ( - l , l ) e ur(i?).
Let h e Gx and let Z)(Λ,1) = (r1 ?r2) with rf. e J?f. Then (Λ,l) e

D < ( 1 , 1 ) , ( - 1 , 1 ) ) implies <(1, 1), (A, 1)>D( - 1, 1) =
((1, 1), ( - 1 , 1)>D(A, 1) = (( - 1, l>/i, (1, l>r2) = 0, using (1.1).
Similarly, if k e G2 then ( U ) G D ( ( 1 , 1 ) , (1, -1)>, Z)(l, -1) =
D ( - l , l ) and ((1,1), (1, *)>/>(-1,1) = ((1,1), (1,-1)>2>(1,*) = 0.
Thus ( l , g > D ( - l , l ) = 0 for all g e GX X 1 U 1 X G2 and hence for
all g e O. Then i)( -1,1) e ur(R) as claimed.

Now i f ΰ e F and D( -1,1) = w then for any i e G, ΰ ( i ) = 0 and
(b ( —1,1)) = 6w = w, since w G ur(i?). Hence D = J(JB,W) with w e
ur(i?) and the map is surjective.

(4), (5) It is easily verified that the sums involved are direct. Let
D e L. If D ( - l , l ) Φ 0 then char(JR) =#= 2 and D ( - l , l ) e ur(2ί) by the
claim in (3). By (3) we can find D5 e F such that D( -1,1) = D5( -1,1).
It thus remains to show that if D e L and Z>( -1,1) = 0 then D e Lx -f
L 2 + Eλ 4- £ 2 .

The only Witt product that is also a group ring is Z Xw Z [5, 5.22]
which is reduced. Hence by (1.7), D(G) c /Λ. Let i^, ίr2 be the projec-
tions from IR to IRi X 0, 0 X IRi, respectively. Let ρl9 ρ2 be the projec-
tions from G to Gλ X 1, 1 X G2, respectively. Set Dx = τr1Dρv D2 =
π2Dρ2, D3 = ^DpjL and Z)4 = ^ιDp2. Then we claim Dx e Lx, D2 e L2,
Z)3 e £ x and D4 e £ 2 . We check this only for Dx and Z>3.

For g , g ' e G ,

since I>X(G) c IRi X 0 implies (1, y)D(x) = i)(x) for any y e G2, Λ: e G.
If g G /)( ! , g') then P l (g) e Z)(l, px(g0> and so

Thus 2)x e Lx.
Now
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We thus only need to show that g'D3(g) = D3(g) for all g, g' e G. Fix
g e G. Since D3(g) c 0 X JΛa, g'Z)3(g) = D3(g) if g' e Gx X 1. If g' =
(1, fc')elx G2 then g' e Z)<1, - P l (g)> so (1, - g ' ^ p ^ g ) ) =
(1, -p 1 (g»/)(g / ). Now ̂ ( ( 1 , -g')D(Pl(g))) = <1, -l)K£>Pi)(g) X 0
= 0. And

Hence g'D(Pl(g)) = D(Pl(g)) if g' e 1 X G2. That is, we have g7)3(g)
= Z>3(g) for all gr E G1 X 1 U 1 X G2 and hence for all gf e G. Thus,

Lastly, we show D = Dλ + D2 + D3 + D4. For any g e g. px(g) G

D(h -P2(g)) So Z)(g) = D(Pι(g)p2(g)) = D(Pl(g)) + Z)(p2(g)). That

is,

D = jDpx + Z)p2 = 7ΓιDPι + π2DPl + Ή Jip^ 4- fπ1ΌPl

= D 1 + Z)3 + D 4 + D 2 . D

The simplest case of (1.8) yields

COROLLARY 1.9. Suppose char7?1 =£ 2, α«d char7? 2 ^ 2. Lei i? =
i?x Xw R2 and let G be the group associated to R. Then taking Z ̂ dimen-
sions:

dimDer(i?) = d i m D e r ^ J + dimDer(i?2) +(dimG)(dimur(i?)).

Proof. We use the notations of (1.8). By (1.7), Lt = der(i?y) for
i = 1,2. We have by (1.8)

= (dimG - l)dimur(/?1)

= (dimG - l)dimur(i?2)

d i m F = d i m u ^ i ϊ j + dimur(i?2)

(This last since ur(i?) = ur(i?x) X ur(i?2)). The decomposition Der(i?) =
Lλ Θ L2 θ Eλ θ E2 θ F then yields the result. D

2. Derivation algebras for fundamental Witt rings. To complete the
computation of Der(i?) for R of elementary type we need to consider
derivations on the fundamental Witt rings. These Witt rings are (cf. [5,
5.24]) Z, Z 2 , Z 4 and L2π>0, L2nV L2n_λ for n > 2. The latter three classes
are Witt rings of local type.
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By (1.4), Der(i?) = 0 for R = ZXZ2 and Z 4 . So for the rest of this
section we will consider Witt rings of local type. Such Witt rings possess a
unique non-trivial 2-fold Pfister form, to be denoted p throughout this
section. Further, for each x Φ - 1 , D(l, x) is a subgroup of index 2 in G.
The converse also holds, which we separate for future reference:

LEMMA 2.1. Let R be a Witt ring of local type with (finite) group G.
For every subgroup H of index 2 in G there exists an x G G with H =
D(l9x).

Proof. There are \G\ - 1 subgroups of index 2 in G. There are \G\ — 1
elements X G ( ? \ { —1}, each of which yields a (distinct) subgroup
D(l, x) of index 2. Hence the result holds. D

LEMMA 2.2. Let R be a Witt ring of local type with group G. Assume
RΦZ.

(1) //char(i?) Φ 2 then annΛ(l,l> = {0,p} U {(l,x>, y(hx)\ - x
G D(l,l) \ {0} andy £ Z)(l,x>}. In particular, |ann Λ (l , l) | = |G|.

(2) // char(i?) = 2 then annΛ(l, 1) Π IR = {0, p} U {(1, x>,
y(l,x)\χeG\{l}9 y<£D(l,x)}. In particular, |annΛ(l, 1) Π IR\ =
2\G\.

Proof. If char(Λ) Φ 2 then annΛ(l,l> c IR. Thus it suffices to find
annΛ(l, 1) Π IR in both cases. We will show IR consists of 0, p and
binary forms. From this (1) and (2) follow quickly.

Let q e IR, and let d = d(q). If d = 1 then q e I\ = (0, p}.
Otherwise, we may write q = (1, — d) + q0, with q0 G /^. If ^ 0 = 0 we
are done. If q0 = p, let e £ D(l, —d). Then (( — d, ~e)) = p and we
obtain

q = (1, -d) (1,1, - * ) = *- (1, -d) + ((1, - e , - d)) = e (l, -d),

since ((1, -e, -d)) e /r

3 = 0. D

LEMMA 2.3. Lei R be a Witt ring of local type with group G and
char(i?) φ 2. Let D e Der(i?) and g G G. // Z)(g) = 0
(1, -g)D(x) = 0 for all x e G.

/. Let JC G G. By (1.1), D(x) G annΛ(l, 1) and the result is clear
if D(x) = 0 or p. (Note that D = 0 iί R = Z.) By (2.2) we may thus
assume D(x) = (1, — j;) for some j ; G D(l, 1). If x G D(l, —g> then
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(1, -g)D(x) = (1, -x)D(g) = 0. We thus suppose x £ D(l9 -g>; in
particular, g Φ 1.

Now char(iϊ) Φ 2 implies D(l,l> Φ G. We claim that Z>(l,x> Π
D(l,g)\D(l,l) * 0. Otherwise, D<1,JC> ΠZ)<l,g> c ΰ ( l , l ) . But
£>(1, x) Π D(l, g) is a subgroup of index 4 in G, thus contained in only
three subgroups of index 2. These three subgroups are Z>(1, x), D(l9g)
and Z>(1, — xg). This implies that one of x, g, —xg is 1. Each possibility
contradicts our previous assumptions, which proves the claim.

Let z €=D(1,JC> n β ( l , g ) \ 2 ) ( l , l ) . Then z ί f l ( l , - g ) lest z e
Z><1, g> Π D(l, -g> c JD(1, 1). Also, since JC € D(l, -g> and

, — g) is a group of index 2, we have xz e D(l9 — g). Lastly, x, z e
x> implies xz e D(l, x) Π D(l, -g) c Z)(l, gχ>, so -gx e

, -xz). We have:

(l,-xz)D(xg)=(l,-xg)Z)(xz),

(1, -xz)D{x) = (1, -xg)D(x) + (1, -xg)D(z),

since D(xg) = gi)(x), (1, — xz)D(x) = 0 or p and so g(l, —xz)D(x) =
(1, -xz)D(x). Also, z G D(l, x) implies D(xz) = D(x) + D(z). Now

(1, -xz)D(x) = x (x, -z)D(x) = (x, -z)D(x)

since (l,l)Z)(x) = 0. Working the same way with (1, -xg)D(x) and
(1,-xg)D(z) yields:

= (1, -x)D(x) +<1, -g)D(x) +<1, -x)i)(z) +(1, -g)Z)(z).

(*) (1, -z)D(x) = (1, -g)D(x) + (1, -x)2)(z) + (l, -g)D(z).

But z G D(l, x) implies (1, -z)Z>(x) = (1, -x)Z>(z), and z G 2)(1, g)
implies (1, -g)/)(2) = (1, - z ) D ( g ) = 0. Then (*) yields
(1, -g>D(x) = 0. D

REMARK. Lemma 2.3 does not hold for Witt rings R of local type and
characteristic 2. For example, we may describe L 4 0 by taking G =
(0,6, c, d)—here (S) denotes the group generated by S—and D(l, 0) =
(a9b,c), D(l,b)=(a,b,cd)9 D(l9c) = (a9c9bd) and Z)<1, d) =
(ab,ac,d). The map given by D(α) = (1, α), D(Z)) = <1,6>, I>(c) =
(1, a) and Z>(d) = 0 induces a derivation. But D(d) = 0 while
(l9-d)D(a)Φ0.
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PROPOSITION 2.4. Let R be L2nl or L2n+l9 (n > 1) and let G be the
associated group. Then Der(i?) is generated by the derivations d(H,β) (cf.
(1.3)). Here H is a subgroup of index 2 in G containing — 1 and β is a
scalar multiple of a Pfisterform with H c xD(β), for some x G G.

Proof. Let 0 Φ D G Όeτ(R) and let K = ker(D|G). Suppose first that
iG(K) = 2.Letx£K and β = D(x). Note that β is a scalar multiple of
a Pfister form by (1.1) and (2.2). By (2.3), if k e K then (1, -k)D(x) = 0
so that iΓ is contained in a multiple of the value set of β. Also, D(k) = 0
and D(kx) = kD(x) = D{x). Thus D = </(#, 0).

Now suppose iG(K) > 4. Fix x <£ K and let D(x) = β. We will
complete the proof by showing there exists D\ a sum of d(H, α)'s, such
that ker((Z) - D') | σ) 3 # U xK.

By (2.2), 0 = p, (1, - j ) or z<l, -j;), where j e Z)<1,1) and z €
Z)<1, -j;>. If β = p, write G = {l,x}#, with ^ c i/ and iG(H) = 2.
Then KU xKa ker((i) - rf(i/, p))^). If β = (1, -<y> and x ί (1, -j;)
then (2.3) implies 7Γ c Z)(l, -j;) and so

ί U x i ί c ker((Z) - rf(Z)(l, -j^), (1, -y)))\G).

Now suppose 8̂ = (1, — j;) and x G Z)(l, - J > . Let // be a subgroup
of index 2 in G, containing K but not x. Then H = D(l, — w), for some
w e G, by (2.1). We have x £ Z)(l, — w> and so x ί i)(l, — wy>. Also
K c £><1, -j;> n D(l, -yw) by (2.3). Set Όf = J(J5<1, -wy>,
(1, -vvy» + d(iϊ, - χ i , - w » . Then D\x) = (1, -wy> J_ -y(l, -w)
= (1, -y) = β and Z)^^) = 0. So ker((Z> - D')\G) ^ KU xK.

Lastly, suppose 8̂ = z(l, -y). By the above argument, there exists
D\ a sum of d(H,a)% such that K U xK c ker((z£> - D')\G). But zZ)r

is still a sum of d(H, α)'s and K U xK a ker((Z) - zZ>')lc) D

COROLLARY 2.5. Let R be L2nl or L2n+ι, (n > 1) with associated
group G. Then Όeτ(R) c Hom(G, R). That is, if D G Der(i?) and x, y G
G ίΛew D(xy) = D(x) + D(j ).

Proof. This holds for Z) = d(H,β) and hence for all derivations by
(2.4). •

REMARKS. (1) (2.4) and (2.5) fail for Witt rings of local type and
characteristic 2. The example given after (2.3) has d(ad) = dD(a) Φ D(a)
+ D(d), contradicting (2.5) and hence (2.4).
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(2) There are relations among the d(H,β)7s which are difficult to
determine explicitly. We will compute Dcτ(L2nl), Der(L2 w + 1), n > 1, by
an inductive argument instead.

We note that Lx = Z.

LEMMA 2.6. Let R be L2nl or L2n+ι, (n > 1) and let G be the group
associated to R. Let S be the Witt ring of local type with group K where
2\K\ = \G\ and char(5) Φ 2 (i.e. S is L2n_x or L2nl). Fix a (Ξ G\{1]
with - l ί D(l,a).

(1) D(l, a) has the induced quaternionic structure and S =

(2) There is a (group) isomorphism:

a: ann^(l,l) -> ann Λ ( l ? l ) Π annΛ(l, a)

with a(kq) = ka(q) for all q e ann s (l ? l> and k G K (K is identified
with D(l, a)).

Proof. There is an orthogonal decomposition G = (1, — a} ± D(l9a)
and so D(l,a) inherits a quaternionic structure with a as the dis-
tinguished element (cf. [1]). The Witt ring of D(l,a) clearly is of local
type, aΦland 2\D(1, a)\ = \G\, so S = W(D(l, a)). We now identify S
with W(D(l, a)) and K with £<1, a).

Define a0: Is -* IR by Σi(y2i^y2i) -> Σi(y2i^ ~ay2i). To show
a0 is well-defined, it suffices to check on binary forms, by Witt's theorem
on chain equivalence [5, p. 31]. Suppose {yΎ,y2)

 = (*i>*2) ^n $- Then
yλy2 = xλx2 and xλyλ G Ds(l, yλy2). Since xv yλ G K = DΛ(1, α> we
have x l 9 ^ G DR(1, yλy2) Π Z)Λ<1, α> c Z)Λ<1, - α ^ ^ ) . Thus
( j l 9 —ay2) = (JC1? —ax2) in 7?. Note that α0 is clearly a (group) homo-
morphism and that cco(kq) = kaQ(q) for all k G AT, # G 75. Further,

Σ^2,-i((^» - ^ - i ^ ) ) = 0,

since j;2i_lβy2/ G Z)(l, α). Hence « 0 (^) c ann/?(l? β )
Let a be the restriction of a0 to ann 5(l,l>. Then a: ann 5 ( l , l ) ->

annΛ(l,l> Π annΛ<l,α>. Now |ann s (l, l>| = |A:| = {\G\, by (2.2). Using
(2.2) again shows ann^(l,l) Π annΛ(l, α) consists of 0, p and pairs
<1,JC>, JCX1,JC> where -x e DR(191) Γι DR(l9a)\{l), x'£D(l,x).
Thus

|annΛ<l,l> Π annΛ(l,£i>| = 2|/)Λ(l,l> Π DR(l,a)\ = \\G\.

To complete the proof then, we need only show a is injective.
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Suppose j j ' e ί with (1, y) <Ξann5(l,l> and α ( / ( l , >>)) = 0.
Then (1, -ay) = 0 in R, a= y and (1, y) = 0 in S. Let y, y' e # ,
^ = ( ( j , —y')) and suppose α(#) = 0. Then (1, — ay) ± — y'{\9 —ay)
= 0, y' e Z)*<1, -ay) Π Z)Λ<l,fl) c Z>*<l,.y) But then / e Z)5<l,.y)
and ^ = 0 in 5. By (2.2), ann s ( l , 1) consists of such y'(l9 y), ((y, -y'))
and so a is injective. D

Denote the inverse of a by β. Note that β{kq) = kβ(q) for all
k e DR(l,a) and # e annΛ(l, 1) Π annΛ(l, α). Note also under the
identification of K with D(l,a), S is a subring of iϊ. We continue with
the notations of (2.6).

COROLLARY 2.1.Let A = {D e Der(i?) |D(fl) = 0}.
Der(S) w ̂  L/V algebra isomorphism, where β*(D) =

Proof. We first show /?* is well-defined. If x e G and Z) e ί̂ then
(1, α>D(JC) = 0 by (2.3). Thus D(R) c annΛ(l, 1) n annΛ(l, fl), the do-
main of β. Further, if qv q2^ S then

= β{D{qιq2)) =

since β(kq) = kβ(q) for any k ^ K, q ^ annΛ(l, 1) Π annΛ(l, α). Thus
Der(S) for all D e ^ .

Now β* is additive and if Dl9 D2<Ξ A and k ^ K write D2(A:) =

Λ I - I Λ/) G 5. Then:

= β*(Di)(Σ(y2i-i, ^

since ^ ( α ^ ) = ̂ ( ^ 0 = D ^ ^ ) by (2.3). Thus β^DJo β*(D2) =
β*{DιoD2). In particular, β*([Dv D2]) = [β*Dvβ*D2] and β* is a Lie
algebra homomorphism.

If, for D ^ A, β*(D) = 0 then Dl^ = 0, since β is an isomorphism.
Hence G = {1, -a}K c ker(Z)|σ) and D = 0. Thus β* is injective. To
show β* is surjective it suffices to show that the generators d(H,a) of
Der(S) (2.4) are in the image of β. Let H be a subgroup of index I'm K
containing a. By (2.1), H = D s ( l ,x) . Let α be (l,x>, xr(l,Λ;> or p,
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where xf £ Ds(l9 x) and p = ((x, axf)). We need to show d(H, a) is in

the image of /?*. We check this only for a = (1, x), the other cases being

similar.

Set H' = DR(1, -ax). Note that H{1,-1} a H', since 7/c

DR(1, a) Π J5Λ(1, x> and x e iΓ = D Λ ( 1 , 0 ) , ύ G ί f c D Λ ( 1 , χ> implies

- 1 e Z)Λ<1, - o x ) . Then & ( < / ( # ' , <1, - α x » = < / ( # , < l , x » . D

THEOREM 2.8. Le/ i? be L2nl or L2n+ι with n > 1, αwrf fe/ G 6e Âβ

associated group. Let a e G wiϊA - f l ί D(l, 1). Le/ 4̂ = (D G

Der(i?) |D(α) = 0}. Let S = Lln_x if R = Llnλ and S = L2nΛ if R =

(1) There is an exact sequence of groups:

0 -* A -> Der(i?) Λ annΛ(l, 1> -> 0

w Lie isomorphic to ΌQT{S).

(2) dimDer(i?) = \{n 4- 2)(/i - 1).

Proof. (1) We need only show e is surjective by (2.7). Let a e

annΛ(l, 1). If α = p, (1, —x) or x'(l, — x) where x7 ί DR(19 —x) and

Λ ί I>Λ<1, -^> then e(d(D(l9 -x),α)) = α. By (2.2) we may thus as-

sume α = (1, — x) with a e DΛ(1, — x). Choose z such that # £

Z)Λ<1, -z>.Then

β(d(D(l , -xz>, (1, -xz)) - xd(D(l, -z), (1, -z)))

= (1, -xz) + - x(l, -z> = a.

(2) dim(Der(i?)) = dim(Der(5)) + n, by (1) and (2.2). Since Der(Lx)

= Der(Z) = 0 we have

dim(Der(7?)) = n +(n - 1) + +2 = \{n 4- 2)(n - 1). D

We turn now to the Witt rings L2π,o w ^ ^ ^ ^ 2. Let G be the group

associated to L2n0 and let q: G X G -> Z 2 be the associated linked

quaternionic map. We require the following construction:

Fix a,b e G with <2 ί D(l,b). There is an orthogonal sum G =

{ l , f l , 6 , f l 6 } l ΰ ( U ) n i ) ( U ) . Set H = {l,a,b,ab} and tf =

D(l,a) n D(l,b). By[l] G induces a quaternionic structure on H and

iC In particular, for k e # we write ^ ( l , A:) = DΛ(1, λ:> Π i^.

Embed K into a group K with | Z | = 2|ίΓ|; say K= {l,c}K. For

define:

,fc> = { l , ^ } ^ ! ^ ) , where k'
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We also set 2)^(1,1> « K and DE(l,c) = K. We further define q:
KxK-^Z2by q(x9 y) = 0 iff y e 2)^(1,ex). (We are thus taking c to
be the distinguished element of K.)

LEMMA 2.9. (1) q is a linked quaternionic mapping.

Proof. (1) Note that x e Dκ(l,x) for all χ e £ Suppose x e
1, J>). We will show ςy e Dκ(l,cx) for the case j G ί (the case

y & cK is similar). If x e 2)^(1, j>) then JC e DΛ(1, <y), j> e 2)^(1, x)
since - 1 = 1 in G? and so j ; e 2)^(1, χ>. Hence cy & Dκ(l,cx).
If * = cyV with / G ί \ i ) ί ( l j ) and x'^Dκ{\,y) then J G

^ \ ^ α x y > . So cy e % ( 1 , JC'/) - 2)^(1,cx>.
We lastly check q is linked. Suppose ^(JC19 yλ) = ^(x2? J2)? w i ^

xi9yj& K9(i,j = 1,2). If ^ ( x ^ ^ ^ O , i = 1,2, then q{xvy^ = g(xi,l)

= q{x2Λ) = 9(^2^2)- I f 9 ( ^ Λ ) ^ °̂  f o r ' = ! ?

2

?

 t h e n Λ ^ 1 a n d

y2Φ 1. Since ΛΓ cannot be written as the union of two proper subgroups,
there exists w <fc D^(lycxx) U 2)^(1,cx2). Then ί(x l 9 Λ ) = q(xι,w) =
g(x2,w) = 9(x2, j;2) = 1.

(2) ^ has a range of two elements, so the Witt ring WK it induces is
of local type. Since the distinguished element c is not 1 and |JSΓ| = 2\K\

\ L 2 n _ v U

We continue with all of the notations introduced before (2.9) but now
writing JR for WK s L2n__v

LEMMA 2.10. There is an additive group isomorphism

a: ann^(l,l) -» anni?(l,α) Π annΛ(l,ft)

such that a{yq) = ya(q) for ally G K, q G ann^(l, 1).

. Since 2)^(1,1) == ΛΓ, a form in ann^(l, 1) looks like
-2). Define a by:

To show α is well-defined it suffices to check on binary forms. Suppose

<Λ>ςV2> =* <Λ»ςK4>
 i n ^ τ h e n Λh = ! ΛJ '4 a n d ΛΛ e ^ ( ^ ζ V i ^ ) =

{l,c}2)^(l, Λ j 2 ) . Since ^ / 3 e K we get Λ j 3 e Dκ(l, yxy2) c

^ ( I . Λ ^ ) ^
 s o (y^yi) = (y^y*) i n Λ A l s ° . s i n c e e a c h yj*=κ =

D(l9a) Π £><1,6>, (l,fl> ( ^ - x , ^ ) = 0 - annΛ<l,Λ> Π
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Now a is clearly a homomorphism and a{yq) = ya(q) for all y G K
and q G ann^(l, 1). To show α is an isomorphism we first

Claim. ann Λ <l,α) Π annΛ(l,Z>) = {0,p} U {<1,£>, k\l,k)\k^K

Let 5 be the set on the right-hand side. Since K= D(\,a) n D(l,b)
and - 1 = 1 in G we have S c annΛ(l, α) Π annΛ(l, 6). Let # G
annΛ(l, α) Π annΛ(l, 6). If # is not a binary form then # = 0 or p, since
q G /Λ. So suppose # = j> (1, x), with JC, 7 G G. Then (1, α) (1, x) =
0 = (1, b) (1, x> imphes x G ί . If j ; G D(l, x) then y(l, x) = (1, x>
e 5. Suppose then that j ί Z)(l, x). Now K is a subgroup of index 4 in
G. i£ is then contained in precisely three subgroups of index 2, namely
!><1,JC), D(l,b) and D{\,ab). If K o D(l,x) then JC e {β,/??αZ7} =
/ ? \ {1}, which is impossible since x G ί and K Cλ H = {1}. Thus 7Γ <£
D(l,x). Choose t ' e i \ l ) ( l , x ) . Then q = y(l,x) = k'(l,x) <= 5.
This proves the claim.

The claim quickly yields that a is surjective since fror k,k' e .ίΓ,
α « ^ / , A:'fcc» = A:'<1, ̂ >, and if k' ί Z)(l, Λ> then α«l , ĉ t> + ^'(1, ck))
= ((k,k')) = p. Further the claim shows |annΛ(l, a) Π ann^l , 6) | =
2\K\ = \K\. By (2.2), |ann^(l, 1)| = \K\ also. Thus a is an isomorphism. D

LEMMA 2.11. Let R = L2nfi and R = WK = L2rι_1 (n > 2) as before.
Let A = {D G Der(i?)|Z)(α) = Z)(6) = 0}. Then A is Lie isomorphic to
Der(Λ).

We first show that for D (Ξ A, D(R) c annΛ(l, a) Π
annΛ<l, 6). For g G G , i f g G D(l, α> then (1, α)/)(g) = (1, g)£(α) =
0. If g ί D(l9 a) then Z?g G D(l, Λ), since 6 ί Z>(1, Λ). Hence
<l,fl>/)(ftg) = <l,6g>i)(fl) = 0. So Q = b(l9a)D(g) + g(l,a)D(b).
Since D(6) = 0 also (1, a)D(g) = 0. Thus in each case D(g) G
annΛ(l, α). Similarly, i)(g) G annΛ(l, 6).

For Z) G ̂  define 5 : Z -> annΛ(l,α> Π annΛ(l,Z?>, by D(k) =
D(ck) = D(k), for all k ^ K. Let β = a~ι, where α is the isomorphism
of (2.10). Note β(kq) = kβ(q)_ΐoτ all i t G l , ^ G annΛ<l, α> Π
annΛ(l, 6). Define^: A -* Der(Λ) by:

Note that we have already shown the image of D is in the domain of β.
We next show β*{D)jΞ Der(Λ). First, β*(D)(c) = β*(D(c)) =

β(D(l)) = 0. Let xvx2 G Z and write x,. = c6 i^, where εt G {0,1} and
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yt e K. Then

= β(y1D(y2) + y2D{yλ))

since <1,1)j8( 2)(z)) = 0 in Ry for any z G Z, implies cβ(D(z)) =
β{D{z)).

Next suppose JCX e 2)^(1, X 2 ) . Then, by our construction, yλ G
Ar<l> Λ ) u n less *χ = ςy1? x2 = j 2 . If ^ e 2)^(1, j>2> then D(yiy2) =
D(yλ) + Z>(y2) and so β*(D)(Xlx2) = β*(D)(Xι) + β*(D)(x2). So sup-
pose ^ 1 ?y 2 e AT with cyx e D^<1, j 2 ) and ^ ί D^(l, j 2 ) . Then ^ £
DΛ<1, ty2>, since Λ ε ί c DR(1, b). Also, α e DR(19 y2), a € DΛ<1, Z>)
imply β ί 2)Λ(1, by2). Thus α^ G D Λ ( 1 , by2) and D(aby1y2) = D(ayι) +
D{by2). Now D(ab) = 0 implies D(aby1y2) = abD{yιy2). And abD{yιy2)
= X>(>ΊJ2) since £>(i?) c annΛ(l, α) Π annΛ(l, 6). Thus D(aby1y2) =
D(y1y2) and similarly ^(αy!) = ^ ( Λ ) and D(by2) = D(y2). We thus
have Z ) ( Λ Λ ) = 2 ) ( Λ ) + D(y2) and ^ ( ^ X ^ x , ) = β^Xx,) +
β*(D)(x2). By (1.2) this completes the proof that /?*(£>) e Der(iί).

Clearly/?„, is an additive map. Let D1? D2 e 4̂ and x = cεj; G AT, with
ε G (0,1} and y <= K. Let £>2(.y) = Σi(z2i_v z2 /), with all zy G i^. Then

Hence i S J ^ , 2)2] = [β*Dvβ*D2],
Since /? is an isomorphism, β* is clearly injective. To show β* is

surjective, it suffices to show the generators of Der(i?) given in (2.4) are in
the image of /?*. A generator is J(L,γ), where γ G i? and L is a
subgroup of index 2 in K containing c and contained in a scalar multiple
of Dχ(y). By (2.1) L = Z^(l, c), for some x e ί and c G 2)^(1, JC>,
hence ex G 2)^(1,1) = .ST. Then γ is either (1, JC), x'(l, x) where xr €
2)(1, JC), or p the unique non-trivial 2-fold Pfister form in R (2.2).

We will show d(L, γ) with γ = (1, cy), y ^ K and L = 2)^(1, ςy) is
in the image of β*. The other cases are similar. Let D = d(D(l, y),
(1, y)) G Der(r). Since 7 G 2)(1, Λ> Π 2)<1, 6>, α , K 2)(1, >;> and so
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e (0,1} and x e K we have β*(D)(cεx) = β{D{x))9 which

is 0 if x e Z)Λ<1> ̂ > n ^ a n d i s ^K 1 ' ^» = Y i f_* * A^1* ^> τ h u s t h e

image β*(D)(K) is {0,γ} and the kernel (in # ) is {l,c}D^(l,^> =
DR(l,cy). Hence ^ ( D ) = J(L,γ). D

LEMMA 2.12. Let G be the group associated to R = L2n0 wλere « > 1.

ίλere existf subgroups Gv G2 of G such that:

(1) G = Gλ X G2;

(2) xx e 2) Λ (l,x 2 >, forallx1,x2 e Gx;

(3) Λ e /) Λ (1, Λ > , /or α// Λ , >;2 e G2.

Further, if we fix x0, y0 e G w/ίA x 0 ί Z)Λ(1, j 0 ) /Λeπ we may assume

x0 e Gx a«ί/j;0 e G2.

Proo/. If π = 1 then G = {1, x 0, Ĵ Q, XO>O}
 a n d ^ e result is clear. Let

n > 2 and fix x0, y0 e G with x 0 £ 2)Λ(1, j ^ ) . There is an orthogonal

decomposition G = {1, x0, y09 xoyo] ± DR(1, x0) Π /)Λ<1, ^0>
 H e r e κ =

D Λ (1 , x 0 ) Π 2)Λ(1, ĵ o) iώerits a quaternionic structure and its Witt ring

is L2n_10. By induction there exist KlyK2cK satisfying conditions

(l)-(3). Set Gx = { l ,x o }*i and G2 = {1, yo}K2. Then G = Gx X G2.

We check condition (2) (the proof of (3) is similar). Let xv x2 e Gλ

and write xt = jcg'̂ c,- where, for / = 1,2, εi G {0,1} and JCJ e jSΓlβ Then

x( e Dκ(l, x2) and so JC( e D Λ (1, x^>. Since x{, x j e ί c D ( l , χ 0 ) we

also have xλ e D Λ (1, x 2 ) as desired. D

THEOREM 2.13. Let R = L 2 w 0 w#λ n > 2 and let G be the associated

group. Fix ayb e G wίίΛ α € D Λ <1, *>. L e M = { ΰ e Der(i?) | D ( a ) =

/)(&) = 0}.

(1) There is an exact sequence of groups

0-+A-* Der(iί) ^>IRXlR^>0

where e(D) = (D(a), D(b)) and A is a subalgebra Lie isomorphic to

Der^-i)-
(2) dim(Der(i?)) = {In + 2){2n + l)/2.

Proof. (1) By (2.11) we need only show e is surjective. By symmetry it

is enough to show 0 x / Λ c im(e). Then, since e is additive and xD e

Der(i?) for all x e G, D e Der(i?), it suffices to show (0, (1, g» e im(e)

for all g e G .
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If gGD(l,a)\D(l,b) then e(d(D(hg)9 (l,g») = (0, <l,g»,
where d(D(l9g), (l,g>) is the derivation of (1.3). If geD(l,α> n
D{\9 b) then αg e D(l, α) \ D(l, 6) and

e(</(D(l,*), (l,fl» + </(2>(l,*g), (hag)))

= (0, (1, β» + (0, (1, ag)) = (0, (a, ag)) = (0, (l, g»,

since 0 G D(l,g>. Thus (0, (l,g» G im(e) for all g e Z>(l,α). Since
D(\, a) has index 2 in G and 6 £ D(l, α) it suffices to show (0,

Write G= GXX G2 with subgroups G1? G2 satisfying (2.12) and with
a (= Gv b (= G2. Define D: G -+ IR by D(xy) = JC(1, j ) , for all x e G^
^ e G2. Note that D(a) = 0 and D(Z>) = (1,6). We will be done if we
show D is a derivation.

We check the conditions of (1.2). Clearly D(ΐ) = 0. If xl9 x2 e Gx

and ^1? j 2 e G2 then

XiXiyi(hy2) + ¥ 2 / 2 ( ^ 1 )

= χλχ2(yv y2, yxy2, yλy2) = χxχ2(h

since (1,1) = 0 in /Λ and ̂  G D(l, J Ί J ^ ) - Thus
+ -^a^^ί^iΛ)- Now suppose Xi^ G D(l ? ̂ 2^2)- We have:

There are two cases. It xx G D(l9 y2) then since JCX G D(1,X2) we have
. So xtfi & D(l9 x2y2) implies ^ G i ) ( l ,x 2 / 2 ) Π

c
 ^ < 1 , Λ 2 ) , and x 2 6 l ) ( l , Λ ) . Using (*) gives Z)(xχΛ) +

D(x2y2) = x i ^ 1 * 1 * ^ ^ ) = 2)(λ:i>;iΛ:2:>
;2)'

Lastly, if xx & D(hy2) then, arguing as above, we obtain x2 €
D(hyx). Choose z£D(l,yx) UD(hy2)9 which is possible since G
cannot be the union of two proper subgroups. Since D(l, x) has index 2
in G we have yxy2 G D(l, z) and z = D(l, ^! j 2 ) . Then x2(hyι) =

z(h yχ)> and xx(h y2) = ^(1, 2̂> Using (*)} gives

D(x2y2) = xxx2(yl9 y29 z, z) =

(2) We apply (2.8):

dimDer(i?) = d i m D e r ί ^ ^ J + 2 dim 4

= \{2n + 1)(2Λ ~ 2) + 2(2n + 1) = |(2/i + 2)(2n + 1).

D
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3. Examples. Sections 1 and 2 can be used to compute the deriva-
tion algebra for any Witt ring of elementary type. Below we give
dim(Der(i?)) for every non-reduced Witt ring R where the associated
group has order at most 8 (cf. [5, p. 122-124]).

Z 2 [Δ X ]

Z 2 [ Δ 1 ] x H , Z 2 [ Δ 1 ]
Z 4 [Δ X ]
Z 2 [ Δ 2 ]
Z[Δ 1 ]X M ,Z 4

Z w T \y rj

Z x " Z 2[Δ 2]

0
0
2
1
2
4
2
8
2
4
3
6

Z v "7 v 7
4 w 4 w 4

Z 4 X W Z 4 [Δ 1 ]
Z 4 X W Z 2 [Δ 2 ]

Z2[ΔJx3z2[Δ2]

(Z 2 [Δ 1 ]X W Z 2 [Δ 1 J)[Δ 1 ]
Z 4 [ Δ 2 ]
Z 2 [ Δ 3 ]

6
5
8
9

10
4
8

14
8

28
5

Any two reduced Witt rings have Lie isomorphic derivation algebras,
namely 0 (1.4). To get a non-trivial example we consider the four Witt
rings listed above with 2-dimensional derivation algebras.

PROPOSITION 3.1. (1) (Der(Z4[ΔJ) is abelian.
(2) Der(Z2[AJ), Der(Z4 Xw Z4) and Der(Z X W Z X W Z 4 ) are non-

abelian and Lie isomorphic.

Proof. Up to isomorphism there is a unique non-abelian 2-dimen-
sional Lie algebra [2, p. 11], so we need only check if the algebras are
abelian or not.

Z 4[ΔJ can be realized by W(Z3((t)))9 hence by (1.5), Der(Z4[AJ) is
generated by d((l, 1» and d(t(l, 1» (where d(w) sends ± 1 to 0 and ±t
to w). Then

= 0.

So Der(Z4[AJ) is abelian.
Z 2[ΔJ can be realized by W(Z5). Let a = a + 5Z for a e Z. Then

Der(Z2[ΔJ) is generated by J(ϊ) and d(2) (where d(ά) sends ϊ to 0 and 2
to α). Then [J(ϊ), J(2)] = J(ϊ) and Der(Z2[ΔJ) is non-abelian.

Z 4 X W Z 4 can be realized by the Witt ring of the group G = {±1,
±a] with D(l, g) = G for all g^G. Using (1.8) we get Der(Z4 X w Z4)
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is generated by d((l9l)) and d((l9a))9 where d(w) sends ±1 to 0 and

±a to w. Then [έ/«l,l», </(<l, α))] = d « l , l » and the algebra is

non-abelian.

Lastly, ZXV V,ZXV VZ4 can be realized by the Witt ring of the group

G = {±19 ±a9 ±b9 ±ab) with D(l9 1) = {1, -aft}, D(l9 a) =

{l9a9-b9-ab} and D(l9b) = {l9b9-a9-ab}. Using (1.8) we get

Der(Z X w Z Xw Z 4 ) is generated by Dλ which sends a to (1, ab)9 b to 0,

and by D2 which sends a to 0 and b to (1, ab). Then [Dl9 Z>2] = Z)1 + D2

and the algebra is non-abelian. D

Note that the Witt rings of (3.1)(2) with Lie isomorphic derivation

algebras have non-isomorphic associated groups. However, it is possible

for non-isomorphic Witt rings to have isomorphic associated groups and

non-trivial Lie isomorphic derivation algebras. An example i s Z x w Z 2 [ Δ 2 ]

and Z 4 X W Z 4 X M ; Z 4 . We sketch the computations required to verify this.

Z 4 X M ; Z 4 X M ; Z 4 can be realized by the Witt ring of G =

{±l,±a9±b9±ab}9 where Z)(l, g) = G for all g <= G. The following is

a basis for the derivation algebra:

Dλ: a -> (1,1), b -> 0, D4: a -> 0, b -> < l , l ) ,

Z)2: α -» <l,α>, 6 ^ 0 , i) 5 : α -> 0, 6 ^ (l,fl>,

Z>3: α ^ (l,fc>, Z> ^ 0, D6: a ^ (\9a)9 b -> (l,fc).

Z X W Z 2 [ A 2 ] can be realized by the Witt ring of the same G but with

2><1, 1) = {1, a, b, ab}, D(l9 a) = {1, a}, D<1, fc> = {1, ft} and

D(l,ab) = {1, a t } . The following is a basis for the derivation algebra:

6 ^ 0 , </4: α ̂  0, ft -

-> (1,-6) , J 5 : α ̂  0, b -

J 3 : α -> (1, - 6 ) , 6 ^ 0 , d6: a ^ 6(1, - * ) , ft ̂  ( l , -ft).

The map Dt -^ J 7 gives a Lie isomorphism from Der(Z4 X v v Z 4 X v v Z 4 ) t o

Der Z X w Z 2 [Δ 2 ]) as can be easily, if not quickly, checked.

We close this section with an example of a derivation which arises

naturally in the theory of quadratic forms. We use the following set-up:

Let F be a field of characteristic not 2, e e F\F2 and E = F{y[e). Let

denote the involution on E with a + b{e = a — b{e, and also the

induced involution on WE. Let s\ E -* F be the F-linear functional

defined by ^(1) = 0, s(Je) = 1. We denote the Scharlau transfer of s by

s*y and the map WF -> WE induced by inclusion by z*.
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LEMMA 3.2. Let E = F(]fe) and s* = i+s*: WE -> WE. Then for all
qvq2e WE:

Proof. We need only check this for x9 y e E since s* is additive. Let
/: £ - > F b e the trace functional. If z = \{e then ί(xz) = s(x) for all
x ^ E. Let ί* = *V*. By the trace formula of Scharlau-Knebusch [4, p.
212], t*(q) = q + q for all # G WE. We obtain:

jfr*(jc) + xs*(y) = ̂ *(xz) + xi*(^z)

= y(xz,xz) + x(yzyyz) = (xyz,xyz) 4- xy(z,z)

= t*(xyz) + xy(\Je , -\fe) = s*(xy). Π

COROLLARY 3.3. Let E = F(y[e) and suppose that for all x,y(ΞE
NE/F(y) e DE(l, -NE/F(x)). Then s* = w WE -* WE is a deriva-
tion.

Proof. By an easy computation (cf. [4, p. 202]), if x e E then
s*(x) = z(l, —NE/F(x))9 for some z G F. By assumption, for all y G £,
(1, -A^/F(>;)>5*(x) = 0 and so ^ * ( x ) = JΛS*(X). The result thus fol-
lows from (3.2).

EXAMPLES. We give some examples of fields F for which the condition
of (3.3) is satisfied for all quadratic extensions.

(i) Finite fields. In this case binary forms represent all of F.
(ϋ) Local fields, here either (( - NE/F(x), -NE/F(y))) is 0 in WF

or (( — e, —/)) for some / G F\DF(1, —e), since WF has a unique
non-trivial 2-fold Pfister form. In either case, ({ —NE/F(x)9 —NE/F(y)))
® E = 0 gives the condition of (3.3).

(iii) If the condition of (3.3) holds for every quadratic extension of Fλ

and F2 then it holds for every quadratic extension of the field F
constructed by Kula [3] with WF = WFγ X w WF2.

4. Simple derivation algebras. We begin with a simple observation:

LEMMA 4.1. Let R be a Witt ring, D G Der(i?) and suppose D(IR) c
1%, for some m>\. Then for all k>\, D(l£) c

Proof. We use induction on k, the case k = 1 being trivial. Suppose
k > 1; we need only check the value of D on /c-fold Pfister forms.

α 1 , . . . ,a k ))) = (1, ak)D{{{aι,..., β f c_ x
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Now D((l,ak)) c /* and by induction D(((av...,ak_1))) c 7™
Thus D ( ( ( β 1 ? . . . , ak))) e J ^ * " 1 as desired. D

The generalized Witt algebra Wn is the derivation algebra of
Z 2['i, ? *„]/(*!, , **) (cf. Π). Since the Witt ring Z2[Δ J is isomor-
phic to Z ^ , . . . , / „ ] / ( £ . . . , tf) we have Wn = Der(Z2[ΔJ). We will
show this is the only example of a simple derivation algebra of a finitely
generated Witt ring.

THEOREM 4.2. Let R be a finitely generated Witt ring and suppose
L = Όeτ(R) Φ 0. The following are equivalent.

(1) L is simple;
(2) L is semi-simple;
(3) L has no (non-zero) abelian ideals;
(4) L = WnandR = Z2[Δ J , for some n.

Proof. We need only show (3) -> (4). So suppose L has no (non-zero)
abelian ideals. Let G be the group associated to R. Write R = R0[Δ], for
some group Δ of exponent 2 and Witt ring i?0 which is not a group ring.
Let Go be the group associated to Ro.

Step 1. llo is torsion-free.
Suppose otherwise and choose m > 2 such that Ig is not torsion-free

but IR+1 is torsion-free (this is possible as Ro is finitely generated, cf. [5,
9.4]). Note that a torsion form in Ig is universally round. Let J = R Ig
and / = {D e L | D(iί) c /} . / φ °0 by (1.3). We will obtain a contradic-
tion by showing / is an abelian ideal.

Clearly / is closed under addition. Choose D e /, Df e L and
g E G . B y (1.5) L = ΔLX + L2, where Lx = {£> e L|D(Δ) = 0, £>(#0)
c Ro) and L 2 = ( ί ) e L |D(i ί 0 ) = 0}. Since Ro is not a group ring
extension, (1.7) implies D(R0) c J ^ for D e L t. Write D' = (Σδ,./),.) +
Z>", with 8t e Δ, Z), e Lx and i)0// e L2. Write D(g) = Σγzφz, with
γ,. e Δ and φz G /J^. We obtain:

= D{D'(g)) + ΣΦ

Now D ( D ' ( g ) ) e / since Del, φ , ! ) ' ^ ) e Λ /™o = /, ^"(φ,) = 0
since £>" e L 2 and yi8JDJ(φi) e i? 7™o = J by (4.1).°Hence [D, 2)'] e /
and / is an ideal.
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Lastly, we show / is abelian. If Dv Z>2 e 7 and g e D then

Dx{D2{g)) e ^ ( Λ /*o) c RD^Il) + I^D^R) c i?

by (4.1). Then since m > 2, (1.1) implies Dι(D2(g)) c Λ 7**-1 Π 2?, =
0. Hence [/, 7] = 0.

Step 2. RΦ Ro.
Suppose R = Ro. If 7Λ is torsion-free then either R is reduced or Z 2,

and in both cases L = Der(i?) = 0 by (1.4). So we may assume IR is not
torsion-free, in particular, that D(l,l) Φ {1}. If x e D(l, 1) then
(1,- j t ) eur(i?) since (1, — x) is torsion and 7 | is torsion-free by Step
1. We consider four cases. In each case we obtain a contradiction by
construction of non-zero abelian ideal.

Casel.GΦ (1, -1}D(1,1) and 1 Φ - 1 .
Fix a subgroup 77 of index 2 in G such that if contains

{1, -1}Z)<1,1). Set 7 = (<ί(77, <1, -x))\x e 7><1,1>}, using the nota-
tion of (1.3). / Φ 0 since 2)(1,1) Φ {1}.

Now </(#, (l,-x)) + d(H, (l,-y)) = d(H, (1,-xy)), so / is
closed under addition. Let D e L and g & G. Then D(g) ^ annA(l, 1)
= IR Π i?,, since — 1 # 1. We can find a n « e G such that 7J>(g) +
(1, -e) e 7Λ

2. Then « 1 , -e)) = <l,l>i?(g) + « 1 , - e » e /j and so
« 1 , -e>> = 0. Thus D(g) + (1, -e) e 7 | n Λ, = 0, by Step 1. Hence
for every g e G there exists an e e 7)(1,1) such that D{g) = (1, - e ) .

We now complete the proof that 7 is an ideal. [D, d(H, (1, -x))](g)
= D(d(H, (1, -x»(g)), since D(g) = (1, -e) with e e Z)(l,l> c 77.
In particular, [7), d(H, (1, -Jc»](g) = 0 if g e 77. If g ί 77 and 7)(x) =
(1, -y) for some y e 7)(1,1> then [7), </(#, (1, -x»](g) = D « l , - x »
= <1, - j > . Hence [7),rf(#, <1, - x » ] = ̂ (H, <1, -y)) e 7.

Lastly, we show 7 is abelian. Since the image of d(H, (1, —x)) is {0,
(1, — x)} and JC S 7J>(1,1) c 77, the composition of any two derivations
in 7 is 0. Thus [7, 7] = 0.

Case 2. G= {1,-1}7)<1,1) and - 1 ΐ .D<1,1).
For g e G define Z)(g) = 7J(1, -g> if g e 7)(1,1), and 7)(g) =

(1, g> if -g e D ( l , l ) . Note that 7)(g) = D{-g) for all g and 7>(-l)
= 0. To show 7J> e L we need only check 7)(gg') = 7)(g) + 7)(g') for all
g, g' e G, since D(g) e ur(i?) for all g ^ G. Now:

D ( g ) ± D ( g ' ) = ( l ^ g ) + (l,ε 2g'>, for some ε1? ε2 e {1,-1}

= ( - ε2g', -είe2gg/) + (l,ε2g'), as ( l ,ε l g ) e ur(Λ)

= ( l ,- ε i ε 2 g g ' )=7)(gg ' ) .
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Let D' e L and g e G b e arbitrary. As in Case 1 D'(g) = (1, - x )
for some x e D(l, 1). Then

[D'9 D](g) - D ' « l , eg» + Z>«1, - x » = />'(g) + D(x)

= (1, -JC> + (1, -x) = 0 (where ε e {1, -1}).

Hence {0, D} is an abelian ideal.

Case 3. G = /><1,1> and - 1 Φ 1.
Here we have (1,1) e nτ(R). Set / = {D e L|D(Λ) C {0, (1,1)}}.

/ Φ 0 by (1.3). Since for any derivation D' e L, D'(l) = 0, we have for
D €= / that [£,£>'](*) c D(D'(R)) c {0, (1,1)}. Thus / is an ideal.
Further, / is abelian since the composition of any two derivations in / is
0.

Case 4. - 1 = 1.
Since R = Ro by assumption and /Jo is torsion-free by Step 1, we

have / | = 0 and annΛ(l,l> = {(l,x) \x°^ G} c ur(iί). We define J9:
G -> i? by D(JC) = (1, JC>. Then D(l) = 0 and D(Λy) = (1, xy) = <1, x>
+ (1, y) = D(x) + Z)(7) = j;i)(x) + xD(y), since <1, x>, (1, y) e
ur(iϊ). So D is a derivation. Further, for any I) ' e L, g G G we have
[A />'](g) = ^(DXg)) + D\D{g)) = D'(g) + 2)'(g) = 0 by (1.1). Thus
(0, D) is an abelian ideal.

Step 3. IR is torsion-free.
By Step 2°, |Δ| = 2" with n > 1. Let /1 ?...,/n generate Δ. By (1.5),

L = ΔLX + L2 where Lλ = {D <= L|D(Δ) = 0, /)(i?0)
 c ^o) a n d L 2 =

{D e L|Z)(Λ0) = 0}. Note that if D e Lx then Z)(Λ0) c /Λo by (1.7).
For α 1 , . . . , α n e annΛ(l,l) let έ/^,.. .,«„) be the derivation sending
Ro to 0 and ti to α̂  (1 < / < n). Then L2 = {J(α1 ?. ..,«„) |α G
annΛ<l,l>}.

Suppose /ΛQ is not torsion-free. Then IRQ Π Rt c ann Λ (l , l), since
7| o is torsion-free by Step 1. Set / =°Λ(/Iίo Π i?,) and / =
{έ/(α l 9...,αw) Iaι ^ /} . / is closed under addition. We will obtain a
contradiction by showing / is an abelian ideal.

First, if 8 £ Δ, D <= Lx and d(al9..., an) e / then for g £ Go we
have

, J ( α x , . . . , aH)](g) = ^(«i' . «n)

/Λo Λ(/Λ o Π Λt) c Λ(/|o n Λ,) = 0.
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And [8D, d(au ..., «„)](/,) = δ£(α,) e R(IRo Π Rt) = /. Hence
[8D, d(av ..., an)] = d(8D(ai),..., 8D(an)) e / and [ΔL l 5 / ] c /.

Next, choose d(βv...,βn) e L 2 and d{a1,...,an) e /. Write α, =
Σ y δ ί 7 φ 0 , for some 8tJ e Δ and ? o e / , , n ί ( . Then [d(βv...,βn),
d(ax,..., an)\ sends i?0 to 0 and sends ί; to

Now £/(«!,...,«„)(&) e / and φ l 7</(&,...,β n)(8 u) e (/S o n Λt) Λ =
/. Thus [L 2, /] c / and so [L, /] c /.

Lastly, to show / is abelian choose d(av...,an), d(βv...,βn) e /.
Then d(ax, . . . , an)° d(βv . . . , βn) sends Ro to 0 and /, to
d(alf..., αn)(iS,). Write βt = Σ δ ^ with 8j e Δ and φ, e /Λo n i ί Γ Then

(/Λo n Λr) R(IRO n Λf) c R(I^ n Λf) = 0.

Hence [d(al9..., α j , ^(i8 1 ? . . . , βn)] = 0 and [/, /] = 0.
We now complete the proof. We have R = i?0[Δ J with n > 1 and

IR torsion-free. In particular, D( l , 1) = {1}. Thus either Ro is reduced
or i? 0 = Z 2 . But if Ro is reduced so is R and L = Der(i?) = 0. So
Ro = Z2, R = Z 2 [ Δ J and L = Der(i?) = Wn. D

REMARK. Manin has shown [7, p. 106] that every restricted Lie algebra
can be embedded in a generalized Witt algebra. Hence if R is a finitely
generated Witt ring there exists an n such that Der(i?) embeds in
Der(Z 2 [ΔJ).

5. Integrable derivations. We follow the terminology of Matsumura
[6]. If R is a commutative ring with identity then a derivation D of R into
itself is integrable if there exists a homomorphism E: R -> R[[t]] such
that E(r) = r + ίD(r) (modi 2) for all r G ϋ . The map £ is an integral
of 2). An integral E arises from a collection of maps Z> = (Do, Dv D2,...)
where Do = idΛ, Z^ = £ and £ ( r ) = ΣiDι(r)ti for all r e i?. If D =
(1, D 1 ? J5 2,...) and ^ ' = (1, D[, D 2 , . . . ) yield integrals for the derivations
D and D' then:
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yields an integral for D + D'. Indeed the set of integrable derivations

form an i?-submodule of Der(i?).

Let R be a Witt ring and let D G Der(ϋ). We say D is IR-integrable

if D has an integral E such that E(r) - r e IR[[t]] for all r <Ξ R.

Equivalently, we require D = (1, Dl9 D2,...) to give an integral of D with

Dt(R) c IR for i > 2. The composition DD' above shows the set of

/^-integrable derivations also forms a subgroup of Der(Λ).

LEMMA 5.1. Let Rbea Witt ring and D e Der(R). IfD(R)2 = 0 then

D is IR-integrable.

Proof. D{R)2 = 0 imphes /)(i?) c IR. Define E: R-* R[[t]] by

£ ( r ) = r + Σ?=1D{r)t\ E i s a d d i t i v e , J ? ( r ) - r e IR[[t]] a n d for r , J e

)** = E(rs)>
i

using that D{r)D{s) = 0. D

LEMMA 5.2. Le/ R be Z 2 , Z 4 or an indecomposable finitely generated

Witt ring of local type. Then every derivation of R is IR-integrable.

Proof. If R is Z 2 , Z 4 or Z then Der(iί) = 0 (1.4). Suppose R = L2#l>1

or I/2»-i f°Γ ^ ^ 2. Then, by (2.4), Der(i?) is generated by derivations of

the form d(H, β) (cf. (1.3)). Here d(H, β)(R) = Rβ, with β e ann Λ ( l , 1).

Hence (2.2) imphes β is j ( l , JC) or p, where - x e Z>(1,1), j e G and p

is the unique non-trivial 2-fold Pfister form of R. In either case β2 = 0.

So d(H,β) is /^-integrable by (5.1) and then every derivation of R is

/^-integrable.

Now suppose R = L2n0 with n > 2. Let G be the group associated to

R and fix α 0 , b0 e G with α 0 <£ Z)(l, Z>0). Write G = A X B with α 0 e Λ,

b0^ B and satisfying ax e D ( l , α 2 ) , 6X e Z>(1, 62) for all al9 a2 e ̂ 4,

6p 62 e 5 . This is possible by (2.12). Define DA on G by DA{ab) = 6(1, ^ ,

with a ^ A, b ^ B. This is a derivation, as shown in the proof of (2.13).

Note that DA(R)2 = {((av a2))\ai e A) = 0 so that / ^ is /^-integrable

by (5.1).

Let D G Der(i?). The proof of (2.13) shows that there exists a

derivation Dx in the subgroup generated by DA and ( J ( D ( l , x ) ,

G, x e />(l,όo>} such that Z)1(fl0) = Z)(fl0) and/)1(Z>0)= 0.
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Further, Z>1 is /^-integrable. Similarly, there exists /^-integrable D2

such that D2(a0) = 0 and D2(bQ) = D(b0).

By replacing D by D — Dx — D2 if necessary, we see it suffices to

show if D G L = {D G Der(Λ) |/>(tf0) = D(6 0) = °} t h e n D is /^inte-

grable. Now L is isomorphic to Der(L 2 r t_ 1) by (2.11). Let γ*: Der(L 2 n _ 1 )

-> L be an isomorphism (take the inverse of the map in (2.11)). The proof

of (2.11) showed that y*(d(H9a)) = d(K9β)9 where d(H9a)9 d(K9β) are

of the type discussed in (1.3). Thus the derivations d(K,β) G L generate

L by (2.4). As argued above, d(K,β) is /^-integrable. Hence D is

/^-integrable. D

LEMMA 5.3. Let Ro be a (finitely generated) Witt ring and let

R = i? 0[Δ 1]. Suppose every derivation of Ro is IR -integrable and D G

Der(i?) satisfies D(R0) c I R Q . Then D is IR-integrable.

Proof. Let Δx = {1, /}. By (1.5) D = D' + tD" + D '", where D\ D"

G L x = {/) e Der(i?) |/)(Δ 1) = 0, D(RQ) a Ro) and Z)" '(Λ o ) = 0.

The restriction to i ί 0 gives an isomorphism between Lλ and Der(i?0) so

D' and Z)r/ are /^-integrable. We may thus assume D = D"'.

Let w = D(t). By assumption, w G ann Λ ( l , 1) Π /Λ. For r G i?0,

D(r) = 0 and /)(r/) = nv. If chari? = 2 then since w2 G 2IR = 0, /)(i?) 2

= (wR)2 = 0 and /) is /^-integrable by (5.1). So we may assume chari?

Φ 2. For non-negative even integers k we dfine wk G /Λ inductively by:

(i) w0 = w

(ϋ) If /: = 4/ then w2i G /Λ and w2

2. G 2 / Λ . Choose wfc G /Λ such

that:

/-I

7 = 1

(iii) If k = 4/ + 2 then w0

2 G 2/Λ. Choose a wfc G /Λ such that:

We note the following identities:

k/2-l

= Σ W2jwk-2j iffc = 0(mod4),

/c/2

-2j if λ: Ξ 2 (mod 4).
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For odd integers k, set Dk = D. Let Do = idR and for even k > 2

define Dk\ R -> R by Dk{rx + r2t) = r2wk, for all rl9 r2 G i? 0 . Note that

£>,(#) c IR for / > 1. Define E: R -> £[[*]] by £ ( r ) = ΣDk(r)sk. To

show E is the integral of Z> it suffices to check for all x, y G G (G the

group associated to i?) that:

Dk{χy)= ΣDt{χ)Dk

1 = 0

Suppose k is odd.Then Dk(xy) = xD(y) + yD(x) = D0(x)Dk(y) +

. Thus (*) becomes:

' (k~Σ2 Dφ)\= D(x) Σ D2(y)

This clearly holds if x or y are in Go, the group associated to Ro. So

suppose x = gt, y = g't for some g, g r G G O . Then:

+ g'w

= 2gg'wo(Σw2j) = 0.

Now suppose A: is even. Let εk = 0 if k = 0 (mod 4) and εk = 1 if

/: = 2 (mod 4). Then (*) becomes

(**) Dk(xy) = Σ £ , ( * ) £ * - » + Σ DjMDkφ)
j odd y even

Dk(xy) = eA2)(x)Z)(j;) + xDk{y) + yDk(x)

k/2-l

+ Σ D2j(x)Dk_2J(y).
7 = 1

The equation (**) holds if x or j are in Go. So suppose x = gt, y = g't

for some g,gf G G O . We want to show the right hand side of (**) is 0

since Dk(xy) = Dk(gg') = 0. First consider the case k = 0 (mod4). The

right hand side of (**) is:

= 0, by construction of wk.

If k = 2 (mod 4) the right hand side of (**) is:

= 0, again by construction of wk. D



296 ROBERT W. FITZGERALD

LEMMA 5.4. Let Rv R2 be (finitely generated) Witt rings and let

R = RXXWR2. Let Lf = {D e Der(i?,) |/)(*,.) c IR } for i = 1,2.

Suppose every derivation in Lf is IR-integrable (i = 1,2). Then every

derivation of R is IR-integrable.

Proof. Let G, be the group associated to Ri (i = 1,2); G = Gx X G2

is the group associated to R. We use the notation of (1.8). If D e Lγ then

there exists D' e Lf such that for all (g1 ? g2) G G> ^ ( ^ 1 ^ 2 ) =

(/>'(&), 0). Let Z)' = (1, 2>ί, Z>2,...) yield an integral for D' with D;(Rλ)

c / Λ i for / > 2. Define, for 1 > 2, D : i? -» R by ^ ( r l 9 r2) = (D/ίr^O).

Then 7) = (1, 7>, 7>2, •) yields an integral for D. Similarly, if D e L 2

then £> is 7^-integrable.

If D is in £ 1 ? £ 2 or F then 7)(i?) c ur(i?) by (1.8). Hence, D(R)2 = 0

and D is 7^-integrable by (5.1). Since Ll9 L2, Ev E2 and F generate

Der(iϊ), by (1.8), we have that every derivation on R is 7^-integrable. D

THEOREM 5.5. Let R be a finitely generated Witt ring of elementary

type. The following are equivalent:

(1) There exists D e Der(i?) with D(IR) <£ IR;

(2) There exists D e Der(i?) that is not integrable;

(3) There exists D e Der(ϋ) that is not IR-integrable;

(4) R is a group ring and char(i?) = 2.

Proof. (1) *> (4) is (1.7) and (2) -> (3) is clear.

(4) -* (2): Write i? = U Q I Δ J with Δ x = {1, t). There is a derivation

D with 7>(i?o) = 0 and D(t) = 1 (cf. (1.5)). Suppose £ = (1, D,D2,...)

yields an integral of D. Then 7)2(1) = 0 and

0 = D2{t - t) = ίD2(ί) + D(t)D(t) + tD2(t)

0 = (1) + 2tD2(t),

which is impossible, as 2tD2(t) G 7 Λ but ( - 1) £ IR.

(3) -> (4): We use induction on |G|, where G is the group associated

to R. By (5.2), R is not indecomposable. Suppose R is a product

JR1 X w i ? 2 X M ; XwRn, with each i?/ indecomposable or a group ring.

If R. is indecomposable then every derivation on Rt is 7Λ-integrable. If

7? is a group ring then Rt, = St[Δ] with St indecomposable or a Witt

product. By induction, every derivation on S, is 75-integrable. Hence any

derivation on i? mapping IR into itself is IR -integrable (5.3). Then (5.4)

implies every derivation on R is 7Λ-integrable, a contradiction.
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We thus have that R is a group ring extension. Write R = S[Δ], with
S indecomposable or a Witt product. Again induction yields that every
derivation on S is /5-integrable. If char(i?) Φ 2 then any derivation on R
maps IR into itself (1.7). So (5.3) implies every derivation on R is
/R-integrable, contrary to our assumption. Thus R is a group ring and
char(i?) = 2. D
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