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In this paper we study the very close connection between the kth
tensor product of the harmonic representation w of U(p,q) and the
generalized unit disk 2. We give a global version of w realized on the
Fock space as an integral operator. Each irreducible component of  is
shown to be equivalent in a natural way to a multiplier representation of
U(p, q) acting on a Hilbert space 5#(2,)) of vector-valued holomor-
phic functions on 2. The intertwining operator between these realiza-
tions is then explicitly constructed. We determine necessary and suffi-
cient conditions for square integrability of each component of w and in
this case derive the Hilbert space structure on £ (2, \).

Introduction. Of interest here are the diverse roles the generalized unit
disk plays in the constructions mentioned above. Our principal objective
is to give a disk picture realization of all U( p, q) highest weight modules.
This is done in §3. Further, we are interested in their unitary structure. We
will say more on that later.

In the literature various versions of U( p, q) highest weight modules
appear. Typical are constructions involving the Siegal upper half plane [4,
8] or the open set of positive p-planes in the Grassmannian [12]. More
recently, Patton and Rossi [13] have used cohomological methods to
realize these modules and the Penrose transform has related these to other
constructions (cf. also [12, 14]). Most notable, however, is the paper of
Kashiwara and Vergne [8]. There they decompose w (we will use w to
mean the kth tensor product of the standard Segal-Shale-Weil representa-
tion of U(p,q)) and produce, as they conjectured, all highest weight
U( p,q) modules on a Schroedinger-Fock space (cf. [2, 7]). In their
version  is constructed by determining its action on certain subgroups
whose product is dense in U( p,q). Together these actions lead to a
unitary representation of the whole group. Their main results are the
decomposition of w into its irreducible components w,, A € A € U(k)
and an explicit description of A in terms of the signature of irreducible
representations of the dual group U(k).
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34 MARK G. DAVIDSON

In §1, we show how a direct and global version of w can be realized in
a variant of the Fock Space over C"**, where n = p + q. The generalized
unit disk plays an important role here. For 7T € 2 we introduce a
function g, € # invariant under the right action of U(k). In fact, { ¢,
T € 9) generates all the invariants. For g = (£ ) € G we show
-1

a(z — Az
w(g)f(z) = 22d) | f(w)qA-IB(w)K(w, D) du(w).
is a continuous unitary representation (cf 1.12).

The orthogonal complement of the ideal generated by the U(k)-in-
variants is the space of harmonics 5. Based on 2.3 the decomposition of
w is reduced to the decomposition of w| , on H, where K is the maximal
compact subgroup U(p) X U(q). In [8] a similar space is defined. Our
proof that the A-isotypic component in 5 is irreducible under K X U( k),
A € U(k)", differs however. Here, we are able to exploit the role of the
generalized unit disk.

In §3 we construct all U(p, q) highest weight modules as Hilbert
spaces ¥ (2,\) of vector valued holomorphic functions on 2. This
construction is based on the relation of a kernel function Q on 2 to the
inner product in the Fock space. Namely, for S, T € & and h, f € #

(qrhlqsf) = (Q(S,T)h|f)
(cf. 3.1). The positivity of Q follows immediately from this formula. The
results of Kunze [11] apply to yield the Hilbert spaces desired. We further
show that the map g h — Q(-,T)h extends to a unitary operator inter-
twining 7, and w,. This extension is expressed globally as an integral
operator in 3.7.

In §4 necessary and sufficient conditions are determined on the
Kashiwara-Vergne parameter A for w, to be in the discrete series. We
exploit the role of 2 to an even greater extent than before. In this case we
determine globally the unitary structure of £ (2, M).

Finally, we mention that Inoue [6] has constructed a series of irreduci-
ble unitary representations of U( p, q) which generalizes the limits of the
discrete series constructed by Knapp and Okamoto. The representation
spaces are highest weight modules and are realized as vector-valued
holomorphic functions on 2. Hence they appear in our constructions. In
fact we can describe them in terms of the Kashiwara-Vergne parametriza-
tion (cf. 2.9) as follows: Let k = n — i, where 1 <i < min( p,q) and
n=p+gq. Let A€ U(n—i)" have signature (my,...,m,_;,0,...,0,
~n,_;s---,—ny). Then H#(2, ) is a generalized limit of the discrete series
in the sense of Inoue if and only if A is of the above form. In this case the
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inner product is given in a form similar to 4.5. However, the integral is
over the ith boundary component of £ and Q(7,T) is replaced by a
positive operator on the ith boundary component.

This work is in essence my doctoral dissertation. I would like to
express my gratitude and respect to Professor Ray A. Kunze for his
guidance.

1. Preliminaries. In this section we set down some salient facts about
U( p, q) which are used throughout this paper. Our objective is to globally
define the harmonic representation w of U( p, q) on the Fock space. To
do this we introduce the Heisenberg group and its essentially only
infinite dimensional representation.

Let p, ¢ > 0 be integers and let n = p + ¢q. For g € GL(n, C), where
C denotes the field of complex numbers, we will frequently write g in
block form as

_rf (A B)
& qg{\C D

Let 1, = (0’1{_0,(1). We define

U(p,q) = {g € GL(n,C): gI, ,8* = Ip,q}’

where * denotes the conjugate transpose. Throughout this paper we will
denote U(p,q) by G. For g = (2 5) € G, the defining condition of
U( p, q) implies the following relations:

(1)  AA*-BB*=1,

(2)  CC* =~ DD* =-I,

(3) AM-crCc=1,

(4 B*B-D*D=-I, and

5)  C = DB*4*!
6) B=AC*D*’!
7)  C=D*"'B*4
8) B =A*C*D.

(1.1)

N’

Let K= G N U(n). Then K is a maximal compact subgroup of G
isomorphic to U(p) X U(q). Let =9, ,= (T € C?*%:1 — TT* > 0},
where > 0 denotes positive definite. Then £ is a bounded complex
domain open in C?*9. The map G/K — 2 defined by

(A B
C D
is a homeomorphism and the natural action of G on 2 is given by
(A B

C D

)K — BD!

) T = (AT + B)(CT + D)™".
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The domain 2 plays a crucial role in the analysis of the harmonic
representation.

Now, let = C"** where n = p + ¢q and k > 0 is an integer. We
will frequently write z € & in the form

(3

where z; € C?** and z, € C7**. We define an inner product (- |-) on &
by (z|w) = tr(zw*). Let o be the real form on % defined by o(z,w) =

Im(7, ,z|w) for z, w € &. It is easy to see that o is nondegenerate and
skew-symmetric. Let H = %X R, where R is the set of real numbers. We
equip H with the product defined by

(z,s)w,t)=(z+w,s+t+a(z,w)).

This makes H a group, the Heisenberg group.

The essentially only infinite dimensional irreducible representation p
of H can be realized in the following way. Let f be a complex-valued
function on &. We say f is ( p, q) holomorphic if z, — f(3!) is holomor-
phic for z, € C?*¥, and z, — f(2) is conjugate holomorphic for z, €
Cr k. Let F=4%,, ={f ¥—>C. f is (p,q) holomorphic and
[ f(2))?du(z) < ooz}, where du(z) = u(z) dz, p(z) = e, is normal-
ized so that [,e ™" dz = 1. Then Z is a Hilbert space, known as the
Fock space and the reproducing kernel KX is given by

K(Z, W) = eT(@alm)em(m|2;)
The representation p of H defined by

(1.2) p(w,t)f(z) = e=™K(z,w)u'*(w)f(z — w),
(w,t) € H, z €% and f € %, defines a continuous unitary representa-
tion of H on &%, such that p(0,¢) = e~""I, for all t € R. Furthermore, it

is well known that p is irreducible and has square integrable matrix
entries over .%.

LeEMMA. Let A € GL(m,C) be such that A + A* > 0. Then

1

e "Ny = ——
f'"x" (detA4)”

Proof. The lemma is clear for 4 > 0 by making the change of variable
z = (A'Y?)7'z. Then proceed by analytic continuation to the set {4 €
GL(m,C): A + 4* > 0}. a
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Let T € 2. We define g, € # by the formula

qr(z)=e
It is clear that ¢, is (p,q) holomorphic. Furthermore, the following
proposition shows that ||g,|| < oo.

(2 |T2y)

1.4. PROPOSITION. Let T € 9. Then
1
det(1 — TT*)*

2
lgzllI” =
Proof. Let T € 9. Then

”‘17‘”2 =fyew<mrz2)ew(rzzlzo dp(z) =fc e™T*T2212) gy (7,)

gXxk

1
det(1 — T*T)"

This function g, plays a very important role in the rest of this paper.

Let Sp(o) be the group of all real linear operators on ¥ which
preserve o. In other words, a € Sp(o) if and only if o(az, aw) = o(z,w),
for all z, we &. Clearly, G = U(p,q) is a subgroup of Sp(o). Let
a € Sp(o). The map (w,t) = p(aw,t) defines an irreducible unitary
representation of H on &%, which is identical to p on the center R of H.
By the Stone-von Neumann theorem they are unitarily equivalent. Hence
there is an operator w(a), unique up to a unitary constant, so that

(1.5) w(a)p(w,t) =p(aw, t)w(a).
For g € G, we can choose w(g) so that g — w(g) is a continuous unitary
representation called the harmonic representation. We seek to explicitly

determine w(g), g € G. Its construction comes from the proof of the
Stone-von Neumann theorem which we now review.

=f e " Taln) gy = by Lemma1.3. O
quk

1.6. THE STONE-VON NEUMANN THEOREM. Let T be a unitary repre-
sentation of H such that

7(0,¢) = e"™I, t €R.
Then T is a multiple of p.

Proof. Let S, be the representation space of 7. Define a map 7 on S,
by

(To|¢) = fy ((2,0)0|¥)u2(z) dz,
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for ¢, Y € S,. The matrix entry (z,0) = (7(z,0)¢ |y ) is bounded, so the
above integral converges. It’s not hard to see that T is a non-zero bounded
operator and T = T* = T2 Further, if (z, 1) € H then

(1) Tr(z,t)T = e ™"ul/?(2)T.
One can further show that the H-invariant subspace generated by the

range of T is densein S,. Let ¢,, ¢, € range of T. For h = (z,t) € H, let
p(h) = e~™ul/?(z). By (1) above

(7(h)$119,) = p(h)(911$,)
and hence
(2) (7(h1)¢1|7(h2)¢2) =P(h51h1)(¢'1|¢2)-
Let { ¢,} be an orthonormal base for the range of T. Let H, be the closed
H-invariant subspace generated by ¢,. It follows from (2) that { H,} is a

set of mutually orthogonal subspaces and S, = © H,.
Let 7, be the restriction of 7 to H,. By (1)

(r,(h),19,) = p(h) = (p(R)1]1).
So 7, and p share a common matrix entry. This is enough to show that p
is equivalent to 7,. In fact, the map ® of span{r(h)¢,: h € H} into F
defined by

®(% ¢;7(h)4,) = (k)1
J J
extends to a unitary intertwining operator of 7, and p. a

1.7. COROLLARY. Let ¢ € H, and z € &. Define

Q¥ (z) = (¥]7(2,0)9,)p7'7*(2).
Then Q, = ®.

Proof. Let ¢y € H, and z € ¥. Then
0,4(z) = (¥17(2,0)9,)s7*(z) = (2¥|®7(2,0)9,)n"'(2)
= (2¢1p(2,0)p%(z) = (®Y|K(-, 2)) = 2(¥)(z). O

For the case we will consider we mention;
1.8. COROLLARY. If 7 is irreducible the range of T is one dimensional.

Let g € G. Consider the representation 7 of H defined by 7(z,¢) =
p(g7'z,t). Clearly, 7 is irreducible and 7(0, ¢) = e~""I. By the Stone-von
Neumann theorem there exists a unitary operatory ® on % such that
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®p(g7'z,t) = p(z,1)D, for all (z,t) € H. Replace z by gz. We then have
®p(z,t) = p(gz,1)®. So w(g) as defined by 1.5 is a unitary multiple of
®. To determine @ in this case we must determine a vector in the range of
T as defined in the proof of 1.6. Let z € %. Then

T1(z) = (T1X(-, 2)) =fy(p(g"lw,o)llK(-,Z))ul/z(W)dw

p(g7'w,0)1(z2)p'/*(w) dw

Il
ab

|det A*| 0 !
1 * g%-1 * * g*-1C*
- ————kf e (D)= BT AT i [w)gm(DT = BEATTCT 1 22) gy (w)
|det A*|
1 z;|-A "Bz 1
_ keﬂ(” A7'B 2)=——kq_A_1B(z).
|det A*| |det A*|

So q_ 415 € range of T. By Corollary 1.8 the range of T = span{q,-i5}.
In order that g — w(g) be a representation we need to judiciously choose
¢ € span{g_,15}. Let ¢ = (1/det A¥)g_,1,. By 1. 1 and Proposition 1.4
ll¢|l = 1. By Corollary 1.7 we have

W)

(192)  9/(w) = w(8)f(w) = (f1p(g7w,004_45) ——— 7

An easy calculation shows that

(1.9b) w(g)f(w)= qutAk /f 2)q_415(2 )K( ,f)__lfsz)dy(z).

Thus w( g) is a unitary operator satisfying 1.5.

We now proceed to show that g — w(g) is a continuous unitary
representation of G on #. The following standard lemma will prove
useful for that goal and will have frequent use throughout this paper.
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1.10. LEMMA. Let M be a connected complex manifold and h a function
on M X M with the following properties.
(@) h(z,z)=0 forallze M
(byw — h(z,w) and z — h(z,w) are holomorphic for z, w fixed,
respectively.
Then h(z,w) =0 forallz,w € M.

111.LeMMA. Let S, T € @ and x, w € &. Then
(qrK (-, x)1gsK (-, w))

1
det(1 — ST*)

% qT(l—S*T)'l(w)q(l—ST*)‘IS(x)K

(1= 8ST*)'w, .
(1 - 8*T)'w,

Proof. Each function given above is holomorphic in S and conjugate
holomorphic in 7. For S = T it is a straightforward calculation that they
agree. By 1.10 the result follows. a

1.12. THEOREM. The map w: G — U(F') defined by 1.9 is a continuous
unitary representation of G on F.

Proof. 1t is clear from (1.9a) that g = w(g)f(w) = (w(g)f|K(-,w))
is a continuous function of G, for all w € %. Since span{ K(-,w):
wE &} is dense in F a standard argument shows g — (w(g)f|h) is
continuous, for f, h € #. Using 1.1 and Lemma 1.11, it is easy to check
that w(g;)w(g,)K(-, x) = w(g,8,)K(+,x), for all x € &. Hence w is a
continuous unitary representation of G on £.

2. The decompesition of the harmonic representation. In this section
we give a description of the irreducible components of w. In the process
we will also derive some fundamental formulas necessary for the main
results in §3.

The irreducible components of w are parametrized by a class A of
irreducible representations of the dual group U(k). Kashiwara and Vergne
[8] give an explicit description of A in terms of the signature of the
representation, to which we refer in 2.9. As we observe after Corollary 2.3
the decomposition of w reduces to a decomposition of the space of
harmonics 5 under the joint actions of U(p), U(q), and U(k). Our
method of proving irreducibility of the isotypic components (Theorem
2.5), is somewhat different from [8]. Their proof utilizes arguments involv-
ing the relative size of p, ¢ and k. We offer a direct proof for which the
generalized unit disk plays an important role.
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The dual group U(k) acts on & by right translation. We may extend
this action holomorphically to GL(k, C) by

R(g)f(j;)=f( % ) g € GL(k,C).

z,g*!

Clearly, R commutes with w. Let =2 be the subspace of F of all
polynomials holomorphic in z; and conjugate holomorphic in z,. Then £
is dense in #. Let I be the subspace of polynomials invariant under the
action of U(K). Then, by a theorem of Weyl, I is generated as an algebra
by the constants and the matrix entries of z — z,z¥. Let # be the ideal in
&P generated by the invariants with zero constant coefficient and let
=5, , be the orthogonal complement of £ in £. We refer to 5 as
the space of harmonics.

For f € P one can easily prove by induction on deg( f) that f € 17.
Hence we have

2.1. PROPOSITION. & = JJ#.

Clearly g, € I. In fact, one can easily show that span{gq,: T € 9} is
dense in I. The importance of this and the space 5 will be clear from the
following propositions. Let L denote the left action of U( p) X U(g) on
& . Then L extends holomorphically to GL( p, C) X GL(g, C) by
Az,
D*z, '
Since L clearly leaves . invariant it also leaves 5# invariant. This is also
true of R.

L(4,D)f( ) = 1

2.2. PROPOSITION. Leth € # and g € (& B) € G. Then

9pp-! -1
h=—-"—L(A,D*)h.
w(g)h = D221 (4, D+

Proof. By 1.9b

qBD"(z) = A~121
h(z)=—"——1| h 4 K|w, d .
a(8)h(z) = 32 [ HONT s (w)K | w i, | 2
Since g_ 415, = 1 + ¢, where ¢ € I, and & is harmonic
qsp-(2) Az,
h(z) ==2——~ [ h(w)K|w, d
“(g)h(z) det 4* fy (») (w Dz, (z)
_ 4sp(2) , [ 472 -
det4* |\ D7'z,|
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2.3. COROLLARY. Let T € D andh € #. Let g = (£ B) € G. Then
qg-T
det(4 + BT*)*

w(g)(grh) = L((A + BT*),(CT + D)*")h.

Proof. Let g, = (& %) € G be such that g, - 0 = B, D;' = T. Then
by 2.2 g7h = det A* w(g,)L(AL", D¥)h. Thus

w(g)qrh =det A¥ w(gg,) L(47%, D¥)h.

The result now follows by applying Proposition 2.2 and the properties
listed in 1.1. o

The formula given in Corollary 2.3 suggests that to decompose w one
only need to decompose the action of L on 5. This is indeed the case.
Since R commutes with L we can use its representations to pick out the
isotypic components.

Let U(k)" be the equivalence classes of irreducible unitary represen-
tations of U(k), and let A € U(k)". We will also use A to denote a
representation in that class. Let P,: # — £ be defined by

P, f(z) = deg)\fu(k) f(zu)x, (u) du.

Then P, is a projection. Let &, be the range of P, and let A = {A €
U(k)": P\, #0}. Then = +4,_,#,. Let H#, = P\(5). Since P,
fixes each invariant we have by Proposition 2.1 that &, = I1#,. It’s easy
to see that 5, and thus &, are invariant under L. We will show that 5#),
is in fact irreducible under L X R.

Let V, be the representation space for A and (V)" = V,, be the dual
space where A’ is the contragredient of A. Let #(A) = {f: &L — Vy:
f(zu) = Mu)*f(2) for all u € U(k) and yo f€ F for all y € (V,)}
and S#(A) = {f€F(A): yofe H, for all y € (V,)'}. We may define
an action 7 = 7(A) of GL( p, C) X GL(g,C) on 5#(A) by

-1
A~z

T(A,D)h(Z) =n| .
2

It is easy to see that 7 is unitary when restricted to U( p) X U(q), with
respect to the inner product

(+) (F12) = [(f(2)18(2)) dn(z).
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We can also define a representation w(A) of G on % (A) by the rule
yo(w(A)g)f) = w(g)yef) It is easy to see that w, is unitary with
respect to the inner product given by ().

The following theorem due to [8] reduces the question of irreducibility
of L X R on 5%, to the irreducibility of 7 on J£(A).

2.4. THEOREM. There is an isomorphism of #,, onto H(A) X V),
intertwining the representations L X R| . and v X X'.

2.5. THEOREM. The representation 7 of GL( p, C) X GL(gq,C) on 5£(\)
is irreducible.

Proof. Suppose V C s#(A) is a non-zero invariant subspace. Let V' +
be the orthogonal complement. Let f€ V and g € V*. We first show
that the condition (f|g) = 0 implies (f(z)|g(z)) =0, for all z € S. Let
a=(4%)e G.Then

(oM)(@)18) = 2

by Proposition 2.2. Since g is harmonic and ¢z,-1 is an invariant with
constant 1 coefficient we have (gzp,17(4, D)f|g) = (7(4,D)f|g) = 0.
By unitarity of w(A) it follows that (w(A)(a;)f|w(A)(a,)g) = 0 for all
a,, a, € G. In particular this says that

[ (#(2)18())ar(2)as(z) dn(2) =,
forall T, S € 2. Since span{ q;: T € 9} is dense in I it follows that
[(£(2)18(2)ex(2)e(2) dn(z) = 0

for all ¢,, ¢, € I. By the invariance of ¥, V'*, and I by the action of
GL( p,C) X GL(g,C), we have

L () g e e atengwmsien g = o,

for all (a, b) € GL( p,C) X GL(g, C). Let « be the span of

(‘IBD"”'(A> D)flg),

{Z - ¢1(Z)¢2(Z)e_'”(aa‘zl|zl)e""'(bb*22]zz):
b1, 9, € I and (a,b) e GL(p,C) X GL(q,C)},

Clearly &/ is an algebra closed under complex conjugation. An easy
argument shows that &/ separates U(k) orbits of .. Hence the uniform
closure of & is the set of all continuous functions on % which vanish at
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infinity and are U(k) invariant. This implies that ( f(z) | g(z)) = 0, for all
z € %.By Lemma 1.10 (f(z) | g(w)) = 0, for all z, w € &. Now assume f
is nonzero. Then the span of the range of f is a nonzero U(k) invariant
subspace and hence is all of V,. This implies that g must be identically
zero and hence V' * is the null space. O

In view of this theorem and Theorem 2.4 we immediately get:

2.6. COROLLARY. The representation L X R of GL(p,C) X GL(g,C)
X GL(k, C) on 5, is irreducible.

Let £ be a subspace of 5, irreducible under the action L. Then
L| 4 is equivalent to deg()) copies of L| 4. Let #* = I#*. Then if
Fy = P\(F), F, = deg \(F1). Since the span of {q,;: T € D} is dense
in I the span of { g h: T € @, h € #*)} is dense in #*. By Corollary 2.3
F* isinvariant under w. Further, we have:

2.7. THEOREM. The restriction w, of w to F» is an irreducible
representation of U( p, q).

Proof. Let s € U(1). Define A(s) = (}.9) € U(p, q). Since L| g is
irreducible w(A(s)) = L(I,sI)= a(s)I on #*, where s — a(s) is as
character of U(1). Define an operator P on #* by

Pf = al(s)w(A(s))fds.

ey,

An easy calculation shows that P = P* = P2, Further, if # € #" then
Ph = h. Let ¢ € I with zero constant coefficient. Then

P(¢h) = f @

(cf. Hua [5], p. 97). It follows that P is the orthogonal projection of %#*
onto /. Let V be a closed subspace of #* invariant under w. Then P
leaves V' invariant. We may assume there is an f € V such that Pf # 0,
for otherwise ¥+ will contain such a vector. Since

(s)L(1,sq)da(s)hds = jU(l) L(1,sI)¢dsh =0

ol )=t

if follows that s##* C V. By Proposition 2.2, g;h € V for all T € 2 and
h € »#*. This implies V = #* and w, is irreducible. ]
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We therefore obtain the complete decomposition of w. We summarize
it as:

2.8. THEOREM. The representation w decomposes as follows:
w= @ deg(A)w,
AEA

We conclude with an explicit description of A as given in [8]. Let
z; € CP*¥ be partitioned as follows:

Zy zp\P !
2, =

213 214/,
i k—i

Let A,(z,) = det z;,. Similarly, let z, € C7%* be partitioned as follows:

Zyn  Zp)’
z,=

2y Zu)4-j

k—-j J
Let M(z,) = detz,,. Suppose A € U(k)" has signature
(%) (my,...,m,,0,0,...,0,-n,...,-n,),
where m; > --- 2m,>20and n, > --- 21,20, r<p, and s<gq.
Let h,(z) = A%(z)) -+ A%(z,)MPi(z,) -+ MP(z,), where a;=m; —
m,,i=1...,r—landa,=m,and B,=n,—n, ., i=1,...,s—1

and B, = n,. By [8] we get:

2.9. THEOREM. (1) A € A if and only if the signature of A satisfies (*).

(2) If A € A then hy € #, is the highest weight vector for L X R|
with respect to the lower triangular subgroups of GL( p,C), GL(q,C), and
GL(k,C).

(3) If A € A then the signature of L X R| 4 is

o,...,0,-m,,...,-m;) X(n,...,n,0,...,0)

xX(my,...,m,,0,...,0,-n,...,—n,).

3. The connection with the disk 2. In the previous section the
invariant q,, T € 2, played a key role in the decomposition of w. In this
section we exploit this function further to derive an operator valued kernel
function Q on 2. Our key result, Theorem 3.2, shows Q is positive
definite. We can therefore construct Hilbert spaces and irreducible repre-
sentations of G which we show are equivalent to those in the decomposi-
tion of w. The following result is the key to these constructions.
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3.1. PROPOSITION. Let h,f € o and S,T € 2. Then

1
h =

(L(1 - sT*,(1 = $*T)*'h| f)).

Proof. Let g,, g, € Gbesuchthat g, -0=Tand g,-0=S§.By23
qrh = det A% (g,) L( A%, D¥)h
and
gsf = det A% (g,) L( 45", D#)f,
where g, = (¢ 2), i = 1, 2. By the unicity of « and 2.3 we get
(qrh|qsf) = det 4% w(g5',) L( 47", DY) h| L( 43", D} )f)
_ 1
 det(1 - A3'CrC4)"

x(L(1 - 437'C,CA7, (1 - D3 7B, B,D;) )1 f )

1
det(1 — ST*)*

(L(1-sT*(1 - s*T)*h|f). O

Let

(s, T) L

© det(1 — ST*)*

L(1 - 8T* (1 - $*T)*7).

Then the formula in Proposition 3.2 can be written

(thquf) = (Q(S,T)\hlf)-

3.2. THEOREM. The function Q on 2D X D is a positive definite
operator-valued kernel.

Proof. Let hy,...,h, € # and T,,...,T, € 2. Then by Proposition
31

¥ (Q(T. Tk k) = T (agh;lazh,) =| E azhi| = 0.

i,j i,j

Clearly Q(S, S) > 0, S € 2. So Q is positive definite. 0O
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3.3. Let O,(*,*) = Q(*, -)| 4. By Kunze [11]. there is a unique
Hilbert space, s#(2, \), of continuous functions f: @ — #* with the
following properties:

(1) The span of the set { S — Q\(S,T)h: T € 9, h € #*) is dense in

H(2D, M),
(2) For S € @, E;: f— f(S) is a continuous map from (2, A) to
H#,

(3) O\(S,T)=EGE} forall S, T € &, and

@ (A TYRQN(-, 8) ) = (2a(S, TR f).

Since S — Q,(S, T) is holomorphic, #(2, A) consists of holomor-
phic functions on 2.

We can construct a multiplier representation of G on J#(2,\) as
follows: Let

1
det A%

restricted to s#*. Define J, on G X @ by J,(g, T) = L}(A + BT*)*™,
(CT + D)). Then J, satisfies

(1) J,(1,T)=1, foral Te 9P

L}(A,D) = L(A, D)

(2) Jx(g1gzaT) = Jx(gpng)JA(gz,T) forall g,8, € G, T€ 2.

Hence J, is a multiplier. We further have

(3) J)\(g>T)_1 = J)x(g-l’ gT)
and
(4) J"(SS’T)=L2(u’U)'

For h € #* we can rewrite 2.3 as w(g)qrh = q,.rJ\(8, T)**h.
The relationship between @, and J, can be expressed by the follow-
ing proposition.

3.4. PROPOSITION. Let S, T € D and g € G. Then

0,(8S,8T) = J\(g,8)0\(S,T)J\(g,T)*

Proof. The result follows from the easily verified formulas:
(1) 1 - gS(gT)* = (SB* + A*)™'(1 — ST*)(BT* + A)" and

(2) 1 —(gS)*gT = (S*C*+ D*)'(1 — $*T)(cT + D). 0
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3.5. THEOREM. The formula

T\(g)f(S) =A(g7%8) ' f(g7s), fewk (2,0,

defines a strongly continuous unitary representation of G on (2, ).
Proof. This is easily verified. For details see [11]. a

3.6. THEOREM. The representations T, and w, are unitarily equivalent
and the map defined by

d: Z qﬂhi - Z Q}\(’Tz)hl

extends to a unitary intertwining map of F» onto (2, \).
Proof. Let h; € #* and T, € 9. By 3.1 and 3.3

“ ; on(-, Ti)hi“ = ;(qu}’ Ti)hi|hj)

It follows that the above map is well defined and unitary. It extends
uniquely to a unitary map ® of #* onto #(2,\). Let g€ G and
S € 9. Then

= X(qzhilthj) = Z qT,-hi
L i

®(w(g)grh) = ¢(a,.r(8, T)* k) = Q\(-, gT) J(g, T)* '

=787 )&M) T)h = Ty (g)(Qx(+, T) ) = Ty () ®(qh),

by Proposition 3.4. It follows that ® is an intertwining map and 7, is
unitarily equivalent to w, O

A global version of ® may be defined in terms of the reproducing
kernel of 5. Since evaluation is a continuous linear functional on H*
there is a function K*(-,w) € #*, w €&, such that (f|K*(-,w)) =
f(w), forall f€#* andw € &.

3.7. COROLLARY. Let f € F and S € 9. Then

®f(5)(w) = (£1g5K*(-,w)) = [ f(2)as() KX (z,w) d(2).
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Proof.Let f€ F* and S € 2 then

(F1asK*(-,w)) = (®F | g5k (-, w)) = (@F|Q(-, S)K (-, w))
(®f(S)|K*(-,w)) (by3.3.3)

f(S)(w). m

4. The square integrable representations. In [8], it is mentioned that
for k > n all irreducible components of w are in the discrete series. While,
for k < min( p, q) there are no such components. In this section we give
necessary and sufficient conditions on the signature of A for w, to be
square integrable. Of course, one could trace the Harish-Chandra condi-
tion on the weight corresponding to L}. However, our techniques are
more indigenous to the situation at hand. Our methods underscore the
importance of the role of the generalized unit disk. We conclude the
section with an explicit description of the unitary structure for J#(2, \)
for the square integrable case.

Suppose f € LYG) and f(gk) = f(g) for all k € K. Let T € 9 and
let g€ G such that g-0 = T. Define f*: 2 > C by f*(T) = f(g).
Then f# is well defined and we can normalize measures in such a way
that

dT
det(1 — TT*)""

fG f(g)dg = fg F5(T)

4.1. PROPOSITION. The representation w, is square integrable if and
only if
daTr
det(1 — TT*)"

fgm((l - TT*)", (1-T*T)) < o,

where X 1 is the character for L}.

Proof. Let {e,,...,e;} be an orthonormal base of s#*. By Gode-
monts theorem [15], w, is square integrable if and only if

Z[ (g ele,| dg < oo.
If g =(£2)then
(w(g_l)eilej)= (eilw(g)ej)

— (€l A4, D*)e,) = (13(A%, D).
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Hence
T l(w(g™ele,) [ = Z|(£3(4%, D Ve le))| = T|Li(4*, DVe,|
i,j i,j i
=Y (Ly(A44*,D*'DY)e,|e,) = x p(AA4*, D*'DY).

The function g — x ;3(A44*, D*~'D ') is invariant under K. If g € G and
g-0=T Then AA* =(1 — TT*)™ and D*'D! =1 — T*T. Hence
w), is square integrable if and only if

- dT
1-TT*) "1 - T*T < o0 O
fgm(( ) )det(l —TT*)"
4.2. LEMMA. Leta = (ay,...,a,) wherea; > a, > -+ > a, >0 and
let b= (by,...,b,) where by 2b,> -+ >2b,>0. Let k be an integer

and assume p < q. Then
Q =f x,(1 = TT*)x,(1 — TT*)det (1 — TT*)"dT < oo
2

if and only if a, + b, + k > 0, where x, and x, are the characters for the
representations of GL( p, C) with signature a and b, respectively.

Proof. We will utilize the notation and some results of Hua [5]. By
formula 5.2.13 of Hua [5],

Q= cfg x,(1 = ZZ*)x,(1 — ZZ*)det(ZZ*) " P det*(1 — ZZ*) dZ,

where C is a constant. Let r = ¢ — p. By formula 5.2.3 of Hua [5],
1 1
Q= cpc[0 /0 Xa(1 = Apyees 1= 2)x,5(1 = Apyenny 1= 1)
)D?(A,,...,A,)
-det“(1 = Ap,...,1 = A,)dA, --- dA,

where C, is a constant, and the arguments of x,, x,, and det are diagonal
matrices. Now, it is easy to see that D?*(1 —A,...,1 - 7)) =
D2(Ay,...,A »)- We apply Weyls character formula and make the change
of variable A\, > 1 — A, i=1,..., p, to get

L 1
sz=cpcfO fo MMy A My(A, .. A,)
-det"(1 = Xy,...,1 = A,)
-det“(Ay,..., A, ) dA, -+ dA

sy

-det’()\l,...,)\

p

p
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Let /,=a,+p—i and m =b,+p—i Then M/(A...,A) =
det|\4|7,_; and M,(A,,.. ) = det|A7+|? _,. Expanding the above in-
tegrand gives

Q=C, X sgn(f)sgn(o)n[‘[ol(l — X)) Newmo+k gy

6,TES,

=C,C ). sgn(7)sgn(o []B( oyt Mtk +1,r+1)

o 'reS

i,j=1°

= C,Cp'de| B(I,+ m; + k+ 1,r + 1),

i,j=1

where B(x, y) = [¢t* (1 — t)”"1dt is the Beta function which is finite
if and only if x, y > 0 (cf. Ryzhik [3] p. 948). It follows that © is finite if
and onlyif r +1>0and /;+ m;+ k+1>0,foral i, j=1,...,p.
Thisis only trueif and onlyifa, + b, + k=1, + m,+ k> 0. a

4.3. ReEMARK. In the following theorem we will use the following
observation regarding the branching theorem (cf. Boerner [1] page 175). If
A € GL(m,C) we can regard GL(m, C) a subgroup of GL(n,C), n > m,
by the injection 4 — [ 1. If (a) = (a,,...,a,) is the signature of an
irreducible representation T, ,, of GL(n, C), then its restriction to GL(m, C)
decomposes with multiplicities m(ay, ..., a},) as:

T(a)IGL(m)= Z m(a{v--,a:n)na{ ..... a):

’ ’
a - 2a,

One crucial observation for our purpose is that a), > a, whenever
m(ai,...,a,,) # 0 and there is a nonzero multiplicity for which a/, = a,,.

4.4. THEOREM. Suppose A € A has signature (my,...,m,, 0,...,0,
—Ng...,~Ny), r<p, $s<q, r+s<k. Then w, is square integrable if
andonly ifk —n+m,+n,>0.

Proof. Let (m)=(0,...,0,-m,,...,-m;) and (n) = (ny,...,n,,
0,...,0). By 2.9 the signature of L* is (m) X (n). Without loss of
generality we may assume p < ¢. Let T € 9. Then there exists u € U( p)
and v € U(q) such that T = udp, where d = () $ rp 0),where0 <A, <1
(cf. Hua [5] page 33). Now

1-T*T=0v*1 —d*d)v=v*(1 - dd; (1))0

=U*(u* O)(l—-TT* O)(u O)U
0 1 o 1/\o 1/™
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Therefore

— *

By 4.1 w, is square integrable if and only if

/gdet(l — TT*)* "X (1 = TT*)" - x(,y(1 = T*T) dT

=/ det(1 — TT*)* "X (1 — TT*)x(n)(l - TT(’; ‘1)) dT < o,
2

where (m’) = (m,,...,m,,0,...,0). Applying the branching the theorem
we see that w, is square integrable if and only if

-----

for all signatures (nj, ..., n}) such that m(nj,...,n,) # 0. By Lemma 4.2
and Remark 4.3 w, is square integrable if and only if k —n +m,+ n,
<0. a

For the remainder of this section we will assume A € A is such that
w, is square integrable. Let L*(G,\) be the space of #* valued
functions f on G such that

(D) f(8(§) = Li(u,v)f(g) for u € U(p) and v € U(q) and

(2) [5lf(8)|*dg < oo.
Define a map ©: »#(2,\) - L*(G,\) by

OF(g) = CY*E(T(g ™) F)
where C, is a constant defined below and where E, is evaluation at
0 € 9. Since Ey(T)\(g")F) =J;'(g,0)F(g - 0), its easy to see that OF

satisfies (1). To verify (2) we proceed as follows: Let # € #*. From 3.3.3
Ey¢h =1,.Let{e,,...,e,} be an orthonormal basis for 5#*. Then

"EoTx(g_l)Fnz = éI(EOT,\(g‘l)Flei) |2 = éll(Tx(g’l)Flle,)

2

Since T) is unitarily equivalent to w,, T, is square integrable. Therefore,
we have

TON

i
o

LIET(e ) FI dg= L [(Tu(g™)FI1,)(Ta(s ™) F1L, ) dg

dim #* 2
(FIF)(1,11,) = —c—IFI,

[
M
A=

...
I
—
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where C is the formal degree of T,. If we let C, = C/dim H» then © is a
unitary map of 5#(2, A) into L%(G, A).

4.5. THEOREM. The inner product on (2, \) may be written

(R1E) = 6 (T 1AM A(T) o fTTT*),,-

Proof. Since O is unitary
(F1 |F2) = (®F1 |OF,)

= [ (R(8,0F(s 0157 (5,0)Fy(g - 0)) dg

=G, fG (J¥(g,0)J5"(g,0) Fy(g - 0) | Fy(g - 0)) dg.

Now J*"1(g,0)J:1(g,0) = O5'(g - 0, g - 0). Clearly the integrand is in-
variant under g — gk. Hence
_ ar
(E1B) = G [ (QMT. T)R(T) | K(T))

det(1 — TT*)""

4.6. COROLLARY. The reproducing property can be written

F(S)= G, [, (8. T)Q™ (T, TV F(T) o

forall F € #(2,)).

Proof. Let h € 5. By Theorem 4.5 we have

(F(S)|h) = (F|EXh)
ar

et(l — TT*)"
dar

det(1 — TT*)""

Since 4 is arbitrary the corollary follows. O

- fog(Q‘l(T,T)f(T)IQ(T,S)h) -

- CJ@(Q(S, T)Q T, T)f(T)|h)

4.7. COROLLARY. The map ¥,: H#(D,\) > F* defined by

dar
V. F=C NT,T)F(T
= G a0 (N TR s

is a unitary map intertwining w, and T).
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Proof. Let F € (2, ). Then by 4.5 and 4.6

(WF I F) = G [(4:07(T.T)F(T) 14507 (S, S) E(S)) dTdS

= G [(Q(s.7)Q™(T.T)F(T)1Q7(S,5)F(S)) T ds

= Cx[@(F(S)IQ"(S,S)F(S)) ds =|F|’.

Let R € 2 and h € #*. Then, by Corollary 4.6, ¥,(Q(-, R)h) = qrh
for

(W(Q(-, R)h) 1 gsf)

= G [(a:0 (. TVQ(T. R)blasf) g s
dr

det(1 — TT*)"

= fo@(Q(S,T)Q‘l(T,T)Q(T,R)hIf)
= (Q(S, R)h| f) = (qzh14sf),

for all S € 2 and f € . It now follows that ¥, is the inverse of ® as
defined in 3.10. Therefore ¥, is a unitary map intertwining w, and
T,. O

REFERENCES

[1)- H. Boerner, Representations of Groups, North-Holland Publishing Company,
Amsterdam, 1969.

[2] T. Enright and R. Parthasarathy, 4 proof of a conjecture of Kashiwra and Vergne in
Proceedings, Marseille-Luminy Conference on Noncommutative Harmonic Analy-
sis, Lecture Notes in Mathematics No. 4.66, Springer-Verlag, (1974).

[3] I Gradshteyn, and 1. Ryzhik, Tables of Integrals, Series, and Products, Academic
Press, London, 1980.

[4] K. Gross, and R. Kunze, Bessel functions and representation theory II. J. Funct.
Anal., 25 (1977), 1-49.

(51 L. Hua, Harmonic Analysis of Functions of Several Complex Variables in the Classical
Domains, American Mathematical Society, Rhode Island, 1963.

[6] T. Inoue, Unitary representations and kernel functions associated with boundaries of a
bounded symmetric domain, Hiroshima Math. J., 10 (1980), 75-140.

[77 H. Jakobsen, On Singular Holomorphic Representations, Inventiones Math., 62,
Springer-Verlag, (1980m), 67-78.

[8] M. Kashiwara, and M. Vergne, On the Segal-Shale-Weyl representation and Harmonic
Polynomials, Inventiones Math., 44, Springer-Verlag, (1978), 1-47.

[9] A. Knapp, Bounded Symmetric Domains and Holomorphic Discrete Series, in Sym-
metric Spaces, M. Dekker, New York, 1972.



(10]

(11]

12]
(13]
[14]
[15]

(16]
7]

U(p, q) AND SOME CONNECTIONS WITH 2 55

R. Kunze, Generalized Bessel Functions in the Fock Space, Suppl. Rendiconti, Circ.
Math. Palermo, n. 1 (1981), 163-169.

, Positive Definite Operator-Valued Kernels and Unitary Representations, Pro-
ceedings of the Conference on Functional Analysis at Irvine, California, Thompson
Book Company, 1966.

L. A. Mantini, 4n integral transform in L*-cohomology for the ladder representations
of U(p, q).]. Funct. Anal., 60 (1985).

C. M. Patton, and H. Rossi, Unitary structures on cohomology, Trans. Amer. Math.
Soc., 293 (1985), 235-258.

J. Rawnsley, W. Schmid and J. A. Wolf, Singular unitary representations and
indefinite harmonic theory, J. Funct. Anal., (1983).

G. Warner, Harmonic Analysis on Semi-Simple Lie Group I, Springer-Verlag,
Berlin-Heidelberg-New York, 1972.

H. Weyl, The Classical Groups, Princeton University Press, New Jersey, 1946.

J. Wolf, Fine Structure of Hermitian Symmetric Spaces, in Symmetric Spaces, M.
Dekker, New York, 1972.

Received February 17, 1986.

LOUISIANA STATE UNIVERSITY
BATON ROUGE, LA 70803






PACIFIC JOURNAL OF MATHEMATICS

EDITORS

V.S. VARADARAJAN HERMANN FLASCHKA ROBION KIRBY

(Managing Editor) University of Arizona University of California
University of California Tucson, AZ 85721 Berkeley, CA 94720
Los Angeles, CA 90024 RAMESH A. GANGOLLI C. C. MOORE
HERBERT CLEMENS University of Washington University of California
University of Utah Seattle, WA 98195 Berkeley, CA 94720
Salt Lake City, UT 84112 VAUGHAN F. R. JONES HAROLD STARK
R. FINN University of California University of California, San Diego
Stanford University Berkeley, CA 94720 La Jolla, CA 92093

Stanford, CA 94305

ASSOCIATE EDITORS

R. ARENS E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSHIDA
(1906-1982)

SUPPORTING INSTITUTIONS

UNIVERSITY OF ARIZONA UNIVERSITY OF OREGON

UNIVERSITY OF BRITISH COLUMBIA UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY STANFORD UNIVERSITY

UNIVERSITY OF CALIFORNIA UNIVERSITY OF HAWAII

MONTANA STATE UNIVERSITY UNIVERSITY OF TOKYO

UNIVERSITY OF NEVADA, RENO UNIVERSITY OF UTAH

NEW MEXICO STATE UNIVERSITY WASHINGTON STATE UNIVERSITY

OREGON STATE UNIVERSITY UNIVERSITY OF WASHINGTON



Pacific Journal of Mathematics

Vol. 129, No. 1 May, 1987

Aldridge Knight Bousfield, Uniqueness of infinite deloopings for

K -theoretic SPACES . ...ttt e et 1
Mark Gregory Davidson, The harmonic representation of U (p, ¢) and its

connection with the generalized unitdisk ............ ... ... .. .. .. 33
Erica Flapan, Rigid and nonrigid achirality .............. ... ... .. ..... 57
Peter Abraham Greenberg, Pscudogroups of C! piecewise projective

homeomorphiSms . ........ ...t e 67
Peter Martin Knopf, Maximal functions on the unit n-sphere ............... 77
Norman Jay Levitt and Andrew Ranicki, Intrinsic transversality

SITUCEUTES .+« e ettt ettt ettt e e e e et e e e e e e e 85
Susan Szczepanski, Invariant submanifolds of free cyclic actions on

SPRTES . e 145
Kazimierz Szymiczek, Generalized rigid elements in fields ................ 171
Domingo Toledo, Nonexistence of certain closed complex geodesics in the

moduli Space of CUIVES ... ....ooiiii e 187

Graham H. Williams, The best modulus of continuity for solutions of the
minimal surface equation ............ ..o 193



http://dx.doi.org/10.2140/pjm.1987.129.1
http://dx.doi.org/10.2140/pjm.1987.129.1
http://dx.doi.org/10.2140/pjm.1987.129.57
http://dx.doi.org/10.2140/pjm.1987.129.67
http://dx.doi.org/10.2140/pjm.1987.129.67
http://dx.doi.org/10.2140/pjm.1987.129.77
http://dx.doi.org/10.2140/pjm.1987.129.85
http://dx.doi.org/10.2140/pjm.1987.129.85
http://dx.doi.org/10.2140/pjm.1987.129.145
http://dx.doi.org/10.2140/pjm.1987.129.145
http://dx.doi.org/10.2140/pjm.1987.129.171
http://dx.doi.org/10.2140/pjm.1987.129.187
http://dx.doi.org/10.2140/pjm.1987.129.187
http://dx.doi.org/10.2140/pjm.1987.129.193
http://dx.doi.org/10.2140/pjm.1987.129.193

	
	
	

