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MAXIMAL FUNCTIONS ON THE UNIT »-SPHERE
PETER M. KNOPF

It is shown that the Hardy-Littlewood maximal function on the unit
sphere in n-space is weak-type (1, 1) with a weak-type constant cn where
¢ is independent of 7.

Introduction. E. M. Stein and J. O. Stromberg [6] have shown that
the Hardy-Littlewood maximal function in R" is weak-type (1,1) with a
weak-type constant cn with ¢ independent of n. Their approach is to
pointwise bound the maximal function by a supremum of averages of
members of a certain heat-diffusion semi-group on R”. They then apply
the Hopf abstract maximal ergodic theorem to obtain their result.

We plan to use an analogous version of this approach to show that
the maximal function on the unit n-sphere is weak-type (1,1) with a
weak-type constant cn. The best weak-type constant prior to this was cnvn ,
see [4], using an entirely different approach.

Many of the ideas in this paper have already been presented in a
paper by C. Herz [3]. In order to obtain the weak-type constant cn,
sharper estimates are required than are indicated in Herz’s paper. Further-
more, there is an oversight of a primarily technical nature which led this
author to perform some contortions to rectify. It should be pointed out
that Herz’s overall approach applies not only to the unit sphere in R” and
R” itself, but to more general spaces as well.

The author is appreciative of the informative comments and helpful
suggestions of N. Stanton, E. M. Stein, and the referee.

NOTATION AND DEFINITIONS. Let S$”~! denote the unit sphere in R”
centered at the origin. Let w,_; denote its Lebesgue measure (surface
area). Let v(x,t) = T'f(x) be the solution to the initial value problem
dv/dt = Agv and v(x,0) = f(x) where Ag is the spherical Laplacian; that
is, the “angular” part of the Laplacian in R”. If there is any confusion on
the reader’s part, Ag is defined precisely in the proof of Lemma 2 in
equation (12).

Define the maximal heat function of f to be

%j: T"f(x)dp,l.

MTf(x) = sup
A>0
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The Poisson kernel for the unit ball in R” is
.2
P(rx,y) = 1= ;
w,_1|rx — y|
with x,y € §" 'and 0 < r < 1.If f € L(S" 1), then

(1) u(rx) = / (rx, y)f(y)ay

defines an harmonic function in the unit ball where dy is Lebesgue
measure on the unit sphere. The Hardy-Littlewood maximal function of f
on S"1is

1
(2) = su T T Xsx fy)ld
M) = s [ s 0|y
where S(x,7) = {y€ 8" " |x —y| <t and xg,,, is the characteristic

function of the set S(x, ?).
The symbol ¢ will stand for a positive constant that may be different
at different appearances but will always be less than 10°.

THEOREM. Iff € L}(S" ') and n > 3, then

(3) |{x € 577 Mf(x) > A} < SIS
for all A > 0.

It is enough to prove (3) for Schwartz functions g such that |g‘®(x)|
< N for any multi-index a and for some N = N(g) > 0. This follows
from the well-known fact that for any f € LY(S""') and & > 0, there
exists a Schwartz function g such that ||f — g||, < € and |g®(x)] < N
for some N = N(¢&) > 0.

Before we prove the theorem, we establish four lemmas.

LeMMA 1. Iff € L'(S™"Y) and f > 0, then we have

o

1
Vn sup =
a/my<i<yZT=1m °

Mf(x) < cmax{n sup
O<t<l/ym

Proof. By (1) and (2), it is enough to bound
1

P(rx,y)|S(x,1)|

XS(x,t)(y)
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for every y € S" L. Since x sz 18 supported on S(x,¢) and equals 1
there and P(rx, y) decreases as |x — y|increases, it is enough to bound
1
P(rx, y)IS(x,1)|

for every y such that |x — y| = ¢ with 0 < ¢ < 2. Using spherical coordi-
nates it is easy to see that

2 arcsin(1/2
|S(x,2)|= w,,_2j(; e G u du

I

2arcsin(/2) |
> wn_zf sin”~* u cos u du
0

2\(n-1,2
=52 le(- )
n 4

as long as 0 <t < V2. By the law of cosines it is a straightforward
calculation to verify that

Irx = p|” = (1 = r)? + re.

From this we obtain

onteo, T T7A [(L— 7 4+ m2 |07
= I =
when0 <7 <V2.1f0 <t < 1/Vn,choose r =1 — t/\/;.Wethenhave
4) [ < SV
wn~2

If
Lo -7,
Vn n
choose r = 1 — t2/2. In this case we obtain

(5) <Ml cln
w,_,t* t

Finally if y2(1 — 1/n) <1t < 2, pick r
|S(x, t)] < w,_, whenever J2(1 — 1/n)

(6) I<ec.

Inequalities (4), (5), and (6) imply the conclusion of the lemma.

1/n and observe that jw,_; <
¢t < 2 which gives

IA
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Define

(7) Pf(x) = u(e™x)

for0 < A < 0.

LEMMA 2. P (x) = [P é(p, \)TH(x) dp for X > 0 where

— L -3/2 —_ g2y — _Z\i
(8) o(p,A) = 2‘/;@ CXP(a?\ ap - g

anda = (n —1)/2.

This result is stated and its proof is outlined in Herz’s paper ([3], p.
231). In order that this paper will be self-contained, we provide a different
proof of the lemma.

The solution to the initial-value problem dv/3t = Agv for 0 < ¢ < oo
and v(x,0) = f(x) is clearly

(©) v(x,1) = esf(x) = T'f(x)

which is well-defined for any Schwartz function f satisfying |f(¥(x)| <
N for some N > 0. We claim that

(10) Pf(x) = exp{—A[(= A5 + a?)"" = a]} 1 (x)

as we now demonstrate. Letting 7 = ¢~* and recalling (7) we can rewrite
(10) as

(11) u(rx) = r-8s+a)?=af(x).

It is obvious that u(x) = f(x). If we express the Laplacian in R", Au, in
the form:

~n§ or

and then calculate Au(rx) we immediately see that Au = 0 which estab-
lishes (10). By (9), (10), and the symbolic calculus it is sufficient to show
that

(13) exp{~A[(=b + a?)* ~ o} = f0°° (1, A) e dp

for any negative number b since the spectrum of Ag lies on the negative
real axis (see [5], p. 70). It is elementary to show that the function on the
right hand side of (13) satisfies the differential equation g’(A) =
—[(=b + a?®)'/? — a]g(A) from which (13) easily follows.

(12) A=r 9 (r"i) +r %A
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LEMMA 3. Iff € IN(S™ 1) and f = 0, then Mf(x) < enMf(x) for all
x e S

Proof. By Lemma 2, we have
1”*f(x)=f0 ¢(p, A)THf(x) dp.

Integrating by parts yields

9 P =[]

L e an|agE (0 da

0

IA

sup
r>0

lf: va(x)dvlf:0 ‘u%%(ui)'@

= Mg () [ [ )|

One easily calculates from (8) that

dé A0 P 2 ( N )
—= = ————(4a’p® + 6p — N*) exp|al — a’p — —|.
s 8\/77(” = N*) exp| aX — a’y ”
In his paper [3], Herz claims that
00 d¢
—(pu,A)|d
fo Py (#,A) | du
is bounded independent of A. In point of fact,
(15) 1= [ W8 ) |du < el + k)
0 b
is best possible. Luckily, this is sufficient for our purposes. Since
d _ 4 (4)
we obtain
o0 o0 d
(16) Usfo l¢|du+f0 "ﬁ(w) dp.

In the definition of ¢, we observe that ¢ > 0 and furthermore [¢dp =1
as can be seen from (13) by letting b = 0. It is clear that u¢ > 0 and it
vanishes at 0 and oo. By calculating d/dp (p¢), it is easy to check that p¢
has a single turning point on (0, c0), say u = u,, where it attains its
maximum. Since p¢ increases from 0 on (0, pt,) and decreases to 0 on
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(p g, 00), we have

o | g
fo )Eﬁ(#‘i’)'d}‘:zﬂo‘l’(llo,}\)'

There follows the inequality:
IT<1+2maxpo(p,A\)=1+2M.
n

To bound M, express u¢ as
- _ 2
A7) pe(mA) = 4V Vexp[—4(x - 1x )]

where A = a)\ and x = a\~'u. By taking the derivative of the right hand
side of (17), it is easy to check that its maximum is taken on when
x=x,=(—1+V1+ A4%)/44. 1t is trivial to verify that x, = O(4)
when 0 < 4 < 1and x, = O(1) when 4 > 1. Substituting these estimates
for x, into (17) gives M < cA4'/? < c¢/nX which in turn implies (15) as we
wished to show. Substituting inequality (15) into (14) gives

(18) PM(x) < e(1 + Vnh ) Mof(x).

Recall that wu(e *x) = P f(x) from which there follows u(rx) <

c(1 + ynIn(1/r) )M, f(x). Lemma 1 implies that

Mf(x)<cln sup (1 +Vn ln(l/(l - L)))

0<t<l/yi Vn

o el )

(1+vVnlnn))M_f(x)

which can be simplified to Mf(x) < cnM,f(x) as we wished to show.
LemMa 4. If f € LX(S"Y) and f = 0, then ||T |, < |Ifl1-
Proof. 1t is a result in diffusion theory (see Ch. IX, p. 252, [2]) that

() = [ Ko ()
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with K, > 0. If f(x) = 1, then clearly T*f(x) = 1 so that

(19) [ Ky =1

for any x € S"L. Since u(x,A) = K,(x, y) is the solution to the initial
value problem du/dA = Agu and u(x,0) = §,(x) where §, is the delta
function centered at y, then by the symmetry of the sphere K,(x, y) =
K,(y, x). Equation (19) shows that

(20) Ky(x,y)dx =1
Sn—l

for any y € S"71. We can now use (20) to conclude the proof of the
lemma. We have

I h= [ [ Kalo 2)f () dy s
= fs fsn_l K\(x,y)dxf(y)dy

= [ Sy =Iflh

which establishes Lemma 4.

We are now ready to finish the proof of the theorem. It is obvious
that T*f(x) forms a semi-group with respect to A. Lemma 4 states that
ITAf 1l < (11l for £ = 0. We have I T*f|l,, < ||fl,, for f > O since

1YL = | [, Kax )10

0

<Iflle [, Kn(xp) d =1

Finally it is obvious that T*(1) = 1. All the hypotheses of the Hopf
abstract maximal ergodic theorem are satisfied (see Lemma 6, p. 690, [1])
which yields the result

1
(21) [{x: Mzf(x) > N} < <71
for A > 0 and f > 0. By Lemma 3 and (21), we conclude that
[{x: Mf(x) > A} < U7

which proves the theorem.
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