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We establish L and L7(/9) estimates for singular integral opera-
tors with variable operator-valued product kernels. Application to the
strong maximal function, double Hilbert transform, Littlewood-Paley
inequalities and Fourier multipliers for L”-spaces with mixed norm are
given.

Introduction. A classical theorem due to Hardy and Littlewood and
the improvement given by Fefferman-Stein [6] assert that the maximal
function

Mf(x) = sup |11 [[1/()| du

is bounded on L? 1 < p < o0, and has a vectorial extension M( 1) =
(Mf;) bounded in L?(I7), 1 <p,q < co. On the other hand, another
classical theorem, due to M. Riesz, which asserts that the Hilbert trans-
form

> f(»)
Hf(x) = p.v. f*w e

is bounded on L7 1 <p < oo, was improved by Burkholder [5] for
L?-function with values in Banach spaces with the so called UMD
property. In particular, the Hilbert transform has a vectorial extension
H(f) = (Hf) bounded in L”(19), 1 <p,q < co. Recently Rubio de
Francia-Ruiz-Torrea [13] and [14] have shown that the maximal operator
and the Hilbert transform are operators of same kind: vector-valued
singular integral operators. Actually, they improved a theorem on vector-
valued convolution operators due to Benedek-Calderon-Panzone [2].

Let us now consider the rectangular (strong) maximal function

Mf(x,y) = 511,15)|I><J|—1f] /; | f(u,v)|dudv
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and the double Hilbert transform
f —v)
Hf(x,y) f f (x = ) —v) dudv.

By iteration, we see at once that rectangular maximal function and the
double Hilbert transform are bounded on L?(R?),1 < p < co. But, this is
not the case if we replace the usual L? spaces by the L'( L*) spaces with
mixed norm of Benedek-Panzone [1]. The boundedness now does not
follow from a simple iteration. The L’( L*)-norm estimate for the strong
maximal function was stated by Stockert [17], but a very nice proof was
given by E. Hernandez [9]; on the other hand, for the double Hilbert
transform it goes back to M. Cotlar.

Our concern here is to establish a theory of vector singular integral
operators with variable product kernels. This will be done in the mold of
Rubio de Francia-Ruiz-Torrea [13] and [14], and in such a way to be
possible to handle with it the scalar strong maximal function and double
Hilbert transform as well as its sequential extensions. As applications we
also obtain an inequality of Littlewood-Paley type for L’( L*)-spaces and
derive a multiplier theorem of Marcinkiewicz-Lizorkin type in a simple
and natural way.

1. Vector-valued singular integral operators with product kernels.
We begin by recalling the Rubio de Francia-Ruiz-Torrea theorem on
vector-valued singular integral operators (see [13]).

1.1. THEOREM. Suppose E and F denote Banach spaces. For A =
{((x,)€ER"XR", x=yp)}, let ke I} (R" XR"— A, L(E,F)) be an
operator-valued kernel which satisfies

(1) f Hk(x,y)_k(x,y,)”L(E’F)dXSC,
|y —x|z2[y" =yl

and

@ j( 12 2]x x| k(. ») = k(%" ) |ee.rydy < C.
y—x'122|x—x

Let T be a linear bounded operator from L'(R", E) into L'(R", F), for
some r withl < r < oo, such that

(3) Tf(x) = [ k(x,0)f(3) dy,

for all f € LX(R", E) (the linear space of all E-valued measurable functions
which are essentially bounded and have compact support) and x & suppf.
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Then, for all p with1 < p < oo, we have
(4) ITflerwe.ry < Cl fllerae.ey, fE€ LP(RYE).
Moreover, for all g with1 < q < oo, we also have

(5) NTFl|er@eocry < CIF o@eney,  F=(f;) € L2(R",1%(E)).

We shall rely on the above theorem to give a version of it for product
kernels k(x,u, y,v) = k,(y,v)k,(x,u) and the L? = LP2(L*) spaces
with mixed norms of Benedek-Panzone [1], from where we take notations.
The proof we shall give follows an idea by Benedek-Calderon-Panzone [2].

1.2. THEOREM. Suppose E, F and G denote Banach spaces. Let us
consider operator-valued kernels k, and k, in L', (R" X R™ — A, L(E, F))

loc
and L' (R" X R" — A, L(F,G)), respectively, which satisfy

(1) f'

2w [22lw—w

\ ij(z,w)——kj(z,w')“LjdzS C, j=1,2,

and

2

( ) ‘/|‘2'—W|22|z’-z
where L, = L(E,F) and L, = L(F,G). Let T, and T be linear bounded
operators from LP(R™, E) into L?(R™, F) and from L?(R" X R", E) into
L?(R™ X R",G), for all p with1 < p < o0, respectively. Suppose also that
T, and T satisfy

| |k, (z,w) = ky(z'w) | aw=< C,,  j=1,2,

(3) Tf(x) = [ Falx, ) f(u) d
forallf € L*(R", E) and x & supp f, and
(4) 1f(x,9) = [ [ ky(p,0)ki(x,u) f(u,0) dudo

forallf € L*(R" X R", E) and (x, y) & suppf. Then, forall P = (p,, p,)
with 1 < p,, p, < o, the linear operator T can be extended to all
LP(R™ x R", E) into L°(R™ X R", G) such that

(5) 1T l|r @ xre o) < Cll fllrmescre, ),

forall f € L*(R™ X R", E).

Proof. Step 1. Let f be in M(R™"" E), the set of all E-valued
measurable functions on R”*". For each y € R" and each f€
M(R™*", E) we associate the functions f=f € M(R", E) defined
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by af = f,(-) = f(-, y). Thus, we shall have L?(R""" E) =
L?(R", L*(R™, E)), LP(R"*", E) = L?”(R", L"(R™, E)), P =(py, p,)
and

lf ler@e, Lo pyy = || f | L2, ).
Moreover, if f € L¥(R""", E) we shall have f, € L?(R", E).
Step 2. For all f€ M(R™*", E) and A\ > 0, we define H, f by
(H\f)(x, y) = x\(x)f(x, y),

where x, is the characteristic function of the set {|x| <A}. Now, if
y € R*, we define K,(y) € L(L?(R™, E), L?(R", G)) by

[Kx(y, 0)h] () = xaka(y, )Ty (xa k)] (w).
Then, if || - || denotes the operator norm on L(L?(R™ E), L?(R", F)),
since the singular integral operator 7 f is bounded from L?(R™, E) into
LP(R™, F), it follows that

I K\(y,0) = SUP{”KA()% )hllooys IhflLrce) < 1}
< sup{[lk1 (7, 0) i(xa) | zrays 1B lrey < 1)
= ||k2(y, v) ”L(F,G)Sup{”Tl(X)\h)"L”(G); 2llze ey < 1}
<k, (y, v)”L(F,G)Sup{C”XAh lrceys N olleecey < 1}

< Cllky(y,0) ||2cr 6y

which shows that K,(y,v) € L} .(R", L(L?(E), L?(G)). Moreover, we
have

[ KG.0) - K(p.v) |y
ly=v'|>2|v~0|
=G) ) lka(y,v) = ky(y,0') | dy < C.C,
ly=v1>2p—-v|
and
f , , IKA(p,0) = Kn(y",0) || dv
lo=y"1>2ly =y
<G , , ”kZ(yav) - kz(y',v)H dv < C,C,.
lo=y"1>2|y—»y"|

Now, for F € L*(R", L?(R™, E)), we get

TF(y) = [ Ka(y,0)F(0) do
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Since wH,TH, f = T\wf, due to hypothesis (4) we get

I TS | e e o 6y = | THATH, f || e, 12 v, 6
= ” HATfo“LP(R'"xR";G)
<| TH)\f"LP(R"**",G) =< CHH}\f“L"(R’"*",E)

< Cl fller@en gy = Claf |Lrwe, Lo .-

Consequently, setting p = p;, A = LP(R"™, E) and B = L(R",G), we
have

“TAF”L“(R",B) < C|Fllenwe ),

for all F given by F = «f, f€ L*(R" X R", E). Since L*(R"*", E) =
LZ(R", L*(R™, E)) is dense in L?(R", L?(R™, E)) = L¥*(R", A), in the
norm of L?(R", 4), we have 1.1(4) for all F € L*(R, A). Now, the Rubio
de Francia-Ruiz-Torrea theorem yields

IT\F 2. 5y < ClILF ||2r2er.),
forall Fe L”(R",A)and 1 < p, < o0.

Step 3. We shall have
| H\TH\ f || Lrgevn.6y = | THXTH) f || o2 e v v )

= H TA'”f”L”Z(R".LPl(R’”,G))

< Clafllr@. cn@e ey = Cl f 2@ k).
Finally, since H, f = f, for A large enough, we get
1Tf | resny < lim | H\TH, f || rgeer )

A— o0

< Cl fllerarn £y,

for all f € L®(R™*", E) and consequently for all f € L(R"*", E).
The proof is complete.

1.3. Let us recall that /2( X), Q = (q,,4,), denotes the linear space of
all X-valued double sequences (C; ) such that

o) 9/ 1/,
(1) H(Ci./‘)”/Q<X) ZH(CU) 1201900) ~ {Z{ZIC’A’;} } =
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1.4. COROLLARY. Suppose E, F and G denote Banach spaces and let us
consider operator-valued kernels k, and k, as in Theorem 1.2. We define the
kernels k,(x) € L(I°(E),I9(F)), and k,(y) € L(I12(F),I%(G)) by

(1) ki(x)(a,),; = (ki(x)a,;),

and

(2) Jey(9)(b,;),; = (ka(2)by,) -

We define, for f = (f,;) € L*(R",12(E)),

) T7(x) = 1) = [ "o ), () d

and for f € L*>(R™*" I2(E))

@ ey =1(0) = [ [ Faly.o)a(xu)(f,(u,0) dude.

We shall assume that, for all p with 1 < p < oo, the operators T, and T
are bounded from LFR™ I2(E)) into LP(R™, [2(F)) and from
LP(R™* " I2(E)) into LP(R"*" 12(G)), respectively. Then, for all P =
(p1, Py) with1 < p,, p, < oo, the linear operators T can be extended to all
LP(R™*" [9(E)).

Moreover, we shall have

(5) TS (| Lresn seoy < Cl| f || oo 1oy

Proof. Since, for v = 1,2,

]}V(Z,W) - ifu(z’w,) “L(IQ(E),IQ(F)) < | kv(Z,W) - k,,(z,w') ”L(E,F),

and

Hi(u(z’w) - kv(z’,w) ”L(IQ(F),[Q(G)) =< I k.,(Z,W) - kv(z’,w) “L(F.G)’

it follows that the hypotheses of Theorem 1.2 are fulfilled with the kernels
k, and k, and the spaces E, F and G replaced by the kernels k, and k,
and the spaces [2( E), [2( F) and /9(G), respectively. Hence, the corollary
follows as desired.

1.5. REMARK. When k, (z,w)=k,(z—w), v=1,2, we have the
singular integral operators of convolution type. This particular type of
singular integral operators was studied, also in the product case, by the
author in [8].
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2. The double Hilbert transform.

2.1. Our concern here is to obtain L” and L”(I9) estimates for the
double Hilbert transform which is defined by

(1) Hf(x,y) f f . (x _— (y =) dudv.

This is an integral singular operator of convolution type and the mixed
LP-estimate goes back to M. Cotlar. The mixed LP(/9)-estimate seems
new.

2.2. THEOREM. The double Hilbert transform given by 2.1(1) is an
integral singular operator bounded in the spaces L*(R?), where P = ( p,, p,)
withl < p,, p, < oo, i.e.

(1) IHf |l < Cpll £l
for all f € LP(R?) = LP2(L™).

Proof. Step 1. The kernels k,(z,w) = 1/(z — w) satisfy conditions
1.2(1)—(2).

Step 2. The integral singular operator T, associated with the kernel k,
is bounded in L?(R),1 < p < oo0.

Step 3. The integral given by 2.1(1) is well defined for all f € L*(R?)
and (x, y) & suppf.

Step 4. By iteration we see that H is bounded in L?(R?),1 < p < o0.
Hence, the conditions of Theorem 1.2 are satisfied and the assertion
follows.

2.3. COROLLARY. In the conditions of Theorem 2.2, for all F = (f;;) €
LP(lQ)a 1< Q = (qlaq2) < o0, we have

(1) “(H ”L”(IQ)<C” ij ”L”(IQ)

Proof. 1t follows from Corollary 1.3.

3. The rectangular maximal function of F. Z¢’s type. The following
version of a theorem due to F. Z6 [19] will be needed to obtain the
maximal inequality which we are looking for.
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3.1. THEOREM. Suppose ¢ € L(R™) and ¢ € L'(R"). For s > 0 and
t >0, let us set o, (x)=s5""@(s7'x) and Y,(y) =t "Y(t"'y). We shall
also suppose that

W  f  swle-x)-g()ld<C,  ueR

|x{>4ju| s>0

and

@ [ swlbo-y) —w()|d <G, veR.

[(yI>4]o| >0

Now, for f € L¥(R™*"), we get

(3) My f = sup{|4. @, % fl; s > 0, 2> 0}.
Then, for all P = (p,, p,) with1 < p,, p, < oo, we have
(4) 1Moy fl,r < CllfNler,

for all f € LP(R™").

Proof. Step 1. If f € L' N L®, the mappings (s,1) = ¢,@, * f(x, y)
are uniformly continuous. Indeed since the mapping (s,t) — ¢, is
continuous from R?, into L'(R?) we have

l‘l’t’(ps‘ * f(x’ y) - 1l/t"(ps” * f(xa y) l < “f HL°°“ 11/I'q)s' - \bt”(Ps” ”Ll .

Therefore, it is enough to prove (4) taking the supremumon Q, X Q..

Step 2. Fixing an enumeration of the positive rationals, let us denote
by Q, the set of rationals with indices in {1,..., j}. For c and 4 in N, let
us set

(5) M, f = sup{|y,@,* f|; (5,1) € Q. X Q,}.

If /% and I stand for the complex euclidean spaces C’/ and C'*,
respectively, equipped with the sup-norm, the non-linear operator M,
can be viewed as a vector-valued linear operator

(6) f€LP(R™™) = Nyf = {4.9.*f}s.nc0.x0, € L*(R™", 13).
The kernel k., of this operator is a product of the two kernels:

ki(x) e L(C,I®) = I, x € R,
and

ki(y)e L(ir,1%), yeR,
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given by
ki(x)a={o/(x)a;s€Q,}
and
kKi(0)(b) = {¥.(y)b; 1€ Q1 <j<c}.
Hence

koy(x,y)=ki(»)k(x)z = {¢,(y)ox)z; s € Q,, 1 € Q,}.
On the other hand, we have

Ikt (x) ] = sup 1kt (x)z|

= sup sup |@,(x)z|= sup |p,(x)|
lzZ]=1 s€Q, s€Q,

and

K20 = sup |k3(¥)a) .
allo =1

= sup sup |y, (y)a;|= sup [¢,(y)].

el =1 1€Qy 1€Q,

Therefore k! and k2 are locally integrable. Moreover

fm»w 1k (u = x) = kL(x) | dx

- fl o P = ) = Rz e

z

= [ sup sup Jg,(u—x) - u(x)||z]dx < ¢,
[x]>4]u| s

z

and

[0 =) -0

=, sellEi(o =) = k() | a

YI=4jpl (a)

= sup sup ¢, (v — #) = ¥,(y)|la;| dy
=4l (a) 1,

3

_'[l>4lv| Suplt[/t(u _y) —\!/,(y)!dy <G,.
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Step 3. Due to Z06’s result, for all p with 1 < p < oo, we have

IMoaf s, <[ Mot w, < || 1M,

=< C“ "Mtbf”Lf L? < Cl" ”f”I‘f

L} and L? have obvious meaning.

Lg, = “ MqJM\pf

Le|\ee

Lr = Cl”f"’«fya

where L?

xy?

Step 4. Since the operator M,,f = k_, * f satisfies the hypotheses of
Theorem 1.2 it follows that

(7) | M..f “LP(R’"*",I‘;‘,’,) < Cl f ller@n+m

for all f€ L®(R™*"). But M_,f has also a sense for all f € L*(R"*")
and it is not hard to see that the extension M,, of M,, to all L°(R™*")
coincides with M,,. Thus (7) holds for all f € LP(R™*"). Finally, letting
(¢, d)] = oo, the monotone convergence theorem yields (4).

The proof is complete.

3.2. THEOREM. Let @, and ¢, be as in Theorem 3.1. For f = (f,;) in
L2(R™*" [2), where Q = (q,9,) is given with 1 < gq,, q, < oo, let us
consider the vectorial rectangular maximal function

(1) Mqu[z(fij)ij = (waij)ij

where M, f, . is the maximal function given by 2.1(3). Then, if P = ( py, P,)
is given with 1 < p,, p, < oo, we have

(2) “Mw(fij) ”LP(R’"*",IQ) = C”(fu) “LP(R'“",/Q)’
forall f = (f,)) € L"R™*",19).

Proof. As before, let us replace the maximal function M, g by M_,g
and let us consider the vectorial linear operator

T..: (f,;) € L2R™",19)
= T,(f) = (V9. %) )., € LR, 12(1%)).

The kernel of this operator is a product kernel k(x, y) = k,(y)k,(x),
where

ky(x): (aij) SRR ki(aij) = (q)s(x)aij) € 1°(Iy)
and
ky(y): (szs) € 1°(17) - kZ(y)(bijs) = (‘l’z()’)bijs) € 19(13).
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If || - || denotes the norm on L(/2, [2([%)), we shall have
[ k(= x) = k(x) | dx
[x]>4jul

= - e .. - d
oy ,Ka,f}‘”§2=1||(["’s(" %) = 0.()] a,,) | o, dx

< Sup‘(ps(u—x)—q)s(x)ldxscl’
[x|>4|u| seQ,
and if || - || denotes the norm on L(I2(I®), [2(1%))), we also have
[ k(o =) ki) |y
{y1> 41|
= sup ”([\bz(v_y)_libz(y)] ijs IIQ(IM)dy
V1= 48] |I(B)llieqey =1
= sup “4’;(0 ~y) - ‘Pt(y)“ Sup (bijs)IQ(l‘f)dy
[y[>4v] teQ, fioli=1
< sup |¢,(v =) = ¢.(y)|dy < C,.

I>4lv] reQ,
Now, it remains to prove that, for all p with 1 < p < oo, we have
(3) cl(

where C is a constant independent of ¢, d and p. Let us consider the
partial operators M, and T, given by

1.5,) = (Mf,) = swp |, £, |

S€Q, 1)

T,

cd u HLP(/Q<1°°))—

1/ ”LP(IQ)’

and

Td(fji) = (Td ij) = (fij*yxpt)'
We shall have
T..f,<T,Mf,.
Thus, due to Z’s result (and Fubini’s theorem) we see that M, and T, are
bounded operators from L? (l ) into L? (l ) and from L7 (l (IZ)) into

Lfy(lg.), respectively. Consequently, if ( f ) € L?(12) we shall have (8,
€ L?(19), where

8ij = Mcfij - SS;QP [(ps*xfll I
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Hence

T;'d(f[/) LP(19(1%)) < “(Tndfz/)

< C|(m.1,)

LP(12(1))

LP(12) s C”(f:,)

LP(12)"
The proof is complete.
4. The rectangular maximal function. We are now ready to state

inequalities for the rectangular maximal functions of Hardy-Littlewood
and of Fefferman-Stein type for L” spaces with mixed norms.

4.1. THEOREM. Suppose f € L},

gular maximal function Mf defined by

(1) MGy =suplIx I [ [170c= .y = v) dudo,
1,J J I

(R™*") and let us consider the rectan-

where I and J are (hyper)-cubes centered at the origin of R" and R™,
respectively. Then, if f € LY(R™*"), where P = ( p,, p,) with1 < p,, p, <
o0, Mf(x, y) is finite for a.e. (x, y) € R”"*". Moreover, there is a constant
C > 0 such that

(2) IMfl| resny < Cl| f 22
forall f € LP(R™*™).

Proof. Let I, and J;, be the unit cubes on R” and R”, and let us
consider the dilated cubes I, and I, with side length s and ¢, respectively.
Now, let ¢ € CX(R™) and ¢ € C*(R") such that ¢(x) =¢(y) =1, for
x € I, and y € J, respectively. Then

-1
’Is X Jr| X%y = Ps¥,

and
-1
M, p) =sup [ 170 =,y = o) |1 X T (0 0) dudo

<M, f(x,y).

Now, from Theorem 3.1, the maximal inequality (2) follows at once.

4.2. THEOREM. Suppose f = (f;,) € L1, (R"*",[9), where Q = (q,,4,)
is given with 1 < q,,q, < . The vectorial rectangular maximal function is

given by
(1) M(f,),, = (Mf,),,
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where Mf, is the rectangular maximal function. Then, there is a constant
C > 0 such that for all P = (py, p,) with1 <p,,p, < 0 and f=(f;) €
LPR™* " [2) we have

(2) |#(1,),,

LP@R™* " Q) = C”(fu) “L"(R’"*",IQ)‘

Proof. It follows at once from Theorem 2.2 as in the proof of
Theorem 3.1.

4.3. REMARK. The inequality 4.1(2) in the case m = n = 1 was stated
by Stockert [17]. But the inequality 4.2(2) seems new and it was proved by
the author in [8]. (However see Schmeisser [15] and the references quoted
there.)

5. Application to the Littlewood-Paley theorem.

5.1. PROPOSITION. For f € S(R?) and I and J numerical intervals, the
(iterated) partial sum operator is defined by

(1) (Slxjf)/\(s’t)=XI(S)XJ(f)f(s’t)
and we have
(2) 18755/ lr < Cll flr, 1<P={(p,p,) < oo,

for all f € S(R?), with C independent of f. Moreover, S, , can be extended
to all L*(R?).

Proof. If I = J = (0, 00), then
(3) SIfo= (1/4)(f+ iHof + iHy — an)

where H,,f, Hy, f and H,,f are the partial and double Hilbert transform.
In this case we have obviously (2). The general case follows by modifica-
tions of (3) as in the one-dimensional case.

As the partial and double Hilbert transform have an /“-extension,
Theorem 5.1 has the following extension.

5.2. THEOREM. Let (I, X J}); ; n be a double sequence of intervals in
R? and (f,,) be a double sequence of functions in S(R?,19). Then

(1) '(SI'XJJ ff) LP(12) = C“(fij)“LP(IQ)’ 1<P,Q < oo,

where C is independent of (I; X J;) and (f,;). Moreover, the operator
S(f,,)) = (S;x; fi;) can be extended continuously to all L"(R?).
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We shall reverse inequality 5.2(1) for Q = (2,2) and the family of
dyadic intervals, i.e. we shall obtain the Littlewood-Paley inequalities for
mixed norms. We shall need some preliminaries.

5.3. LeMMA. Let ¢ € S(R) be given with $(0) =0 and ¢(t) =1 if
t € [1/2,1]. Setting ¢;(x) = 2/p(2'x), j € Z, we have

(1) o0l =c
(2) T lo()[ = clxl

2\'/? 2.
3 | Xlex-»)—e()[] =<cyl/xl iflx|=2]y].

jeZ

Proof. See [13] or [14].

5.4. THEOREM. Let @ and  be given as in Lemma 5.3. Then
® (@t 1) ore, < CIF s
for allf € LP(R?), with1 < P = (p,, p,) < .

Proof. We consider the operator
) T: /€ S(R) = Tf = (94,4 /), € M(R, ).
We have to show that T is bounded from L” into L(/?).

Step 1. T is well defined. Indeed, by 5.3(1), we have

[ [XZlotyxflaxay =X X [ [ o0 f[ dxdy

Y[ [ B0 asde< cf [ 17(s,0) dsar.
j i
ie,wehave X |¥, @, * f(x, y)|* < o0, ae, and Tf(x, y) € [*(Z?).

Step 3. Tf is measurable. Since /%(Z?) is separable it is enough to
show that Tf is weakly measurable. But for all a = (a,;) € [*(Z?) we
have

<Tf(x, J’)’a> = Zaij‘Pi‘Pj*f(xa y)

which is obviously measurable.
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Step 4. T has a bounded extension from L? into L?*(/?) because (3)
holds.

Step 5. The kernel k, defined by

ko (x): A€ C -k (x)=(g(x)\), €1XZ)

is well defined, belongs to L) (R — {0}, L(C,/?) and verifies
Hoérmander’s condition.

Step 6. The kernel k, defined by

k¢()") = (a,), € IX(Z) > k¢()’)(“i)z = (‘Pj(J’)ai)ij € 1*(2?)
is well defined by 5.3(2). On the other hand, the mapping
(x,y)~ Z Zazjq’i(x)‘nbj(Y)
joi

is measurable forall a = (a;) €/ %(Z?). Thus, k, is measurable, belongs
to L' (R — {0}, L(/*(Z),!*(Z?)), and satisfies Hormander’s condition.

loc

Step 7. The above results clearly also hold for the cut operators 7,,,,
and the respective kernels kg and kj. Thus, since T,,.f= (¢, *f;
1 <i<m,1<j<n)isasequencein /> we have

T,.f(x,y) ffk —v)k}(x — u)f(u,v)dudy.

Step 8. The operators T, are bounded from L?(R?) into
L*?(R?, [*(Z?)), with operator norms bounded by a constant independent
of m and n.

Step 9. From Theorem 1.2 and Corollary 1.4 we obtain
(3) T f rci2y < ClLf s

with the constant C independent of m and n.

Step 10. The monotone convergence theorem applied to (3) yields (1),
as desired.

5.5. REMARK. For a related result, but with a different proof, of
Theorem 5.4 see Bordin-Fernandez [3].
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5.6. Let A, be the set of all dyadic intervalsin R, and let A = A; X A}
be the set of dyadic bi-dimensional intervals.

5.7. THEOREM. If f € LF(R?),1 < P = (p,, p,) < o0, then

[ Y ls,fﬁ]m

IeA

(1) cpll fller < < Coll fllr

LP

where cp, and Cp are independent of f.

Proof. Let ¢ € S(R?) and let ¢ and y be as in Lemma 5.2. Since
&,(s) = §(2's) and Y (1) = $(2/t), we have §,(s) = 1if s € [2'7,2] and
(1) = 1if r € [2/71,2/]. Hence

(2) Sif= S11x12f= Sllxll((pill’j* )
Now, Theorems 5.2 and 5.4 yield

() p ls,ff]m

IeA

< Cll e~

Ll’
Finally, to reverse (3) we use polarization and duality as in the well known
cases (see [16], [14] and [18]).

6. Multiplier theorems.

6.1. DEFINITION. A scalar valued measurable function ¢, defined in
R X R, is said to be of bounded V-variation if there exists a positive
constant M and consequences (Cy,; k€ Z, m €N), (a,,; k €L,
m € N) and (b, ,; k € Z, m € N), which satisfy

km>
(1) lim ) CrmX (= o0,a,) X (—00,by) = P> a.e.
m=0 ez
and
(2) YIC.|< M, forall m.
k

We shall write V() for the infimum of such constants M.

6.2. THEOREM. Let (9,,,) be a (double-)sequence of uniformly bounded
V-variations, i.e.

(1) V(e,,) <M, forallmandn.
For g € S(R?), let T,,,,, denote the operator defined by

(2) (T,,8)" = Q-
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Then, if (f,,,) is a sequence in S(R*), we have
(3) Il(Tmnfmn) ”L"(lQ) < C”(fmn) ||LP(/Q)-

Proof. Let us suppose f,, =0, for m and/or n large. Let us set
N = (m,n), and let

szckmNXlkmN (IkmN (= o0, akmt)x( oo’bkmj))
k

be a function which satisfies 6.1(1)—(2) and 4, — @y, as m — oco. Next,
define (S,,xfx) "= h,.nfn- We claim that

(4) [(S,nsw) lzraey < Cl(fy) (| 27 cr0y-
In fact, by Holder’s inequality

91

(5) | NfN (XIkmeN)

)1

’

< M%'Ckle ’(XIkmeN)V

hence, recalling 5.2(1) and hypothesis (1), we have

[Z[Zl il ]/}/

[ R q 9/ N 1/4,
<C Z Z,Ckle, XIkmeN) }
| J Lisk

1(Snfn) ey = (N =(i,)))

LP

LP

v ql] 42/%}1/‘72

11/4.
Iqllqz/lh

< A% 2|l 1)
| J L

L?

= Q|| ZiCuml 1y

LP

[ [ i 42/41j|1/q2

< €| 2| Z(ZlCuml 01"

< Cl () leraey-

Finally, by an application of the Lebesgue dominated theorem and
Fatou’s lemma, from (4) we get (3) as desired.

The following lemma is well known (see [5, Th. 4.2-3 and 5] and will
play a major role in the multiplier theorem we shall state.
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6.3. LEMMA. Let m be a bounded measurable function which has
continuous derivatives of order (a, B), a = 0,1 and B = 0,1, away from the
axis, and satisfies

(1) |x*yD*¥m(x,y)|< M, x+#0,y+#0.

Then, the V-variation of the restriction of m to the dyadic intervals are
uniformly bounded, i.e.

(2) V(xxm) < N,
for all dyadic intervals K = I X J in R?,

Finally, as a consequence of the foregoing results we obtain a multi-
plier theorem of Lizorkin type.

6.4. THEOREM. Let m be a scalar-valued function in R* given as in
Lemma 6.3. Let T, be the multiplier operator defined on ¢ € S(R*) by

(1) (T,9)" = mp.
Then, T,, has an extension to all L*(R*) such that
(2) 1T, fllr < Cl fllze,

for all f € LP(R?), where the constant C depends on p only.

Proof. By the Littlewood-Paley inequalities, Theorem 6.2 and Lemma
6.3 we shall have

r ]2
1T, flr<Cl| X I1Sk(T,. )]
| KeA, LP
r L
=C Z I(XKmXKf)V‘
| K€l, | LP
i 22
<q| X |(xxH)"| ] < Cllfllee-
| Ke4, LP
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