Pacific Journal of

Mathematics

4-FIELDS ON (4k + 2)-DIMENSIONAL MANIFOLDS

BENG NG




PACIFIC JOURNAL OF MATHEMATICS
Vol. 129, No. 2, 1987

4-FIELDS ON (4k + 2)-DIMENSIONAL MANIFOLDS

Tze BENG NG

Let M be a closed, connected, smooth and 2-connected mod 2 (i.e.,
H,(M,Z,)=0, 0 <i<2) manifold of dimension n = 4k + 2 with
k > 1. We obtain some necessary and sufficient conditions for the span
of an n-plane bundle 1 over M to be greater than or equal to 4. For
instance for k£ odd span M >4 if and only if x(M)=0. Some
applications to immersion are given. In particular if n =2+ 2/, / > 3
and w,(M) = 0 then M immerses in R>"~4,

1. Introduction. Let M be a smooth manifold, assumed throughout
the paper to be closed and connected and of dimension » = 4k + 2 with
k> 1.

If K> 2and M is (¢ — 2)-connected mod 2 where ¢ = 5 or 6, then
Thomas in [20] gave necessary and sufficient conditions for span M > t.
We shall give necessary and sufficient conditions for a 2-connected mod
2M to have span > 4.

The Main Result. Recall the Euler-Poincaré characteristic of M is
given by
x(M) = ¥ (-1)'Rank H,(M; Z),
i=0
where n = dim M = 4k + 2. We state our main theorem as follows:

THEOREM 1.1. Suppose M is 2-connected mod?2 and dimM =n =12
mod 4 and n = 10.

(a) If n = 6 mod 8 then span(M) = 4 if, and only if x(M) = 0.

(b) If n = 10 mod 16 and w,(M) = O then span(M) > 4 if, and only
if x(M)=0.

() If n = 2 mod 16 and w, (M) = 0 then span( M) > 4 if, and only if
ow,_,(M)=0and x(M)=0.

In Theorem 1.1 § is the co-boundary operator associated with the
sequence0 - Z > Z - Z, - 0.

Notation. Let BSpin; be the classifying space of orientable j-plane
bundles £ satisfying w,(§) = 0. Let BSO,(8) (cf. [13]) be the classifying
space for orientable j-plane bundles £ satisfying w,(£) = w,(£) = 0. Then
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—B—ST)j( 8) fibres over BSpin, with k-invariant w, € H*(BSpin 5 Ly).
Throughout the remainder of the paper cohomology would be ordinary
cohomology with coefficients in the mod 2 integers unless otherwise
specified. We denote Eilenberg-MacLane spaces of type (Z,, j) and (Z, /)
by K; and K* respectively and their fundamental classes by ¢; and ¥
respectively.

2. The n-MPT for the fibration =: BSpin,_, — BSpin,. We list the
k-invariants for the modified Postnikov tower for the fibration =:
BSpin,_, — BSpin, through dimension » (abbreviated n-MPT see [4]).
For the computation the reader can refer to Thomas [17]. Because of the
fact that the indeterminacy Indet"(k%, M) is trivial, although our choice
of k3 and k3 for n=2 mod 8 are not independent k-invariants,
it does not affect our computation. Note that (";*)=1 mod 2 <
(Sq* + Wy - W, g = W

TABLE 1. k invariant for =

k-invariant Dim Defining relation
Kt n—3 k= 8w,_,
Stage 1
k3 n—2 ks =w,-5
ki n-2 Sq*ki + Sq'ks =0
Stage 2 K3 n (Sg* + w) k! + ("7 Sq*ks =0
K2 n (8S¢H)k5 =0
Stage 3 K n Sq*Sq'k} + Sqg'k3 = 0.

We shall denote the n-MPT by
92 Bspln n—4
T J! 4
E, 3 E, 3 BSpin,

Since we shall be considering manifolds which are 2-connected mod 2,
to realize k; we shall identify (Sq'k7, k?) in stage 2 instead of (k{, k3).
Let E, 4 BSpin, be the 1st stage n-MPT for the fibration. From the
defining relation for k3, the fact that Sq*w,_, = w, = x, mod 2 where
X, is the Euler class for BSpin,, and the Peterson-Stein formula we
deduce (via functional operation considerations). (See also [6, page 337].)
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PROPOSITION 2.2.

1
k3= 3PiXn
(cf. Atiyah-Dupont [3] Theorem 1.1 page 3.)

COROLLARY 2.3. Suppose m is an n-plane bundle over M. Suppose
8w, _4(n) = 0 andw,_,(n) = 0. Then modulo zero indeterminacy k3(n) = 0
if, and only if x(n) = 0, where x(n) denotes the Euler class of 7.

3. The case w,_4(M) = 0. Throughout this section we assume that

W, 4( M ) =
Consider the following relations:

¢;: Sq°Sq> + Sq°8 =0 and
(3.1) $a: (1® Sg* + 1 ® p,)8 + Sg'(1 ® Sg* + 1% ® 1)
+(8¢%5¢")Sq* =0

where ¢} is the fundamental class of K(Z,4), p, is reduction mod 2, & is
the Bockstein operator associated with the exact sequence 0 — Z — Z —
Z, - 0. In (3.1), the tensor product is to be interpreted as for the
Massey-Peterson algebra % (K(Z,4)) for the mod 2 steenrod algebra 9.
The multiplication for p, and & is obvious. By abuse of notation and to
save space we sometimes write a for 1 ® a for & € % U {8). Consider
the vector cohomology operation defined by (3.1). Its existence follows
from the method of universal example as in Thomas [18]. Moreover it is
easily seen that if we denote the operator by (¢, ¢,) we have the following
relation

(3.2) A,: Sq%p; + Sq'¢, = 0.

Hence we have a tertiary operation associated with the relation (3.2). Let
us denote such an operation also by the symbol A ,. In the terminology of
[18], (¢s, ¢,) and A, are twisted cohomology operations.

Let {: BSpin; > K} represent a generator of H 4(BSpin s L) =1
Then we have

THEOREM 3.3. Let j > 5 and let U, be the Thom class of the universal
spin j-plane bundle over BSpin . Then

(0,0) € (¢5,¢,)(U,.§,) and
0e A U,¢).
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Proof. Since H*(BSpin;) = {0} and H*(BSpin,) is generated by the
4th mod 2 universal Stiefel-Whitney class w,, trivially we can choose
(¢5,¢,) such that (0,0) € (&>3,§54)(Uj,§j). If necessary we can replace
(¢3,44) by (5,6, + Sg*). Similarly we can choose the stable tertiary
operation A, such that 0 € A,(U,¢)).

Instead of writing ¢ » by abuse of notation we shall confuse {; with
the class Q € H*(BSpin ;» Z) which it represents. Notice that 2Q = P, the
first Pontrjagin class of the universal spin j-plane bundle over BSpin ;.

Let w,_, be the (n — 4)th mod 2 universal Stiefel-Whitney class
considered as in H" *(BSpin,_,). Then (Sq* + Q - )w,_, = 0, Sq°w,_,
= 0 and dw,_, = 0. Thus an immediate corollary to Theorem 3.3 is

PROPOSITION~3.‘!:.
() (0,0) € (¢3, d4)(W,_,, Q) € H" '(BSpin,_,) + H"(BSpin,_,).
(b) 0 € A (w,_4, Q) € H"(BSpin,_,).

_ Since 7* maps Indet”~""(BSpin, (¢3, ¢,)) onto Indet”>"(BSpin,,_,,
(63, 94)), W,_, € H" *(BSpin,) is a generating class (see [18, §5]) for
(Sq'k?, k2). Thus by the generating class theorem [18, Theorem 5.9] we
have

(3.5) (Sq'k2, k2) € (65,84 PIW,_4» PFO).

Consider the commutative diagram

Pl (klz’k%rkg)
E, - E, - K, ,X K, XK}
Vf i Vi
- ¢ (k,k3)
E, - E - K, » XK,

where j is the projection and £ is the principal fibration with k-invariant
(kZ,k2) and f is the natural map induced by the commutative right-
hand square. Then there is a class k € H"(E,) associated with
the relation Sq°Sq'k? + Sq'k? = 0 such that f*k = k* Since
Ker7* c Ker P* in dimension < n, ¢ maps Indet”(E;, A,,Q) onto
Indet*(BSpin,,_,, A4, Q). Thus we have by Proposition 3.4 and (3.5) the
following

PROPOSITION 3.6. w,_, € H" *(BSpin,) is a generating class for k.
Here k is considered as a coset modulo Ker g N Im&* where §, = f o q,:
BSpin,_, — E,.
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By the connectivity condition on M, the ith Wu class is trivial unless
i =0(4). We can easily show with the help of S-duality that
Indet”( M, k3) = Indet"(M, A, n*Q) for any map n: M — BSpin, clas-
sifying a spin n-plane bundle over M.

PropoSITION 3.7. Suppose n: M — BSpin, is a map such that
7*(8w,_4) = 0,0 € ¢y(n*w,_4, 1*(Q)) and n*(x) = 0, then

k3(n) = Ay(n*w,_s, 1%Q).

Proof. Note that Indet”(M, k) = Indet”(M, k*). Since M is 2-con-
nected mod 2, (k2 k2)(n) = (0, k3)(n). Thus (0, k3)(n) =
(0, 64 )(*W,_ 4, 7*Q). Since 0 € ¢4(n*w,_4, 71*Q), (0,0) € (0, k3)(n). Thus
k(n) is defined. Since n*(x) = 0, then by Corollary 2.3 k3(n) = 0 mod-
ulo zero indeterminacy. Therefore k3(n) is defined. By Proposition 3.6
and the generating class theorem, there exists an element # in H”(E))
such that 4 € Kerg;* and

(7‘ + h)(n) = A4("7*Wn—4>"l*Q)-
Since Ker g ¢ Ker p¥ through dimension < n and k%(n) =0
k() = (f*k)(n) = (k + B)(n) = A (n*w,_q, 7*Q).

For an n-plane bundle 1 over M with classifying map also denoted
by m, let w;(n) = n*w; and Q(n) = n*Q. We have from Proposition 3.7
the following

THEOREM 3.8. Suppose =m is an n-plane bundle over M. Then
span 1 2 4 if, and only if 8w, _4(n) = 0,0 € ¢,(w,_4(n), Q(n)), x(n) =0
and 0 € A 4(w,_4(n), (7))

THEOREM 3.9. Suppose M is 2-connected mod2 and w,_,(M) = 0.
Then span(M) > 4 if, and only if x(M) = 0.

Proof. Immediate from Theorem 3.8.

4. The case w,(M) = 0. In this section we shall assume that w,(M)
=0.

Consider the following relations:
11 Sq°(8S¢"~*) + S¢*(Sq°Sq"~*) = 0,

4.1
1) 6.: 54°(659") + Sgi(Sa*Sg™*) + Sg?Sq}(Sg%Sq"*) = 0.
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Choose stable secondary cohomology operation associated with ¢,
and ¢, of Hughes-Thomas type [5], also denoted by the same symbols
such that on the fundamental class 4,_, of D,_,, the principal bundle
over K, _, with classifying map (S¢*,_,, Sq*,_,)

0€¢(d, ,) and Sq%d, ,Ud, ,€¢,(d,_,).

Moreover we can choose (¢,, ¢,) such that (0,0) € (¢;, $,)(¢,,_5). By the
Leray-Serre exact sequence for the universal example tower for (¢, ¢,),
we see that

¢, = ¥ Sq" * modulo {Sq" !, Sq""?Sq'} and
¢, = ¢} ° Sq"~* modulo { Sq", Sq"~'Sq*, Sq"*Sq*}
where ¢¥ and ¢} are defined by the following relations
Sq°8 + Sq*Sq* =0 and Sq*8 + Sq'Sq* +(Sq°Sq")Sq* = 0.
Furthermore (¢, ¢,) can be chosen in such a way that
(4.2) Q: Sq’¢, + Sq'¢, = 0.

Consider now the fibration 7: §§6n_ 8) — §§6n<8> where B’S_6j(8>
is the classifying space for n-plane bundles ¢ satisfying w,(§) = w,(£§) = 0.
The k-invariants for the n-MPT is as defined before in Table 1. Then
(1, P T#)*U, = s*(¢%, ¢ )U,_, U U,_,) where s is the suspension
homomorphism and U, is the Thom class of the universal bundle over
BSO, .(8). Therefore (¢1, ¢,)(T%)*U, = 0 modulo zero indeterminacy by a
Cartan formula for (¢%, ¢¥). .

Now observe that 7*: H*(BSO,(8)) — H*(E-Sﬁn_4(8>) is an epi-
morphism in dimension < n for n > 30 and n # 34. For n < 30 and
n = 34 think of the n-MPT over BSO,(8) as the induced tower from the
n-MPT over BSO,. With this in mind it can be easily verified that
(8w, _4,w,_,) is admissible for (Sqg'k{, k3) via (¢, ¢,) [12, §3.2].

Let E, —» E, - BSO,(8) be the Postnikov tower for #. Then by the
admissible class theorem [12, Theorem 3.3] we have

THEOREM 4.3.
U(E))(Sq'ki, k3) € (61, 9%)U(Ey),
where U(E,) is the Thom class of the bundle over E, induced from the
universal n-plane bundle over BSO, «8) by the map E, — BSO, L8

From the relation (4.2) we can choose an operation associated with
the relation (4.2) denoted by € such that on the fundamental class b,_, of
Y, 4, the principal bundle over K}¥ , with classifying map
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(Sq*3_4 Sq*r_4)
(4'4) ‘}:(bn—4) U(bn~—4) € Q(bn—4)
where ¢} is the secondary operation on integral classes associated with
the relation

¢k Sq°Sq° + Sq'Sq* =0
and K* is an Eilenberg-MacLane space of type (Z, j) and ¢} its funda-
mental class. By the methods of [12] (see for example. [12, §4.20] we can

easily derive (4.4). The details are left to the reader. Thus (4.4) and the
admissible class theorem give us

THEOREM 4.5.

U(E,) -(k} + p2pt(w,-40,) € QU(E,)),
where 8, € H*(BSO,(8)) is defined by ¢,U(BSO,(8)) = U(BSO,(8)) - 6.
Indeed by Proposition 3.4 of [12] treating BSO,(8) as a principal fibration
over BSO, we see that ¢,(U(BSO,(8)) = U(BSO,(8)) - 0, where 8, is such
that i*0, = sq't; where it Ky = BSO,(8) is the inclusion of the fibre. Thus
0, is a generator of H*(BSO,(8)) = Z,.

REMARK. Notice that by a spectral sequence argument g;*: H*(E;)
— H*(BSO,_,(8)) is an epimorphism through dimension n. Also

U(E,) - (Indet"'"(Sq'kZ, k2, E,)) = Indet>~12"(¢,, ¢,, TE,).
Hence we can apply the admissible class theorem.

Let £ be an n-plane bundle over M such that w,(§) = 0.

THEOREM 4.6. (a) Suppose Indet"(k?, M) # 0. Then span(£) > 4 if,
and only if 8w, _,(§) = 0, and x(§) = 0.

(b) Suppose Indet"(k3, M) = 0 and w,_,(£)0,(§) = 0 where 0,(§) =
g*0,, g a classifying map into BSO,(4) for & Suppose 0,(§£) = 0,(»),
where v is the normal bundle of M. Then span(§) > 4 if, and only if
0w, _,(§) =0, x(§) =0, ¢,(U(£)) =0 and QU(§)) =0 modulo zero
indeterminacy.

Proof. This follows from Theorem 4.5. The details are left to the
reader.

5. Evaluation on the manifold. Let g: M X M — T(M) be the map
that collapses the complement of a tubular neighborhood of the diagonal
to a point. Then let

U=g*(U(r)) mod2 € H*(M X M).
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We want to give a decomposition of U. Note that for any x € H"/*(M),
x2 = 0. Thus Z, rank of H"/*( M) is even. Suppose rank H"/*(M) = 2q4.
Then we have the following.

PROPOSITION 5.1. Suppose H"/*(M) # {0}. There exists a basis
{ X1+ ooy X g Y1s- -5 V) for H/*(M) and an integer r > 0 such that

Sq'x, = 0, i=1,...,q, Sq'y,.. =0, i=1,...,q—r
Sq'y, # 0, i=1,...,r,

and x,y; = 8, where §,; is the Kronecker function and p € H"(M) is a
generator. In particular {x,,...,x,} € Sqg*"H"*"(M).

Proof. First we remark that for n = 4k + 2KerSqg*: H***(M) -
H?**2(M) is non-trivial unless H2**Y(M) = {0}. For if S¢*x # 0 then
for any y € H?*(M) with Sq'x - y # 0, y satisfies Sq'y # 0 and Sq'y €
H?**Y(M) N KerSq'. Choose generators

{al,...,a,,a,+1,...,a,+p,,81,...,,8,,,13,+1 Br+p}, r+p=gq

such that {a;,...,a,} CImSqg' N H**Y(M) and {a,,),...,a,,,} C
Cok Sq' N KerSq' N H***}(M) and {B,,...,B,,,} are their corre-
sponding duals (i.e. B,- x =0 for all x € H***}(M) and x # a,, B; - @,
# 0). Notice this choice is possible by the above remark, for Sg'x # 0 and
x € H***}( M) implies that x is dual to Sq'y for some y € H**(M).
Now S¢B..,=0, 1 <i<p for otherwise B,,; is dual to some a,,
1 < i < r. Of course now letting x; = a;, y; = B, gives the required basis.
Let

2k n(i)

q
Z Z zl‘®ﬁr{—i+zxi®yi
i=0 /= i=1

where dim H'(M) = n(i) and {xl,.. s Xg» Y1s-+-» Y, ) are given by Pro-
position 4.1. Here & U B/_, = §, . Then we have

THEOREM 5.2.
(HU=4+14
(ii) Sqg'4 =0
(i) A U4 = 3,(M)p® p
where

1 [%k+2 1
X.(M) = 5( 3 dimH’(M))mod2 = §X(M) mod 2.
i=0
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Proof. Assertion (i) follows from the fact that

{0‘1", ,f—f}i=1,...,2k;1=1,...,n(i) U{x, yi}i=l,...,q
is a basis for H*(M) and Milnor [11].

S¢'U =0 and
n(i) r
Sq'4 = Z Z Sq'a;® B, + a; ® Sq'B,_, | + Z x; ® Sq'y,
i=0\ /=1 i=1
is a sum of terms of bidegree (j,n +1 —j), j<2k+ 1. Nown+1—
=4k +3—j>4k +3 — (2k + 1) > 2k + 2. Therefore Sq*4 + Sq'tA
= 0 implies that Sq'4 = Sq't4 = 0. Assertion (iii) is obvious.

PROPOSITION 5.3.
(1) 88" 4(A) = dw,_,(M) ® p
(i) Sq*Sq"~*(A) =0 if wy(M) =0

Proof. (1)
n(2k)
Sq"4(4) = Sg* 2 (4) = XL S¢7* s, ® Sq¥Byi.s
=1

Now Sq2 B4, ., = vy Bixis # 0 if Bsi+2 is dual to vy, the 2kth Wu
class of M. We can choose for some af, to be v,,. Thus S¢**8., ., =0
for / # j. Thus

Sq""*(A4) = Sq* vy @ p=wy (M) @ p=w, (M) ®p,
and so 8Sq" " 4(A) = 8w,_,(M) ® p.

(i1) is obvious.

PROPOSITION 5.4. Suppose w,(M) = 0 and éw,_,(M) = 0. Then
(1) (¢,, $,) is defined on A, and
(i) Modulo zero indeterminacy,

(O 4’4( -4 M) ®P)) ‘151,4’2)(14)'
Hence
(iiD) (0,0) = (¢;, $)(U(7)).
Proof. Part (i) follows from 5.3. Part (iii) follows from Part (ii) since

g* is injective. Note that S¢"~2S¢q’4 = 0 so that
$2(4) = ¢1Sq" 4 = ¢t (w,_o(M) ® p).
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Let P — K, be a universal example tower for (¢,, ¢,). Consider 4 as
amap A: M X M - K,. Since 8w,_,(M) =0, 4 has a lifting 4 to P.
Let m: P X P — P be the multiplication map. Then the map 4 =
mo(A,Aot)is alifting of 4 + t*4 regarded as a map mo(A4, Aot). Let
¢ be a representative for the operation ¢,. Then m*¢ =1® ¢ + ¢ ® 1.
Thus

h*p = A% + 1*4%¢.
But t*: H**(M X M) - H?"(M X M) is an identity homomorphism.
Therefore h*¢ = 0.

Let U: T(M) — K, represent the Thom class of the tangent bundle
of M reduced mod 2. Let U: T(r) — P be any lifting of U to P. Then
f= Uog is alifting of 4 + t*4. Since g* is injective, ¢,(U(7)) vanishes
if and only if g*¢,(U(7)) = f*(¢) = 0. Since Indet>(M X M, ¢,) = 0,
h*¢ = 0 = f*(¢) = 0 since both 4 and f are liftings of 4 + t*4. By the
connectivity condition on M, this shows that (¢,, $,)(U(7)) = (0,0). This
completes the proof of Proposition 5.4.

Consider Indet?"(Q, T(M)). By the connectivity condition on M
Indet?"(Q, T(M)) is a sum of secondary operations defined below

Indet*"(Q, T(M))

= {81(x) + &(») |1x € H"4(T(M); Z), y € H"*(T(M)))
where ¢, is associated with
¢3: S¢°Sq? + Sq*(Sq2Sqt) = 0.

By Atiyah-James duality the S-dual of T(M) is the Thom space of
the stable bundle @ = —7 — 7. Thus {; is trivial on H>" 3 (T(M)). ¢} is
also trivial on H2"~4(T(M); Z)) since ¢}(x) = ¢¥(x) and 6,(a) = 0.
Thus if Indet”(k3, M) =0 then Indet?*(Q, T(M)) = Indet"(k3, M) =
Indet?*(Q, M X M) = 0.

THEOREM 5.5. Suppose 8w,_,(M) = 0 and w,(M) = 0. Suppose fur-
ther that Indet"(k3, M) = 0. Then
2(U(r))=0

modulo zero indetermicacy.

Proof. From Theorem 4.6 and the fact that Indet"(k3, M) =0,
¥ (w,_4(M)) = 0. Therefore @ is defined on 4 hence on t4. Thus
Q(A + t4) = Q(A4) + t*(RA4) = 0 modulo zero indeterminacy.
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5.6. Proof of Theorem 1.1.

1.1(a) follows from Theorem 3.9 since w,_,(M) = 0 for n = 6 mod 8.
Similarly 1.1(b) follows from Theorem 3.9 since n» = 10 mod 16 and
w,(M) = 0 implies w,_,(M) = 0. 1.1(c) follows from Theorem 4.6 and
Theorem 5.5.

6. Immersions of manifolds. As an application of Theorem 3.8 and
Theorem 4.6 we derive some immersion results. Note that for immersion
we don’t need the unstable k-invariants.

Suppose M is a spin-manifold. Then by Massey [9] it can be easily
shown that if dimm = n = 2 mod 4 then w,_,(M) = 0 and ow,_,(M) =
0. In particular if dim M = n = 6 mod 8, w,_,(M) = 0. Also if dim M =
n = 10 mod 16 and w,(M) = 0, then w,_,(M) = 0.

Thus using the proof of Theorem 3.8, letting 7 be the stable normal
bundle of M, we have:

THEOREM 6.1. Suppose M is 2-connected mod 2 and n > 6. If dim M
=n =6 mod8 orif n =10 mod 16 and w,(M) = 0, then M immerses in
R2n—4‘

As an application of Theorem 4.6 bearing in mind that the condition
x(§) = 0 does not apply to stable bundle we have:

THEOREM 6.2. Suppose M is 2-connected mod2, DimM =n=2
mod 16 and w,(M) = 0. Then M immerses in R*"~4.

Proof. 1f Indet™(k3, M) # 0, we have nothing to prove since k3(») is
defined and 0 € k3(»), where » is the Spivak normal bundle. If
Indet"(k*, M) = 0, then ¢ is trivial on H"~*(M,Z). Since W, _,(M) is
an integral class, ¢X(#,_,(M)) = 0 modulo zero indeterminacy. Therefore
W,_4(M) - 8,(v) = 0. Thus by Theorem 4.6(b) M immerses in R>"~* since
¢o,(U(v)) = Q(U(»)) = 0 being operation mapping into the top class of
T(v).
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