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Let D be a weakly pseudoconvex domain in Cn with C00 -boundary
and V be a subvariety in D which intersects 3D transversally. If dV is
nonsingular and consists of strictly pseudoconvex boundary points of D,
then any bounded holomorphic function in V can be extended to a
bounded holomorphic function in D.

1. Introduction. Let Ω be an open set in some complex manifold. We
denote by i/°°(Ω) the space of all bounded holomorphic functions in Ω
and by A(Ώ) the space of all holomorphic functions in Ω which are
continuous in Ω. Let G be a bounded strictly pseudoconvex domain in Cn

with C2~boundary and M be a submanifold in a neighborhood of G
which intersects dG transversally. Let M = M Π G. Then Henkin [5]
proved the following.

FUNDAMENTAL THEOREM. There exists a continuous linear operator

E: H°°(M)^H™(G) satisfyingEf\M = f.

Moreover Ef G A(G) iff e A(M).

In the present paper we shall extend the above results to the weakly
pseudoconvex case. Let D be a bounded weakly pseudoconvex domain in
Cn with C00-boundary. Let V be a subvariety in a neighborhood D of D
which intersects dD transversally. Let V = V Π D and D = {z e D:
ρ(z) < 0}. Suppose that V is written in the form

where hv...,hp are holomorphic in D and 3ΛX Λ Λdhp Φ 0 on
dD Π V. In addition, we assume that 3V consists of strictly pseudoconvex
boundary points of D. In this setting we shall show the following:

THEOREM 1. There exists a continuous linear operator

E: H°°(V) -> H™{D) satisfying Ef \ v = /.

Moreover Ef e A(D) iff e A(V).
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In the case when p = 1, the above theorem is nothing but the result
of Adachi[l].

I wish to thank Professor N. Kerzman who gave me the validity of
Proposition 3. I also wish to thank the referee for several helpful sugges-
tions.

2. Some results. Let

be a C00 function that satisfies

Then Hatziafratis [3] proved the following theorem.

THEOREM 2. Forf e A(V) andz e Vwe have the integral formula

f(z) =

where K(ζ, z) is a C°°(n — p,n — p — l)-form on 3D X D. Moreover, if
sx{ζ, z ) , . . . , sn{ζ, z) are holomorphic in z, then K(ζ, z) is also holomorphic
in z.

Let G be a bounded strictly pseudoconvex domain in Cn with C°°
boundary. According to the construction of Henkin [4], there exist a
neighborhood U of G, a neighborhood V of 3G, and a C00 function Φ:
V X t/ -» C such that for each £ £ K, Φ(f, z) is holomorphic in U and
such that Φ(ξ, z) = 0 implies f = z. Moreover, Φ admits a division

Φ « \ * ) = Σ */r>*)(f,-*y)
y=i

where Py: F X t/ -> C of class C°° and holomoφhic in the second
variable. In addition, if we set

i - l

+ Σ
ι J
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then there exists a positive constant r such that

Φ{ζ,z) = Γ(f,z)G(f,z) for {(f,z) e F x £/: |£ - z\ < r) = Sr

where G(ξ, z) is a non-vanishing C00 function in Sr.

Now we have the following proposition using the techniques of the
proof of Fornaess Imbedding theorem [2].

PROPOSITION 1. Let D be a bounded weakly pseudoconvex domain in
Cn with C 0 0 boundary. Let K be a compact subset of dD and consist of
strictly pseudoconvex boundary points of D. Then there exists a strictly
pseudoconvex domain D in Cn with C°° boundary such that D z> D and dD
coincides with dD near K.

In view of Proposition 1, if we can get the extension F to Z), then
FI D is the required function. Therefore we may assume that D is a
strictly pseudoconvex domain. Let {εp} be a sequence of positive numbers
which converges to 0. Let Dv = {z e D: ρ(z) < -ε,}, Vv= V Π Dv, and
n — p = k. If / G H°°(V), then by Hatziafratis [3], we have, for large v
and z e KF,

where K{ζ,z) is a C™{k,k - l)-form depending holomorphically on z.
We set for z e D

Then we have the following proposition which is proved by the same
argument as the proof of lemma 1 in Adachi [1].

PROPOSITION 2. For z e 5 |3F, /ί(z) = l i m ^ ^ Hv{z) exists. H(z)
is holomorphic in D and H(z) = /(z) /or z e F.

Let z° e 9F and Szo σ = {z: |z - z°| < σ}. Then there exist a con-
stant σλ > 0 and a biholomoφhic change of coordinates on a neighbor-
hood of z° such that p is strictly convex in a neighborhood of
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and (3ρ/3zz)(z°) Φ 0 for some / (1 < / < p). Without loss of generality
we may assume that (dp/dz^z0) Φ 0. Let z e Szoσi. We consider the
system of equations for ξ° = (ff,..., f °) of the following form:

LEMMA 1. 77zere exist positive constants σ2 (< ax), γx α«J γ2, depend-
ing only on D and V, such that for any σ < σ2 α«ί/ α«y z e Szo^σ/2 there
exists a unique solution ξ° = ξ°(z)ofthe system (1) which belongs to the set
Szo σ Π V. Here the point ξ° = ζ°(z) has the following properties:

' (2) \z - n 2 < [p(z) - p(S0)]/Ύi
(3) \z - n 2 > \zp+1\

2 + - + K I 2 > γ2[p(z) - p(f 0)].

Proof. From the system (1), we have

We set

then at{ζ) is C00 in a neighborhood of z°. We set by recurrence that

y(j) _ z _μ y» β

Then

|^(y) _ Hy-i) l ^ V I
I Si Si I ̂  Z-f I

i ^ + l

Therefore {ζU)} converges, lim •_„, f(7) = f ° is the solution of the system
(1). The strict convexity of the function p and the equation (1) imply

(4) p(f °) - p(z) + yS° ~ z\2 < 0,

(5) p(?°) " P(z) + yM° ~ A1 > 0.
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From the inequality (4), we have the inequality (2). From the system (1),
we have

k α°)lk

Together with the inequality (5), we have

- z\ zpj ~ p(f°))

This completes the proof of Lemma 1.

3. Proof of Theorem 1. At first we prove that if / G H°°(V)9 then
z) G #°°(2)). Let z G S,O σχ Π D,. We set

)
.ns,..., φ(j; > z )

It is sufficient to show that

LEMMA 2. Let f(z) G H°°(V). Then for any point z° G dV
G θ ( S Λ σ Π D9)\dV99 (σ < σ2/2), we have

f + λ ( 2 - ξ )

Proof of Lemma 2. We set ε =.(|z /,+ 1 |2 + +|z / ? |
2) 1 / 2

> where z
. . . , zn) G 3(5zo σ Π 2)y)|3Fy. By Lemma 1, we have

Since
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it follows that

On the other hand, we have

dHv(z + λw) -i

<y5ε(\ζ-z\

mi. ψ-u.')*,

Therefore we have

> + A(Z - ζ )

\f(ζ)\e(\ξ-z\+ε)dλ

where dλ is surface measure on dVf. We can choose coordinates

(i?i(£), , !»„(?)) in 5z<»,σ2 such that

Then we have

By the estimates of Henkin [5], we have

This completes the proof of Lemma 2.

By the same method as the proof of Henkin [5] (cf. Adachi [1]), we
can prove that

sup | i/(z) |<γ 1 0 sup |/(£) l-
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The next step is to show that if / e A(V), the H(z) e A(D). In order
to prove this statement, we need the following modified version of N.
Kerzman [6]. In the Theorem 1.4.1' of Kerzman, V is a manifold. But the
proof of the theorem is applicable in our case.

PROPOSITION 3. Let f e A(V). Then there exists a sequence {fk} of
holomorphic functions in a neighborhood of V in V such that \\fk — f\\v -> 0
when k -> oo.

From Proposition 3 we can suppose that / is holomorphic in V
{Vc V c V' c V). Let z° e dV and let z e 5 Λ σ / 2 n (5j3K,). By
using Stokes' formula, we have

r f(ΐ)K(ΐ z) r - K(ϊ z)

Therefore it is sufficient to show that

Flz) =

is continuous at z°. In order to prove this fact, we need the following.

(6)

LEMMA 3. Let z e S> σ / 2 n (!>„ 19Ky). 7%e« it follows that

Fv{ξ° + λ(z - ξ0)

dλ
λ =

where ξ° = f °(z) is the solution of the system (1).

Proof of Lemma 3. We can write

VA: + 1
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where A(ξ,z) and Z?y(f, z) are (k, fc)-forms which are smooth in (f, z) and

holomorphic in z. Therefore

Tp[ζ + Λ(Z — ζ

εdλ

dλ

|

By applying the estimates of Henkin [5], we have the inequaltiy (6). This

completes the proof of Lemma 3.

Using the method of Henkin [5], we can prove

\Fv{z) -Fv(z°) I < γ 1 4σ|logσ| sup \f(ξ)\+a sup | g r a d / ( O | .

Therefore Fv(z) is continuous at z°. This completes the proof of Theorem

1.
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