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We show first that the space of sections of a fibration with an
Eilenberg-Mac Lane space as fibre has the weak homotopy type of a
product of Eilenberg-Mac Lane spaces. Secondly, mapping spaces with
twisted Eilenberg-Mac Lane spaces as targets are shown to be gene-
ralized twisted Eilenberg-Mac Lane spaces.

1. Introduction. Let p: Y -> B be a (Serre) fibration, i: A ^ X &
cofibration and u: X -> Y a (continuous) map. Using Switzer's notation
from [14], let

FU(X,A;Y,B)

be the space of all maps /: X -> Y such that / ° / = u ° / and p ° f = p ° u.
In other words, FU(X, A Y, B) is the solution space for the lifting
extension problem

A

a
X '

s ' 1 P

-» B
pu

with data u\A: A -> Yand pu: X -> B.
We shall be concerned with decompositions of Fu(X, A;Y,B) when

p: Y -> B has an Eilenberg-Mac Lane space as fibre. Suppose for instance
that p: K(G,n) -> * is the trivial fibration mapping an Eilenberg-Mac
Lane space onto a point. Then

by Haefliger's sharpened version [7] of a theorem of Thorn [15] and
independently Federer [4]. The main purpose of this paper is to establish a
twisted version of (*)

2. Preliminaries. We shall work in the category of compactly gen-
erated spaces. For any two compactly generated spaces X and Y, we let
X X Y and F{ X; Y) denote the compactly generated spaces associated to
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the Cartesian product of X and Y and the space of maps of X into Y with
the compact-open topology, respectively. These constructions assure the
continuity of the evaluation map e: F(X Y) X X -> Y and the validity of
the Exponential Law ([16], pp. 17-21) and thus eliminate the difficulties
with the topology of function spaces as pointed out by Thorn in the first
paragraphs of [15].

Throughout this paper we let (X, A) denote an NDR-pair ([16], p. 22)
with X O-connected and p: Y -> B a fibration with O-connected base
space B. Then FU{X,A\ 7, B) is a closed subset of F(X Y) and thus
compactly generated in the (usual) subspace topology.

Composition with maps from the right or from the left defines maps
of function spaces. If for instance A c X' c X is a nested sequence of
NDR-pairs and j : X' -* X the inclusion, then the induced map

j : FU(X,A;Y,B) -> FUJ(X',A;Y,B)

is a fibration with Fu( X, Xf\ Y9 B) as fibre. Similarly, if Y -> Yf -> B is a
sequence of fibrations and q: Y -» Y' the projection, then the induced
map

q: FU(X9A\Y,B) -* Fqu{X,A\Y',B)

is a fibration with FU(X, A; Y, Y') as fibre ([14], Proposition, p. 528).

Let π be an abelian group. We shall be particularly interested in the
K(π, l)-sectioned spaces [10] that arise in the following way. Suppose that
G is a system of local coefficients in the Eilenberg-Mac Lane space
K(π, 1) given by a homomorphism φ: TΓ^A^TΓ, 1)) = m -» Aut(G0) of π
into the automorphism group of a typical group Go of G. For any integer
n > 0, G may be realized, see ([5], Ch. Ill) or ([10], p. 7), as the system of
local coefficients defined by the π-dimensional homotopy groups of the
fibres of a sectioned fibration

n;φ)ϊtK(ττ,l)
k

over K{ π, 1). This fibration, which we shall denote by κ(G, n), classifies
cohomology with local coefficients in the sense that by the Classification
Theorem ([16], Theorem 6.13, p. 302), ([13], Theorem 3.6), ([12], Theorem

II),

πo{Fu{X,A;K(Go,n,φ), K(ir,l))) = Hn(X,A;ufG)
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for any map u: X -> K(G0, n φ) with ux = ku. Via pull-back of the
path-space fibration in the category of K(tt, l)-sectioned spaces [10],

K(G0, n - 1) -» PK(G0, n- φ) -> K(G0,n; φ),

this equality may be interpreted as a bijective correspondence between
fibre homotopy equivalence classes of K(GQ,n — l)-fibrations over X
with wf G as associated system of local coefficients and the cohomology
group Hn(X;u*G).

As a final subject of this mixed section we shall now discuss Kϋnneth
theorems for cohomology with local coefficients. First an algebraic lemma
([1], Theorem 2.8).

LEMMA 2.2. Let P be a free positive and N a negative chain complex
over Z. Then there is an isomorphism

ΦE: H{Hom(PyN)) -> #(Hom(P, H(N)))

which is natural in the first variable.

Proof. Choose a free negative complex N' and chain maps

such that a is a quasi-isomorphism and β* = a*: H(N') -> H(N); cf.
([3], p. 169). Since P is free (projective), the induced chain maps

Hom(l,α): Hom(P,N') -

Hom(l,β): Hom(P,N') -> Hom(P9 H(N))

are again quasi-isomorphisms. Thus

Φ^ = Hom(l ?i8) s,oHom(l,α);1: H(Hom(P9N))-»H{Hom(P9H(N)))

is an isomorphism. Φ^ is easily seen to commute with Hom(γ, 1)^ for any
chain map γ: P -> P' between free positive chain complexes. D

Note that since the complex H(N) has trivial differentiation,

Hn(Hom(P,H(N)))= U Hp(Hom{£, Hq(N)))

where Hq(N) is considered as a complex concentrated in degree 0.
As to cohomology of spaces, Lemma 2.2 has the following reformula-

tion.
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LEMMA 2.3. Let (Z, C) and (X, A) be NDR-pairs, G a system of local
coefficients in X, and pr2: Z X X -> X the projection onto the second
factor. Then there is an isomorphism

Φ ( J M ) : H"((Z,C)x(X,A);pr*G)-> \J H*(Z9C; H«(X9A;G))

which is natural in the first factor.

Proof. We may assume that Z and X are O-connected spaces and that
(ZX) and (X9A) are CW-pairs. Let (Z,C) -* (Z9C) and {X9A)-»
(X, A) be the universal covering spaces so that ([16], Theorem 4.9, p. 288)

where R = Z(πλ(Z)) Θ Z(^(X)) acts on the typical group Go by
( i ® V)g = ^g for I e W l (Z), η e TΓ^Z) and g G GO. We use (Γ*)Γ to
denote cellular (co-)chain complexes. Since

HomR(T(Z9C)9T(X9A)9G0)Z9C)9T(X9A)9G0)

= H o m , 7 i ( Z ) ( r ( Z , C ) , H o m 7 7 i W ( Γ ( l , i ) , G 0 ) )

= Hom M Z ) (Γ(Z,C),Γ*(X,^;G))

= Hσm(T(Z9C)9T*(X9A;G))9

Lemma 2.3 follows from Lemma 2.2. D

The isomorphisms of the last two lemmas are not uniquely defined.

3. Spaces of lifts in K(G0, «)-fibrations. In this section we assume
that p: Y -» B is a fibration with an Eilenberg-Mac Lane space K(G0, n),
where Go is an abelian group, as fibre. Let u: X -> Y be any map and put
ux = pu: X -> B.

First assume that p: Y -> B is a principal #(G 0 , «)-fibration. Then
the pull-back uf(p) is a fibre homotopically trivial fibration ([15], II).
Hence

for some map u'\ X -> iSΓ(G0, w), for FU(X, A; Y, B) may be interpreted
as a space of sections of u?(p). The (relative version of the) theorem of
Thorn ([15], Theoreme 3), ([7], Proposition, p. 609), ([8], Theorem 1) thus
asserts that

Fu(X9A;Y9B) = Y\K(H»-i(X9A;G0)9i)

up to weak homotopy type.
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Now consider the general case of a not necessarily principal
K(G0, «)-fibration p: Y -> B. Let G denote the system of local coeffi-
cients in B defined by the ^-dimensional homotopy groups of the fibres
of p. Following the proof of Thom's theorem as it appears in [7], we
consider the evaluation map

e: FU{X,A\Y,B) X X-^ Y

given by e(f, x) = f(x). Note that

For 0 < i < n, choose maps

eι\ (Fu(X,A,Y,B),u) -* (ΛΓ( J5T—'( Jf, ^4; nfC), /), *)

such that the array of homotopy classes ([e°],[e1],.. . ,[e*]) corresponds
to the (vertical and relative) homotopy class [e] of e under the composite
bijection

<π0(Fuopr2{(Fu(X,A;Y,B),u)x(X,A);Y,B))

= Hn{(Fu(X,A;Y,B),u)x(X,A);pτ*u*G)

Φ{^A) TT wiFiX AY B) uΉ^Hx A u*G))
0<i<n

The main result of this section is the following generalization of Thom's
theorem ([15], I) and the Classification Theorem ([12], Theorem II).

THEOREM 3.1. The map

is a weak homotopy equivalence.

Proof, For i > 0, the Exponential Law

induces a bijection

ψ1: τri(Fu(X,A;Y,B),u)-*Hn{(S\*)x(X,A);pr*u*G)
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between path-components. According to Lemma 2.3 there is a commuta-
tive diagram (with Fu = FU(X, A; Y, B))

H"((Fu,u)x(X,A);pr?u?G) ^ U HJ(FU,U; Hn^(X,A; ufβ))
0<j<n

H"((S\*) x(X,A);ptiufG) ™ Hι(sι, * H^^X^A; U*G))

showing that

In other words, the bijection

equals the homomorphism

induced by er Hence (e^* is an isomorphism (for i > 1) of homotopy
groups. D

REMARK 3.2. Let (Z,C) be an NDR-pair and α: (Z,C)->
(FU(X9 A; Γ, B\ u) a map. Then

[eo(a X 1)] e Hn{(Z,C) x(X,A)l prJftfG)

and ef o α : (z, C) -> (KiW^X, A; ufG), i), •) represents

( ^ } ( [ e o ( a x 1)])) e ff'(z,C; ^ - ( Z , ^ ; nf(?)).

An application of Theorem 3.1 to the classifying fibration κ(Gyn)
over K(π, 1) yields

COROLLARY 3.3. Γ&e φαcβ Γ(/c(G?«)) of sections of κ(G,n) has the
weak homotopy type of the product

Π ( : Γ 0 )

where Z ώ considered as a trivial π-module.

Proof. #"-'•(*( w, 1); G) = ExtJ-'(Z,G0) by a theorem of EUenberg
([16], Theorem 3.5 *, p. 281). D
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Note that the additive structure of H*(X, A; G) suffices to determine
the weak homotopy type of FU(X9 A; Y,B) when p: Y-* B is a
K(G0, π)-fibration; cf. ([15], I). This is not true in general.

4. Change of base point. Let p: Y -» B be the K(G0, w)-fibration
of the previous section and let u,v: X -» Y be two maps such that
u\A = v\A and pu=pυ. Then FU(X,A;Y,B) = FV(X,A;Y,B) as free
spaces. The purpose of this section is to discuss the relation between the
pointed spaces (FU(X, A; 7, B\ u) and (FV(X, A; 7, B\ υ).

To clarify the role of the chosen base point, we now write ψ'M for the
homomoφhism ψ1' introduced in the proof of Theorem 3.1. Explicitly,

ψ'M: πi(Fu(X,A;Y,B),u)-»H"{(Si,*)x(X,A);pr*u*G)

takes [a] e π^F^X, A; Y, B), u) to the primary difference

of u opr2 and the adjoint e °(a X 1) of a.
In order to compare ψ'M and ψ ,̂ we introduce the set

[S*, FU(X, A; Y, B)] of free homotopy classes of free maps of Si into
FU(X, A; 7, B). (Note in this connection that Fu{X, A; Y, B) is a simple
space by Theorem 3.1.) Also in this case we get a bijection

ψ'M: [S\FU(X,A;Y,B)] -> #»($' x(X, A); pt}ufG)

by forming primary differences as above.
Let j : ^(FU(X9 A; 7, B), u) -> [S\ FU(X, A; Y, B)] be the inclusion

induced by the inclusion j : S' -» (S'9 *). Then one easily proves:

LEMMA 4.1. 77*e deviation from commutativity of the diagram

πt(Fu(X,A;Y,B),u) % i

i 4 0'χi)*

[S',FU(X,A;Y,B)\ ^ ^"(^^x(X, A); pr*u*G)

is given by

where 8n(u, υ) e H"(X, A; wfG) is the primary difference ofu and υ.
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Now assume that pλ\ Yλ -> Bλ is another fibration with an Eilenberg-
Mac Lane space K(GQ, q), GQ abelian, q > 1, as fibre and that

7 Λ γχ

Pi i Pi

B -> Bx

is a fibre map of p into /?x. Let Gλ denote the local coefficient system in
Bλ determined by pv

For any pair (Z, C; /) over 7 and any integer i > 0, let σ'[k]f denote
the primary twisted cohomology operation that makes the diagram

^(Ff(Z9C\Y9B)j) H π^kfiZ'ClYi'BilW)

Φ(Z,C)Ψf i = = 1 Φ(Z,C)Vkf

flT"-'( Z, C; Λ*G) σ ^ V ^ " ' ( Z, C; A ^ f G j

commute. The operation [k]f:= σ°[k]f is given by [k]fδ
n(f, g) =

δ«(kf9 kg) for any g e F,(Z, C; 7,5).
In particular, H: <Y-> 7 determines operations

ai[k]u\Hn-\X9A\uϊG)-*H«-i(X9A\uϊkϊG1), i > 0,

and the maps w °pr2: XX S'c* Y, i >: 0, determine operations [k]uopΐ2

such that

FάXM YtB)] ^ [S\Fku(X,A;Y9B)]

Vu i i fku
[k]

* x(X,A); pr}ufG) ^ 2 H^S* x(X9A); pτfufkfGj

commutes. If sι X — denotes the homomoφhism that renders

H'iiS', *) X(X9A); vr$u*G) ϋ>2* Hn(Si x(X9A);

SιX ~

commutative, then the equation

[*] - p r 2 ( ^ X χ) = si X a'[k] u{χ), χ

shows the relation between [k]u and [A:]wopΓ2.
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The object of the next theorem is to compare the operations oi[k]u

and oi[k]υ induced by two different maps u and υ.

THEOREM 4.2. For any χ e Hn~\X, A\ ufG), i > 0, the equality

[k] uopr2{^ X X + PΓ2*δw(w, v)) = si X σ'[k] v(x) + P*ϊ(W uδ
n(u, υ))

holds in

s H<-'{X9A; u*k*Gx) θ H*(xyA\ ufkiGx).

Proof. Some of the introduced maps are related by the following
commutative diagram

[S',FU]

H"(S' X(X9A))

[S',FkM]

IK*

Hq(S' x{XyA))

H'((S', )X(X>A))

« ( W , i ; ) ,

in which some self explanatory abbreviations occur. In particular

(1) [k\u.vλΫj[a]) = (j X 1)*ΨU I«]

for any homotopy class [α] e ^ ( ^ ( ^ 4̂; Γ, 5), ϋ). If ψ'̂ yία] = χ, then
by Lemma 4.1,

ΨU[«] = U X 1)*ΨU«] + pr?δ"(iι, ϋ) = 5' X χ

so the left hand side of (1) becomes

[k] MoPr2(ψi7T[α]) = [*:] u^A*' x X + PΓ?*

The right hand side of (1) can be rewritten, using Lemma 4.1 for the first

equality, as follows

(j X 1)*ΨU*[«1 = ΨL/U«] + pr2*δ«(fct/, kυ)

D
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Consequently, [k]u = [k]v if [k]uopT2 happens to be an additive
operation. On the other hand, examples do occur, see e.g. [11], where
[k]uΦ[k]υ.

5. Spaces of maps into twisted Eilenberg-Mac Lane spaces. Sup-
pose that both π and Go are abelian groups, φ: π -» Aut(G0) an action of
π on Go, and

K(G0,n)->K(G09n;φ)l±K(πfl)

the associated classifying fibration κ(G, n). The purpose of this section is
to describe mapping spaces with the total space K(G0, n\ φ) as target.

The classifying fibration κ(G, n) can be constructed more explicitly as
follows. The Eilenberg-Mac Lane space K(G0,n) can be made into a left
TΓ-space in such a way that each ξ e m acts as a base-point preserving
homeomorphism with the induced map

£*: πn{K(G0, n), *) -* πn{K(G09 n), *)

equal to ξ: Go -* Go under some fixed isomoφhism πn(K(G0, n), *) = Go.
The fibre bundle

K(G09 n) -> Em X*K(G0, n) Λ Bπ

associated to the universal principal ττ-bundle ω: Em —> J5τr is then a
κ(G,n).

Let w: X -> ^(G o , n; φ) = 2?7r X, ^(G o ,«) be any map into the
total space of κ{G,n). Put uλ = A w. Consider the fibration of function
spaces

FU(X; K(G0,n; φ), Bm) -> FW(X; UΓ(G0, Λ; φ), *) Λ FUι(X; Bπ, *)

induced by the projection k. The base space FU(X; BIT, *) = H\X; π) X
AΓ(ττ,l) is disconnected (in general), so we let F®(X;Bπ, *) = JSΓ(TΓ, 1)
denote the path-component of Fu(X;Bπ, *) containing ux and con-
centrate our attention on the pre-image FU(X; K(G0, n; φ), *) \ux =
k~ι(F£(X; Bπ, *)). By restriction of k we then get the fibration

Π^(i/w-(X;W*G),z) -* Fu(X',K(GQ,n;<p),*)\Ul^ K(π9ί)
y=o

where Theorem 3.1 has been used to identify the fibre.
Since π is abelian, ζ: Go -> Go, ξ e TΓ, is an operator automorphism,

i.e. an automorphism of the local coefficient system G in K(π, 1), and
hence £ induces a coefficient group automorphism £* of Hn~\X\ M*G),
0 < i < n.
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After these preliminaries we can now state

THEOREM 5.1. There is a weak (fibre) homotopy equivalence

where π acts on Hn~ι(X; w*G), 0 < i < n, through coefficient group auto-
morphisms.

Proof. The cohomology operation ξ+ can be realized geometrically as
in §4. For the based automorphism £ of K(G0, n) is a π-map, and hence it
extends to a homeomorphism £: K -» K over and under Bπ. (Here, and
in the following, K = K(G0, n\ φ) = Eπ XW K(GO, n).) As is easily seen,
the /-fold suspension oi[ξ]u of the corresponding cohomology operation
[ξ]u is the coefficient group automorphism £*: Hn~i(X; u*G) -»

Since π is abelian, there exist //-space structures jΰ: Eπ X Eπ -* Em,
μ: Bπ X Bπ -> 5ττ with strict units e0 e ETΓ, fe0 = ω(e0) G JSTΓ such that
μ o ( ω X ω ) = ω°μ. The unique path lifting property implies that
μ(eιL e2) = μ(ev e2)ξ = μ(e 1 ? e2ξ) for all e1? e 2 <Ξ Eπ, ξ <E π.

The space i 7 ^ X; K, Bπ) of lifts of uλ is a left ττ-space under composi-
tion with the fibre maps ξ: K -> K, ξ e TΓ. Let

ψ: £ττ X, FM(X; K, Bπ) -* FU{X; K, *)

be the map given by

ψ((e,v)π)(x) = (jS(^,δi(^)),β(^))w

where e e ETΓ, U e FU(X; K, Bπ), x e X, ^(x) e £77 is any lift of
^ ( x ) e Bπ, and y(x) e ίC and ϋ(x) ^ K(G0,n) are related by the
formula v(x) = (ϊ/^x), v(x))π.

Note that ψ is a fibre map which restricts to the identity on the fibre.
The induced map ψ: Bπ -> FUι(X; Bπ, *) between the base spaces satis-
fies \p(b, x) = μ(b, uλ(x)), b & Bπ, x e X This means that ψ is a
homotopy equivalence berweenl?7r and F£(X; Bπ, *). Hence ψ is a fibre
homotopy equuivalence from Eπ Xw FU(X; K, Bπ) to FU(X; K, *) | uλ by
Dold [2].

The proof is now completed by noting that the weak homotopy
equivalence of Fu(X;K,Bπ) into Π^o

κ(Hn'i(Xf uΐG\ 0 f r o m τ h e o "
rem 3.1 is a π-map enabling us to construct a weak homotopy equivalence

Eπ Xπ FU(X; K, Bπ) -> Eπ Xπ ΠΛΓ(jy"-'( JΓ; W*G), I )

as claimed. D
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REMARK 5.2. During the proof of Theorem 5.1 we actually established
the identity

FU(X; EπX^F,*)]^- Eπ XπFu(X; Eπ Xπ F, Bπ)

for any left π-space F and any map u: X -> Eπ X w F.

EXAMPLE 5.3. The classifying space BO(2) for the orthogonal group
O(2) is the twisted Eilenberg-Mac Lane space K(Z, 2; φ) where φ: Z/2 ->
Aut(Z) is the non-trivial action.

Let u: BO(1) -> BO(2) be any map. Then up to homotopy, ux = 0 or
uι = wv ^ e ^ r s t Stiefel-Whitney class. An application of Theorem 5.1
yields

FU(BO(1); BO(2), *) |0 = BO(2) + BO(2),

FU(BO(1); BO(2), *) \wλ = BO(l) X BO(1)

where + denotes disjoint union.

6. Spaces of lifts in K(G, l)-fibrations. In this section we let p:
Y -> B denote a fibration with an aspherical space F = K(G, 1) as fibre.
G can be any, not necessarily abelian, group. We shall investigate the
spacεFu(X9A;Y9B).

The pull-back F^Y'^XoίF^Y^B along uλ = pu has a
canonical section uf: X -* Y' induced from u. Hence / *: πx(F) -» ^ ( F ' )
is a monomorphism and a homomorphism φu: π = π^X) -> Aut(G) is
uniquely defined / *(xg) = w*(x)i *(g)w*(x)~1, x G TΓ, g G G. We write
xgforφw(x)g. Let

denote the fixpoint set of this action and let

Q(τr,G) = {/: W - G|Vx,^ e * : /(xj) = / ( x

denote the set of crossed homomorphisms of π into G. There is an action

ρ(τr,G)xG-*ρ(τ7,G)

of G on the set of crossed homomorphisms given by (fg)(x) = g~1f(x)xg9

f e g(τ7, G), g e G, x e 7r. β(7r, G)/G denotes the set of orbits for this
action.

Let x 0 e X be the base point. To any based lift v e FU(X9 xo; Y9 B)
of ul9 we can associate a crossed homomorphism /0 G β(ττ, β) given by
i'*fv(

x) = υ'*{χ)u *( χ)"1> where Ϊ;': X -> 7 ' is the section of /?' induced
from v. By some obvious modifications of the classification of based
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homotopy classes of based maps into an aspherical space ([16], Theorem
4.3, p. 225) we get

LEMMA 6.1. For any connected CW-complex X, the map υ -> fv induces
a bijectiυe correspondence between π0Fu(X, xo\ Yy B) and Q(π, G).

Also the free vertical homotopy classes of free lifts of ux can be
classified; cf. ([16], Corollary 4.4, p. 226).

LEMMA 6.2. For any connected CW-complex X, there is a bijective
correspondence between π0Fu(X; Γ, B) and Q(π, G)/G.

Proof. The sets Fu(X,x0; YyB) and FU{X\Y,B) of based and free
lifts of ux are related by the evaluation fibration

Fu(X,x0;Y,B) ~» FU(X;Y,B) -* Fu(x0; Y,B) = F.

This evaluation fibration determines an action Q(π,G) X G -» Q(π,G)
of the fundamental group G = πλ(F) of its base space on the set
π0Fu(X, xo; Y, B) = Q(π,G) of path-components of its fibre. We must
show that this action coincides with the one introduced above.

Since X is connected, we may assume that the 1-skeleton Xλ is a
wedge of circles. The inclusion map ix: Xλ -> X induces an injection /\*:
<2(π, G) -» Q(iΓι(Xι)9G) which is compatible with the G-action. There-
fore, we may assume that X = Xλ is 1-dimensional. Furthermore, since a
crossed homomorphism of πι(Xι) into G is uniquely determined by its
value on a set of free generators, we can assume that X = S1 consists of a
single circle.

Let h: (/, /) -> (S1, x0) be the usual proclusion representing the
generator i e πι(S1

yx0). Choose a map H: I X F -> Yr such that the
diagram

Y'IXF

Prιi

I

H
—ί

h
—>

commutes and such that H(t, y0) = u\t), y0 = w(x0), t ^ I, and HQ = ϊ\
F -• Y'. Then ([9], Theorem 1), (HJ+ = Γ1 e Aut G.
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Consider the following diagram of maps between fibrations induced
by h and H

Fu(S\x0;Y,B) Λ Fuh(lJ;Y,B) <- Fyo(lJ;F)

1 i
Fu(Sι;Y,B) -* Fuh(l;Y,B) *- F(l; F)

i i
Fu(x0;Y,B) -* Fuh(l;Y,B) *- F(I; F)

The maps between the fibers are homeomorphisms ([14], p. 530) and the
maps between the base spaces can be identified to

F-> FX F <- FX F

where Δ is the diagonal map.
The fibre Fyo(I, I; F) of the fibration to the right is the loop space ΩF

of F and the associated action of ^(F(i; F), y0) = G X G on
πoFyo(I, /; F) = πo(ΏF) = G is given by gx (h0, hx) = h^g^ for all
Sv ho> K e G' Hence the corresponding action of iΓι(Fu(x0; Y, B), y0) =
G on τr0Fu(S\ xo; 7, B) = Q{^{Sι\ (?) = G is given by g l - g = g-ι

gιtg9

g e G. Taking into account the identifications made, this means that

(fg)(z) - S'lf{
for all / e Qiπ^S^G), g e G, 2 e ^(S1). D

Finally, we compute the higher homotopy groups of FU(X, xo; Y, B)
and FU(X; Y, B). More generally, let (X, A) be a finite relative CW-com-
plex where both X and A are 0-connected. Assume that (X,A) has a
CW-decomposition with 0-skeleton Xo = A iί A Φ 0 and Xo = {JC0} if

THEOREM 6.3. (ΐ) If AΦ 0, each component of FU{X,A\Y,B) is
weakly contractible.

(2) If A = 0, each component of FU(X; Y,B) is an aspherical space.
The fundamental group πx(Fu(X; 7, 5), u) of the component containing u is
isomorphic to thefixpoint set Gπ.

Proof. We proceed as in ([8], Theorem 2). Let Xq be the ^-skeleton of
a CW-decomposition of (X, A) such that XQ = A if A Φ 0 and Xo =
{ x o } i f ^ 4 = 0 . The inclusion maps ι̂ : Xq__x-* Xq induce a tower of
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fibrations

FU(X9A;Y9B) -* Fu(Xq9A;Y,B) ^ Fu(Xq_l9A;Y9B)

-> ••• ->FU(X29A;Y9B)5FU(X19A9Y9B)Ϊ>FU(X09A;Y9B).

The fibre Fu(Xq, Xq_x\ 7, B) of iq can be identified to a product of a
number of copies of the g-fold loop space 2qF. The number of factors
equals the number of #-cells in (X9 A). Since F = K(G, 1) is aspherical, it
follows that FU(X,A;Y, B) and Fu(Xl9A;Y,B) are weakly homotopy
equivalent. Moreover, if A Φ 0 ,

FU(X19A;Y,B) = ΩFX X Ω F ^ GX XG

is just a discrete set of points.
If A = 0, we consider the evaluation fibration

Fu(X,x0; Y9B) -> F M (*; 7,5) -> FM(x0; 7,5) = F

with the discrete fibre FU(X9 xo; Y, B) = JFM( JŜ , JC0; 7, 5). In the associ-
ated homotopy sequence

one has dg = lg for all g e G . Hence

irx(Fu{X\ Y9B)9u) = kernθ = { g e G|lg = g} = G'. D

If p = prx: ί X ί ( G , l ) - ^ ί is the trivial #(G,l)-fibration over B
and u = (bo,u): X -> {Z>0} X ^(G, l ) c f i x if (G, 1) a continuous map,
the action of 7r on G is given by xg = w^ί^ίgw+ί^)"1- Thus the fixpoint
set Gm is the centralizer of u^π^X)) in G. In this way we recover the
theorem of Gottlieb [6].

If G is abelian, the fibration p: Y -> B determines a system of local
coefficients, also denote by G, in B. The pull-back u*G in X is given by
φM: 7r -> Aut(G). Since ρ(ττ, G) = J ϊ 1 ^ , xo; u?G)9 Q(ir, G)/G =
H\X; ufG)9 and Gm = H°(X; u*G), 6.1-6.3 reduce to Theorem 3.1 for
n = 1 in this case.

Although suppressed in the used notation, the group Gπ in general
depends on the choice of u. Thus the components of FU(X; Y,B) may
represent more than just one (weak) homotopy type.
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