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We prove that, if 7 is an ergodic, conservative, non-singular auto-
morphism of a Lebesgue space (X, 1), then the following are equivalent
for f in I*(p):

(1) X u(B) > 0and ¢ > 0, then there is an integer n # 0 such that

=0 fora.e. x.

duoT’
(%)

p.(Bﬂ T"’Bﬂ{x:

n—1
Y f(T'x)-
Jj=0

(2) liminf
n— 00

n—1 ]
RN O

03) f fdp=0.

Our basic objects of study are a non-atomic Lebesgue space ( X, £, p)
and a conservative, aperiodic, non-singular automorphism 7:X — X.
Associated with any measurable function f: X — R” is a cocycle f*:Z X
X — R"defined by

Y HT5). om0,

*n’x= k=0
fr(n,x) = n=0,

~f*(-n,T"x), n<2O.
f* satisfies the so-called cocycle identity:

(1) f*(m+n,x)=f*m,x) + f*(n, T"x),
for all integers m and n and for a.e. x € X.

The non-singularity of T permits us to define the Radon-Nikodym
derivative

o Tk
w(x)= d”d“T (x) forkeZ,ae x<X.
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We can use this to build what we call an H-cocycle—after Halmos [4],
Hopf [5], and Hurewicz [6]—defined by

n—1
Y 6w, (x)f(T"x) ifn>0,

= m=0
f*(n,x) 0 ifn=0,

~w,(x)fs(-n,T"x) ifn<O.

The quotient ergodic theorem [3] asserts that, for an integrable f, the rate
of growth of f,(n, x) depends only on the integral [fdu. Analogous to (1)
is the H-cocycle identity:

(2) fe(m +n,x) = film,x) + @, (x)fe(n, T"x).
When T is measure-preserving, the H-cocycle coincides with the usual
cocycle.

Suppose B € %. A cocycle or an H-cocycle f(n, x) is recurrent on B
if, for all € > 0,

,L( U BNT"Bn{xeX3|f(nx)|< s}) > 0.
n+0

A cocycle or an H-cocycle f(n, x) is recurrent if it is recurrent on all sets
of positive measure. We call a function f: X — R” recurrent if f*(n, x) is,
and we call it H-recurrent if f,(n, x) is.

These definitions coincide with the classical notion of recurrence (or
sometimes “persistence”) of random walks, introduced by Polya [8], who
proved that the Bernoulli random walk on Z” is recurrent (that is, bound
to return to zero) if and only if » = 1 or 2. Later, Chung and Fuchs [2]
proved that a random walk on R based on an increment random variable
X of finite mean is recurrent if and only if EX = 0. In 1976, Atkinson [1]
discovered the following beautiful result, extending the theorem of Chung
and Fuchs to random walks with non-independent increments.

THEOREM (ATKINSON). If T is ergodic and preserves a finite measure p
and f is a real, integrable function on X, then f is recurrent if and only if

[fdp = 0.

The following result further extends the theorem of Chung and Fuchs
to the non-stationary case.

THEOREM. If T is an ergodic, conservative, non-singular automorphism
of a Lebesgue space (X, %,pn) and if f: X — R is integrable, then the
following conditions are equivalent:

(1) f« is H-recurrent,
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(2) liminf|fu(n,x)| = 0 fora.e. x € X, and
(3) [fdu =0.

Proof. The first thing to notice is that once we know this theorem for
a measure p, we know it for all measures » equivalent to p. To see this,
note that the H-cocycle f, built from f under (X, #,v,T) is related to
the H-cocycle f’, built from f’ = f-dv/dp under (X, %,pn,T) by the
equation

Pl x) = G (x) -l ).

This shows that f’, gets small exactly when f, gets small. Since [ fdv = 0
exactly when [f’dp = 0, we inherit the result for f and » from the result
for f’ and p.

In particular, since this theorem reduces to Atkinson’s theorem if T
preserves p, we have the result for any dynamical system (X, %, p,T)
with an equivalent finite invariant measure. We also see that there is no
loss of generality in assuming that pX =1 and we proceed under this
assumption.

(1) = (2) Let D = {x € X 2 liminf|f(n, x)| > €} for some & > 0.
If uD > 0, then there would be an integer N so large that

C = {x € D3| fy(n,x)|> e forall n with |n| > N}

would have positive measure. One could then find a set B C C of positive
measure disjoint from its first N forward and backward translates. (Just
remove from C points that return too soon under 7 or 7! and use Kac’s
recurrence theorem [7].) Then

p(BNT"Bn{x3|fun,x)|<e})=0
for all integers n # 0, which contradicts the H-recurrence of f.
(2) = (3) This implication is proved via a simple application of the

quotient ergodic theorem [3]. Let g be the constant function 1. Since
gx(n, x) > 1 for every x and all positive n,

f*( > ) ace. de | _
g*(::,fc) ” Ifgdl:tl—‘f fd“"

If [fdp # 0, this last quantity is positive and so liminf|f,(n, x)| > 0 for
ae x € X.

| fe(n, x)| =
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(3) = (1) This argument encompasses the remainder of the paper.
Three important estimates are isolated as lemmas.

Assume f, is transient—i.e., not recurrent. This means that there is a
set B € # with uB > 0 and a 6 > 0 such that

(3) p(BAT"Bn{x3|fu(n,x)|<8})=0 V¥n=+0.
Let A be a subset of B with p4 = pB and such that
(4) ANT"An{x3|fi(n,x)|<8} =2 foralln=+0.

By x we will mean x ,, the characteristic function of the set 4.
For all ¢ > 0 and a.e. x, the quotient ergodic theorem tells us that

X#(n’x) _
(5) g*(n,x) MA

Another way to write this is to define the “weight” w( j, x) of the integer

J> depending on x, by:

3 J
w(j, x) = {wj(x) if Tx E A,
0 otherwise.

< ¢ for sufficiently large n.

For the remainder of the proof, fix x such that (5) holds (for an & to be
specified later) and such that f,(n, x)/g«(n, x) = [fdp. Then (5) trans-
lates to

(6)

We call an integer j good if T’x € A. Note that the previous summation
has non-zero contribution only from good indices j. For good m, let I,
be the interval on the real line centered at f.(m, x) and of radius (i.e.,
half-length) equal to w(m, x)6. Let A be Lebesgue measure on the line.

<e&-gun,x).

n—1
Y w(j,x) —pA - ge(n, x)
j=0

LemMA 1. If mis good, f(j, x) € 1,, only whenj = m.

Proof of Lemma. That m is good means that T™"x € A, which implies
that
(7) |fu(j —m, T™x)|= 8 foranyj+ m.
The H-cocycle identity (2) can be written

[, x) = fu(m, x) )

w(m, x)

f*(} - m?me) =

Hence equation (7) implies that |fu(J, x) — fi«(m, x)| > w(m, x)8, which
1s what it means to say that f,(j,x) &€ I,,. O



H-RECURRENCE OF INTEGRABLE FUNCTIONS 191

The intervals I,, may be of widely varying size. Yet the following
lemma assures us that no I,, for large m can be nearly as long as the sum
of lengths of ; for 0 < j < m.

LEMMA 2. If m is good and sufficiently large, then

m—1

w(m,x) < —11—0~ go w(j,x).

Proof of Lemma. Choose n large enough so that equation (6) holds for
all m > n. Write

(m )= 5 wlox) - z w(j,x)

and
pA - w(m,x)=pA-g(m+1,x) — pAd - ge(m,x).

Subtracting the last equation from the one before yields

w(m, x)[1 — pA] < ege(m + 1, x) + ege(m, x)

= 2ege(m, x) + ew(m, x)

if m > n, using (6).
Rearranging:

w(m, x)[1 — p4 — e} < 2eg,(m, x).

If ¢ is sufficiently small, the quantity in square brackets is positive, and so
we get

®  wimx) s ooy am)

2¢ m_ 1 )
= |G — o) — pd - ¢) EO Wi )

where the second inequality comes from (6). Simply choose & small
enough so that the quantity in (8) in square brackets is less than 1,/10 and
the lemma is proved. o

Let J, be the convex hull of {f(j,x)>0<j<n}. J, is the
shortest interval on the real line containing the first n f,(j, x)’s. Our goal
now is to show that the intervals J, have bounded weight density.
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LeMMA 3. For sufficiently large n

n—1 4
Y w(j,x) < <AJ,.
j=0 8

Proof of Lemma. Let § = {1, 2misgood and 0 <m <n}. Jisa
collection of possibly overlapping intervals of varying sizes. Let §’ be a
subset of § whose union equals that of ¥ and which is minimal with
respect to this property. Call m select if I,, € J’. Then

U Im)> Y AL,

m select m select

anJ, > 27\(

>y T 8w(j,x)>8"§0w(j,x).

mselect j2fu(n,x)El,

The first inequality comes from Lemma 2. The second inequality holds
because the choice of ¥’ forces all real numbers to lie in at most two I,
with select indices m. The third inequality is just Lemma 1, and the fourth
expresses the fact that every f,(j, x) with 0 <j <n and j good lies in
some select I,,. The lemma is proved. O

It is now a simple matter to complete the proof of the theorem.
Equation (6) says that, for all ¢ > 0,

n—1

E)O w(j,x) > gu(n, x)(nd — &),

if n is large enough. Hence Lemma 3 tells us that

M, > Sgu(nx)(nd o).

This implies that
. )
Sup [ fldx) 1> g (wd = e)gu(n, x).
<j<n

Thus, for infinitely many n,
|f*(n’ x)l 8
> —(ud —¢) >0,
au(nx) 8447

if & is small enough.
But the left-hand-side of this expression approaches | [ fdu|, which is
seen to be, as required, greater than zero. ]
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