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A finite field analogue of the Lagrange inversion formula is given
and applications to the derivation of character sum identities are dis-
cussed.

1. Introduction. In this paper we discuss character sum analogues
for Lagrange inversion in one or several variables over finite fields. We
then use these techniques as tools for deriving character sum identities.
We begin with a short description of classical Lagrange inversion.

If f(z) and g(z) are formal power series where g(0) = 0 but g'(0) Φ 0,
the inversion problem is to write / as a power series in the variable g(z).
The Lagrange inversion theorem gives the solution to this problem.
Specifically, the result is

where

(1.1)

or alternatively,

ί\l\ c - Re, fWt'W

Simple proofs of these results can be found in [7] or [10]. These references
also contain multivariable generalizations.

Recently there has been much work in developing ^-analogues for
Lagrange inversion, for example, see [1], [3] or [4]. Lagrange inversion is
useful in special functions and comes up frequently in deriving transfor-
mations and summation theorems as in [5] or [6].

This paper is organized as follows. Theorems analogous to Lagrange
inversion are derived in §2. The strengths and weaknesses of the analogy
are discussed in §3. In §4 we derive several character sum identities from
these theorems. We set notation in the remainder of this section.
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314 JOHN GREENE

Throughout this paper, GF(q) is the finite field with q = pn elements,

where p is an odd prime. The capital letters A, B, L, Λf, N and R and

Greek letters χ and 0 will denote arbitrary multiplicative characters of

GF(q). The quadratic character will be denoted by φ and the trivial

character by ε. All multiplicative characters are defined to be 0 at the 0

element of GF(q). Define A by A A = ε. We define a function δ on GF(q)

by

and on multiplicative characters of GF(q) by

Note that δ(x) = 1 - ε(x). Write Σx to denote the sum over all c

and Σ X to denote the sum over all multiplicative characters of GF(q). Let

ξ = e^ι/p a n ( j s e t Tr equal to the trace map from GF(q) to GF(p).

We will make use of the orthogonality relations [9, pp. 89, 90]

(1-5) Σ

(1.6)

and

The Gauss sum of a multiplicative character A is defined by

(1.8)

and the Jacobi sum of A and B is defined by

(1.9)

Finally, some easy changes of variables in (1.9) imply

(1.10) J(A,B) = J{B,A)

and

(1.11) J(A,B) = B(-1)J(AB,B).

2. Inversion over finite fields. Suppose {fι(x),... ,fq{x)} is an

orthonormal basis for the vector space of all complex valued functions

over GF(q) with respect to the inner product

(2.1)
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Thus,

Let M be the q X q matrix (f^Xj))^. Then (2.2) implies MM* = /,
where M* is the conjugate transpose of M. Consequently, M*M = /
from which it follows that

(2.3) Σfk(
k = l

If f(x) is any function from GF(q) to C, the orthogonality relations (2.2)
and (2.3) imply

(2-4) f(x) = Σ ckfk(x),
k = \

where

(2.5) ck =
X

LEMMA 2.6. Let f(x): GF(q) -> C and g(x): GF(q)

for fixed x,

where

ck = Σf(y)fΛg(y)),
y

and the sum on the left hand side extends over ally such that g(y) = g(x).

Proof. With ck defined as above we have

Σ ckfk(g(χ)) = Σ Σf(y)Mg(y))/Mχ))
6 = 1 k=l y

= Σf(y)8(g(χ)-g(y))= Σ f(y)
y y-

as desired.
The two classical examples of orthogonal bases for complex valued

functions over GF(q) are the set of all multiplicative characters together
with δ(x), and the set of all additive characters. That these are in fact
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orthogonal bases follows from (1.5) and (1.7). These sets can be made
orthonormal by appropriate scaling so we have the following as corollaries
to Lemma 2.6.

THEOREM 2.7. Given f(x): GF{q) -> C andg(x): GF(q) -> GF(q),

(a)

Σ
y: y:

g(y) = g(x) g(v)

where

cx = (ι/(q-i))Σf(y)x(g(y)),

y

(b)

y: y

g(y)^g(χ)

where cr = {l/q)ΣJ(x)ζ~Tr(8(x)y\

The generalization to several variables causes no problems. For exam-
ple, in the case of functions of two variables it is clear that arguments
similar to those in Lemma 2.6 will show the following.

THEOREM 2.8. Iff(x,y): GF(q)2 -> C and g(x9 y), h(x, y): GF(q)2

-» GF(q), then

*{g(x,y)h{x,y))Σf{u,υ) = Σ cχ

where

and the sum on the left hand side extends over all (u9v) for which

g(u, υ) = g(x, y) andh(u, v) = h(x, y).

Of course, a similar result holds if the multiplicative characters in
Theorem 2.8 are replaced by any orthogonal basis for the complex-valued
functions over GF(q).

3. Remarks. There are several drawbacks to Theorems 2.7 and 2.8.
We will discuss them while making more explicit the analogy between
Lagrange inversion and the results of §2.
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The result in (1.2) can be restated

where C.Ύ.f(z) is the constant term in the Laurent expansion for f(z).
Note that if a function f(x): GF(q) -» C is expanded as a character sum,

(3 2) fix) -

then

Inspired by this result, define the constant term of the function f(x) by

(3.3) CT./W-TΓTΣ/W-
" xΦO

With this definition, the constants cχ in Theorem 2.7(a) are defined by

(3.4) cχ = C.Ύ.f(x)χ(g(x))9

which we contrast with (3.1).
The conditions g(0) = 0, g'(0) Φ 0 in the classical theorem imply that

g(z) is one-to-one near z = 0. If g(x): GF{q) -> GF(q) is one-to-one,
then the sum on the right hand side of Lemma 2.6 reduces to a single term
so with ck as in Lemma 2.6, f(x) = Σq

k==ιCkfk(g(x)). Unfortunately,
functions g: GF(q) -» GF(q) which arise in practice tend not to be
one-to-one. Consequently, for most practical problems, the summation on
the left hand side of Lemma 2.6 is required.

In the classical theorem, the coefficients ck are unique in the sense
that if

00 00

Σ ckg(z)k = Σ dkg(z)k

in some neighborhood of z = 0, then ck = dk. The worst drawback to
Lemma 2.7 is that the coefficients ck are uniquely determined only if g(x)
is one-to-one. If g(x) is not one-to-one, the best that can be said is that if

Σ ckfk(g(x)) - £ dkfk{g(x)),

then ck = dk + hk where the coefficients hk satisfy
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for all x. For example, if f(x) = δ(l — x) and g(x) = x2, then Theorem
2.7(a) gives

1
/ ^ £Γ\ jί/i \ I Si {~ί I \ \ ^ / 2 \

\ J ) . j ) O l - L X i I O i l I X ί Z~ / _, Λ^ I X I .

ώf — 1
X

If α is any element of GF(q) which is not a square, then

τ
^ X

for all x. Thus we have

y x V x

for all x in GF(q). The consequence of these remarks is that the classical
technique of expanding a function in terms of another function in two
different ways and equating coefficients does not generalize well to finite
fields.

4. Examples. In this section we give some short examples of Theo-
rem 2.7 and an extended discussion of the uses of Theorem 2.8 in deriving
character sum identities.

As a first example, if f(x) = A(l - x) and g(x) = x, then

y

- y)x(y) = T ^ T / U x).

By Theorem 2.7(a), we have

(4.1) A(l -x) = δ(x) + —L- ΣΆA,χ)χ(x).
X

This useful result is an analogue for the binomial theorem, which can be
made more striking by the introduction of "binomial coefficients" (see
[8])

With this definition, (4.1) becomes

(4.3) A(l -x) = S(x) +
X

From (1.11) we derive a variant of (4.1),

(4.4) A{\ - x) = δ(x) + -^
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or, in terms of binomial coefficients,

(4.5) A{\ - x) = 8{x) + T 1 T
H χ

Examples of the uses of (4.1) and (4.3) can be found in [8].
For an example of Theorem 2.7(b), let f(x) = ξTτ(2x) and g(x) = x2.

Since g(x) = g( — x) but x Φ — x unless x = 0,

Σ f(x) = ϊΎτ(2x) + ΓΎr(2x)-δ(x).

On the right hand side of Theorem 2.7(b) we must calculate

y q
^ X

Note that c0 = 0. For y Φ 0, replace x by x + 1/y to obtain

C =— Y ξTτ(l/y-x2y) = 1^-Tr(l/ )̂ y ζ-Tr(x2y)

y x y x

= - Γ ^ ^ Σ r ^ ^ H i + ( ) )

= -q

By Theorem 2.7(b) we now have

(4.6) r r ( 2 x ) + rTr(2x) - S(x) = -
4 y

Replacing y by \/y and using G(φ)2 = qφ( — 1) gives

(4.7) Σφ(y)£Ύτ(y+χ2/y) =

This is a character sum analogue for

(4.8) j^.-,-/, 41

We now derive an identity from Theorem 2.8 and use it to obtain
some more substantial character sum formulas. This example was inspired
by [6] and follows that paper (by analogy) closely.

Consider functions f(x, y) with the property that /(x, y) = 0
whenever x = 0, y = 0, x = 1, y = 1 or xy = 1. Let

, v x( l - y) , , / x (1 ~ ^ ) ^
g ( x , v ) = - τ ^ and /z(x,v) = -Lz ^ - .
6 V 7 / 1-jcy v »^ / I - xy



320 JOHN GREENE

The mapping

(g(x,y), h(x,y)):GF(q)2-*GF(q)2

is one-to-one on the set of all (x, y) such that xy(l — x)(l — y)(l — xy)

Φ 0. Consequently, by Theorem 2.8 we have

where

(q — 1) u,v

Also,

so

If we denote

, 1 , Σ / ( ^ ) byC.T.f(x,y),
( 9 - 1 ) *>y

then

CT f[— 2—\ = c

- uv))

2Σ
{q - 1) u,υ

We have proved:

THEOREM 4.9. If f(x,y): GF(q)2 -* C satisfies f(x,y) = 0 for all

(x, y) such that xy{\ - x){\ - y)(\ — xy) = 0, then

This result is the analogue of the classical result [6, (3)]

(4.10) C.Ύ. ,τ) τ

y 1 - x I 1 - xyJ



LAGRANGE INVERSION 321

If we now take f(x, y) = A{\ - x)B(l - y)L(x)M(y)AB(l - xy),
then

^ ) «(1 - x-y)AM(l - x)BL{\ - y)L(x)M(y)

= AM{1 - x)BL{\ - y)L(x)M(y)

-5(1 - x - j ) Λ ( l - x ) 5 ( χ ) .

By Theorem 4.9 we have

(4.11) £Λ(1 - χ)B(l - y)Z(x)M(y)AB{l - xy)
χ,y

- x)BL(l -y)L{x)M(y)
x,y

x,y

= J(AM, L)J(BL, M) - J(A, B).

From (4.4) it follows that

(4.12) AB(1 - xy) = 8(xy) + —^y ΣAΛBχ9 χ)χ(-xy).

When (4.12) is substituted into the left hand side of (4.11) and the x and
y sums are evaluated we have

( 4 1 3 ) -^
Ί

^ X

= J(AM, L)J(BL, M) - J(A, B).

In terms of binomial coefficients,

L-V{A\( B )lABχ\(AM\(BL\_BML(-l)lA\
- I L\Lχj\Mχ}\ x J [ L J [ M J q \B[q I

This is an analogue for the binomial coefficient version of Saalschύtz's
theorem [6, (1)]

If we take

f(x, y) = ε(l - x)e(l - y)L(x)M(y)N(x - y)N(l - xy),
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then Theorem 4.9 gives

(4.16) C.T. (ε(l - x)ε(l - y)Z(x)M~(y)N(x - y)N(l - xy))

= C.T. (Σ(x)M(l - x)M{y)L(l - y)N(x - y)ε(l - x - y)).

Using ε(a) = 1 - δ(a) and converting (4.16) to a sum we obtain

(4.17) Σ L{x)M{\ - x)M{y)L{\ - y)N(x -y)-(q- l )δ(JV)

- y)N(l - xy)
x,y

-(q - l)δ(M) -(q - l)N(-l)δ(L).

Writing N(x - y) = N{x)N(l - y/x) and applying (4.1) to N(l - y/x)
and N(\ — xy), the summation on the right hand side becomes

, 1 , 2 Σ J(N,χ)J(N,θ)LNχθ(x)Mχθ(y).
{q - 1) x,y,χ,θ

The x and y sums are 0 unless LNχ~θ = ε and Mχ# = ε, so we must have
θ2 = LMΪV and χ = Mθ. Note θ2 = (ψθ)2. We have

(4.18) Σ I(x)M(l - x)M(y)L(l - y)N(x - y)

-(q- l)δ(M) -(q-

{0, if LMN is not a square,

J(N,MR)j(N,R)+j(N,φMR)j(N,φR),

if LMN = i?2.

Similar results to (4.18) can be found in [2, (5)] and [8, 4.37]. If we use
(4.1) in the left hand side of (4.18), appeal to properties (1.10) and (1.11)
for Jacobi sums and convert Jacobi sums to binomial coefficients, we have

0, if LMN is not a square,

if LMN = R2.
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This is an analogue for the binomial coefficient version of Dixon's
theorem [6, (2)]

0, if / + m - n is odd,

Finally, if we take

f(x, y) = β(l - x)e(l

XN(x - ay - ( 1 - α

then

= ε(l - x - y)L{x)M{\ - x)M{y)L{\ - y)N(x - ay).

If we take α Φ 0, then with calculations similar to the previous example,

y' 1 - x

( 9 - 1 ) x

S + α) - - ^ - Γ Φ + a)δ(N)

and

C.T.
(1 - α)

( 0, if LMN is not a square

J(N,R)J(N,MR) +j(N,ψR)j(N,φMR),

if LMJV =

(q-l)2

(q-l)2 -ct
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where

and

JOHN GREENE

Cχ =
N(~l\l
(q- i)

lMN{l - a),

(q-1
By Theorem 4.9, after converting Jacobi sums to binomial coefficients,

χγtLMNX

where Ex and £ 2 are the "error" terms

N a

Ex = a)δ(N)

and

E2 = 8(1 - a)

0, if LMN is not a square

if LMN = R2.

When a = 1, this reduces to (4.15). For general α, (4.17) is an analogue

for the following version of Whipple's 3F2-quadratic transformation [6,

(11)]

( i - « )

x

m+n-l

- n
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The identities (4.14), (4.19) and (4.21) indicate that there is an
analogue for hypergeometric series over finite fields. In fact, [8] describes
such an analogue in which these results are proved, by different methods,
as hypergeometric series identities.
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