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ON COVERING OF REAL LINE BY NULL SETS

TOMEK BARTOSZYNSKI

In this note it is proved that the least cardinal x such that R cannot
be covered by « many null sets cannot have countable cofinality,
provided 2“-scale exists and 2“ is regular cardinal. Using the same
assumption a combinatorial characterisation of this cardinal is also found.

Let «,, be the least cardinal k such that the real line can be covered
by x many null sets.

The goal of this paper is to give a combinatorial description of «,,.
This problem was stated by Arnold Miller in [Mi 1]. We also aim to find a
solution to the question asked by David Fremlin whether ¢f(k,,) can be
equal w.

We are able to answer the above questions using the additional
assumption of the existence of 2¢-scale in w®.

It is well known that the cardinal «,, is the same in R, as in 2¢ or any
uncountable Polish space with totally o-finite continuous measure. Thus
without loss of generality we can work in the space 2“ with the Lebesgue
measure.

We shall use standard notation. w denotes the set of natural numbers.
For n, k < w the interval [n, k) is the set {i < w: n <i < k}.Forn < w
2" (2¢) is either the set of all 0-1 sequences of length n (w) or the cardinal
2" (2°)—depending on the context. For any set X |X| denotes the
cardinality of X. For any two finite sequences s, ¢ s A ¢ denotes con-
catenation of them. Finally, quantifiers V* and 3% abbreviate “for all
except finitely many” and “there exist infinitely many” respectively.

1. In this first section we introduce the notation of small sets and we
prove basic properties of these sets.
We start with the following well-known lemma.

LemMA 1.1. Suppose H C 2 is a null set. Then there exists a sequence
J, € 2" for n < w such that X5_,|J,)27" < o0 and H C {x € 2°: 3%n

n = n=1

xlneld,}. |

For the proof of Lemma 1.1 see [0].
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Lemma 1.1 gives us some combinatorial representation of null sets.
Nevertheless it turns out that this representation is not working satisfacto-
rily. Hence we define a new family of sets which looks much more
promising.

DEFINITION. A set H C 2¢ is called small iff there exists a partition
of w into pairwise disjoint intervals {/,: n < w} and a sequence {J,:
n < w} such that

1) J, € 2%

(i) T3 21

(i) HC {x€2*: 3% x| I, € J,}.
Denote the set defined by sequences {/,: n < w} and {J,: n < w} by
(10 )51

Observe that condition (ii) guarantees that the set (1, J,)%_; is null.

n»“n

The next lemma describes the relationship between null and small sets.
LeMMA 1.2. Every null set is a union of two small sets.
Proof. Suppose H C 2“ is a null set. By Lemma 1.1 we can assume

that H = {x € 2°:3%n x| n € J,} for some sequence { J,: n < w}.
Fix some sequence of positive reals {¢,: n < w} such that X%°_ ¢, <

= Define sequences {n,, m,: k < w} as follows
ny =0,
o
My, = min{u <w:2mYy L7 < ek}
i=u
%
Rpoy = min{u <@ 2me Y 270 < Ek}.
i=u
Now define
L= [ng, ),
I =|m,,m,.,) fork<w.
Let

sEF, iffse2x&Iie[m,, ,n,.,)3te;

st dom(¢) N dom(s) = ¢} dom(7) N dom(s),
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and similarly
s€F iffse2f&Iie|n,m,,)3tel
s} dom(¢) N dom(s) = ¢ dom(z) N dom(s).
From the above definitions easily follows that the sets (I, F,)¥_; and
(1;, F))%., are small. Simply notice that |F,|/2/xl < ¢,. Now we show
that
Hc (I, F)_, U(II:’ Fk’)lto=1'
Suppose that x € H. By our assumption it means that the set
X={n<w: x| nelJ,}isinfinite.
Thus one of the following two sets is infinite
X0 U [mgne) o X0 U [ng,myy).
k=1 k=1

It is just routine to check that if the frist of these sets is infinite then
x € (1,,F)7_, and x € (I], F/)%-, if the second set is infinite. d

The next lemma justifies the name given to our sets.
LEMMA 1.3. There exists a null set which is not small.
Proof. Let
I, =[27,2""1),
I'=[2"+2"12"%1 4+ 2") forn<w and
J, = {s € 2" s(max(1,)) = s(min(7,)) &s(max(1,) — 1)
= s(min(Z,) + 1) & -+~ &s(max(1,) — n) = s(min(1,) + n)}.
J; = {5 € 2% s(max(1;)) = s(min(1;)) &s(max(1;) - 1)
=s(min(I}) + 1) & - - - &s(max(1) — n) = s(min(I}) + n)}

for n < w.

It is easy to verify that the sets (1, J,)%_, and (1, J,))°_, are small.

We will show that the union of these two sets is not small. We will
need the following technical lemma.
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LeMMA 1.4. Suppose that (I, J2)*_, c (I}, J)%_, and let F, = {k:
>N I+ 0} forn < w.

Then for all except finitely many n < w we have if dom(s) =U, c ¢ 1 1
and s [ I € J? then there exists kK € F, and ¢ € J! such that s [ dom(?)
= [.

Proof. Suppose that this condition does not hold for some small sets
(10,702, and (I}, I3,

It means that there exists an infinite set X’ C w such that for n € X’
there exist s, with dom(s,) =U, ¢ I; such that s, I,) € J? and for
every k € F, and for every t € J} s, | dom(¢) # ¢.

Let X be an infinite subset of X’ such thatforn,k € X F, N F, = 0.

Now define x € 2% as follows

s,V Il ifkcF &neX

x| I} =
“ otherwise any element not belonging to J;.

It is easy to see that x € (I°,J9)®_, and x & (I}, J))®_, which is a

n>“n’n

contradiction. O

Now suppose that (I, J,)%_; U (I,,J/)<_; is contained in the set
(I TN

Define n, = max(I,’) for k < w.

Without loss of generality we can assume that each interval I’
intersects at least two I,’s and I’s.

Since the distances between the endpoints of 7, and I, are getting
bigger and bigger either there are infinitely many intervals I, such that
each I, contains an element n, for some / < w and the distance of n,
from the endpoints of I, is greater than k or the sequence I; has this
property.

Without loss of generality we can assume that the first case is
satisfied.

Fix sufficiently large &k < w such that I, has the above property.
Assume that I, C I/" U I/,.
Notice that from Lemma 1.4 follows that

(s€ WVl sy [, e g} C {se 2Vt s} 1y € ')

U{se2lVin: st Iy e J/l, ).
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We will show that in this case sets J,” and J/, are large, i.e. that

(%) ‘J )
This will finish the proof of Lemma 1.3 because then X_,|J;/2 1" = oo,
since (%) holds for infinitely many /’s. Thus it is enough to show that

21l > 1

27M + ‘J1Z1

[{se2im st 1y e ulse2Vine st I/, € J/ |

> QM VIl
Recall that
J, = {s € 2%: s(max(I,)) = s(min(1,))
& -+ &s(max(1,) — k) = s(min(I,) + k)} fork < w.
For s € 27"V /%1 define s* € 27"V /1 as follows

s(max(1,) —i) if n=min(I,) +i,i <k,
s*(n) = {s(min(1,) +i) ifn=max(l)—i, i<k,

s(n) in other cases.
Notice that s = s* iff s | I, € J,.

Claim. For any s € 2%V /i1 either s or s* belongs to

(sealitvit sy e yu{se2liim s 1/, €/, ).

Proof of the Claim. Fix s € 27"V11 and define t = s} I/ A s* | I, ;.
Notice that r = r*. Hence

te {s e 2Vt s 1/ € J,”} U{s eVt g1 1/, € J,’;l}.
By the definition of ¢ it means that either s or s* belongs to this set. O

By previous remarks this finishes the proof of Lemma 1.3. ]

We will conclude this section with the following lemma.

LemMA 1.5. Suppose that H C 2 can be covered by some null set of
type F,. Then H is small. O
We leave an easy proof to the reader.

2. Covering of R by null sets. Let us start with some definitions.
Suppose f € w* and £°_, f(n) ™! < 0.
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Then define
pes, iff ge([o]™) &(p(n) cf(n) forn<w
& Z lo(n)|f(n) o,
and let
X = ﬁ{i cw: i< f(n)].

Let = and X denote 2, and X; respectively for f(n) = 2" for n < w. For
f € w® let T, denote the following sentence

VOC 423k € X, Vo @YV nh(n) & g(n).

The proof of the following lemma is left to the reader.

LEMMA 2.1. For any functions f, g € w* such that X°_, f(n)™! < o0
and ¥>_, g(n)™! < oo we have
T,=T,. a
Before stating the main result of this section recall that B(m) denotes
the sentence saying that R is not the union of less than 2 null sets.
Let D denote the following sentence

VFC p<pw Ig€EVfE FVYnf(n)<g(n).

Observe that if 2 is a regular cardinal then D is equivalent to the
existence of 2“-scale in w*.

THEOREM 2.2. Assume D. Then
B(m)=V®C,_ »23he Xp €@V nh(n) & o(n).

Proof. = This implication is very easy since any element ¢ € X
corresponds with the null subset of 2“: since p(n) C 2" we can identify
@(n) with a certain subset of 0-1 sequences of length n. Now consider the
set Ho=(1+2+ - +(n—-1),1+2+ .- +n),p(n)); -, For given
family ® C 2 apply B(m) to the family {H,: ¢ € ®} to obtain a
required function h € X.

< Suppose { H,: a < 8 < 2} is a family of null sets. By Lemma 1.1
we can assume that for a < 6

H,={x€2°3%nx| neJ?} forsomesequence {J* n<w}
such that 2%°_,|J¥27" < 0.
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Claim. There exists a family {{JJ: k < w}: a < @} and a sequence
of natural numbers {u,: kK < w} such that
HVaVkJg C 2%,
(i) H,C {x€2°: 3%k xu, €J?) fora <40,
(ili) Va Yk |JER 4 < 27k,

Proof. For a < 0 and k < w define
o0
ne = min{n: Yl < 2—k}.
Using D we can find an increasing sequence { #,: k < w} such that
Va <8 V°%k n§ < u,.
Define for « < § and k < w
JF = {s € 2% 3i e(uk_l,uk]s Mi E._Ii"}.

It is easy to check that the above family satisfies conditions (i)—(iii). O

Let
H,={x€2°:3% xlu,€J¥} fora<y§.

Observe that H, C H, for a < . Thus in order to finish the proof we
have to find a real z € 2¢ such that

z¢€ H, fora<2@.

Fix any sequence of positive reals {¢,: n < w} such that X7_, 2", < oo.

Using Lemma 1.2 we can express every set H_ as a union of two small
sets. Moreover, condition (iii) guarantees that we can do it uniformly for
all sets H,. To be more precise: we can find two sequences {n,, m,:
k < w} of natural numbers such that

ne<mp<ng,,<mg,.,; fork<ow.
We can also find families L§, L{ for a < 8, k < w such that
(1) L¢ C 2[”k-"k+1)’ LZ C 2lmemen) for @ < 0, k < w,
() H, € ([ng, nip1), L) Y (Imy, my ), LT s
(iii) |LgR"M "+t < g, , |LE2™ ™+ < g, for a < 6.
Denote
I,=[n;,n,,) and I, =[m,,m.,) fork<ow.
Notice that if we define f(k)= 2" for k < w then each set
(Ix> LE)¥-1can be coded as an element ¢, € 2. Moreover if x € X, and

V®n x(n) & ¢,(n) then we can decode from x a real x € 2 such that
x & (I, LY) Py
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Hence by Lemma 2.1 our assumption is equivalent to the fact that

2¢ = U{(1o, L)y @< 6} # 0 and

29 = U{(!k,LZ)lei a < 0} # 0.

All we have to show is that the intersection of the above two sets is also
nonempty.

Fix k < w and consider intervals I, and 1,.

Let

Sg = {5 € 2!"m): 5 has at least 2"+ "™~k extensions inside L }

fora < 6.
We have to estimate how big S can be.
Clearly
R
Hence

| S| < 2%e, 2™ ™ for a < 6 and k < w.
Similarly if we define
Sg= {s € 2lmemd. g has at least 27« "«-1~k extensions inside L,(,l}

fora<fand k < w
then

| S| < 2k 2™ fora < 6.
Now define new small sets ([, R%)¥_; as follows: fora < 0, k < w
s€ R iff st [n,m,) e SFUSK

By our previous remarks the sets (I,, R%)%_, are small since X2_, 2%¢,
< oo and |R§2 W < 2% 1¢, for every a < 8 and k < w. Therefore by
our assumption and Lemma 2.1 we can find a real x € 2“ such that

x & U{(L, R a<8]}.
Now for a < 6 define sets (W), T)%-, as follows
W, = [m,,n,) fork <.
Ty = {s € 2lmemed: xt [n,,m,) As € L or

sAx! [ng,m) €Ly} fora<6andk < w.
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Notice that the definition of the sets (1, R%)¥_; for a« < 8 and the
choice of x guarantees that the sets (W,, T;)¢_, are small. In fact one can
show that

Va < 0 Vok |TR 27 < 21

Using the assumption and Lemma 2.1 we can find a real y € 2¢ such
that

y & U((We T a < 6).

Define z € 2 in the following way

y(n) ifneU{W,: k<o)
z(n) =
x(n) in other cases.
We will show that
z& (I, LY, UL, Ly, fora<§.
Assume the opposite and suppose that z € (I,, L{)7_, for some

a < 6. It means that for infinitely many k < w z | I, € L§. Now two
cases are possible:

Case 1. There are infinitely many k such that z | [n,, m,) has at least
2mm~k extensions inside L§. That means that z € (I,, R$)?_, and
since z [ [n,,m,)=x]| [n,m,) for every k we have that x €
(I, RY)%_;- Contradiction.

Case 2. For all except finitely many k z | [n,,m,) has less than
2m+1~m =k extensions inside L.

In this case z € (W,, T)¥_, which is impossible by the choice of y.
The similar reasoning shows that z & (I, L{)7_, for a < 0. O

Recall that «,, is the least cardinal k such that R can be covered by &
many null sets. Let «,, be the smallest cardinal « such that

VFC g w®3gew Ve FI%ng(n) < f(n).
Observe that Theorem 2.2 characterises x,, as well as B(m). lLe.

assuming that «,, < Kk, k,, is the least cardinal k such that there exists a
family ® C X of size k such that

Vxe Xdpe ®I*nx(n) € ¢(n).

Theorem 2.2 enables us to give a partial solution to a question of
David Fremlin about cofinality of «,,,.
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THEOREM 2.3. If k,, < Kk, then cf(k,,) > w.

Proof. Assume opposite. Let @ C X be the least family such that
Vxe X3dp € ®3I®nx(n) € ¢(n).

Since ¢f(|®]) = w we can find an increasing sequence {®,: n < w}
such that U{®,: n < w} = ® and |®,| < |®| for every n < w.

Using the assumptions that @ has the least possible power we can
find elements x, € X for n < w such that

V,Vpe Vo x,(k)¢& (k).
Now for ¢ € @ define functions £, € «w* as follows

_ fmin{m:Vk>mx, (k) & o(k)}
fo(n) = N .
0 if minimum does not exist.

Using the fact that k,, < k, and that ¢f(x,) > @ we can find an
increasing function f € w® such that f(0) = 0 and

Voe @V nf (n)<f(n).
For k < w define
x(k)=x,(k) if ke [f(n),f(n+1)).
It is easy to see that

Voe ®V*nx(n) & p(n) contradiction. O
3. Sets of cardinality < 2.

THEOREM 3.1. Suppose that X C 2% and |X| < 2%. Then X is null iff X
is small.

Proof. < Obvious.

— Suppose X C 2“ and X is contained in some null set H. By 1.2 we
can decompose H onto small sets (7, J,)%_; and (1,,, J,)5_,. Without loss
of generality we can assume that each interval I, intersects exactly two
intervals /,.

For x € X define

supp(x) = {n: x| I, € J,).
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Since | X| < 2¢ there exists an infinite set Y C o such that for x € X
|supp(x) — Y|=w whenever |supp(x)|= w.

To find such a set consider a family of pairwise almost disjoint
subsets of w of cardinality 2“. One of the sets in this family has desired

property.
Take

H =(I,,J,) ey V1, ):0=1-

=n’>¥<n

It is not very hard to check that the set H” is small and that X C H’. O

We will conclude this section with the analogue of Theorem 2.2. Let
SD denote the following sentence

IF C pcpw’Vgewife FV®ng(n) < f(n).

Let U(m) be the sentence saying that every set of cardinality less than
2¢ is null. The following theorem is an easy corollary of Theorem 3.1.

THEOREM 3.2. Assume SD. Then
U(m)=3g€ w VFC p.po X,3p €S, VfEF

venf(n) € p(n). O

ReEMARKS. (1) It is well known that B(m) and D have little in
common. Actually any of B(m)&-D, B(m)&D, —-B(m)&D and
—B(m) & —D is consistent with ZFC.

(2) All problems considered in this paper have their analogues in the
ideal of meager subsets of R. In particular, the cardinal k, defined as the
cardinality of the least covering of the real line by meager sets, was
studied by A. Miller (see [Mi 1]). He proved that c¢f(kpz) > w. Sentences
B(c¢) and U(c) analogous to B(m) and U(m) along with several other
properties of the ideals of meager and null sets were studied in [Mi 2] and
[Ba].
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