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Let X and Y be two holomorphically induced representations for an
irreducible Hermitian symmetric pair (G, K) with integral highest
weights. Then Hom( X, Y) equals either C or zero. In this article we give
formulas for Hom( X, Y) when the infinitesmial character of X and Y is
integral and either regular or semi-regular. One formula is given in terms
of the highest weight of X and the other in terms of the highest weight of
Y.

1. Introduction. Let X and Y be two holomorphically induced repre-
sentations for an irreducible Hermitian symmetric pair (G, K') with in-
tegral highest weights. Then Hom( X, Y') equals either C or zero ({2}, [7]).
In this article we give formulas for Hom( X,Y) when the infinitesimal
character of X and Y is integral and either regular or semi-regular. One
formula is given in terms of the highest weight of X and the other in terms
of the highest weight of Y. These formulas were established for the case of
SU( p, ¢g) by the first two authors [3].

This article complements the results of [7] which include formulas for
the composition factors of the modules X and Y above when G is of
classical type. With this in mind we shall suppose the reader is familiar
with the notation and results of [7], especially sections eight through
thirteen of that article. Since [7] does not include formulas for the
composition factors when G is of exceptional type we will provide
formulas in those cases. These formulas will be consistent with the
formulas of [7] and will be derived with the help of [4].

Recently, H. Jakobsen has given a formula for Hom( X, Y) when one
of these modules is induces from a one dimensional module [9]. Our
formula for Hom(N,, N,) below follows from Jakobsen’s work in the
cases where either x is the identity element or y is the element of maximal
length in #"™. Otherwise our results are disjoint.

For references to other work on the description of Hom( X, Y) the
reader should consult the introductions and bibliographies in [2] and [7].
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2. Statement of results. In order to state our results we recall some of
the notation of [7]. Let g (resp. m) be the complexified Lie algebra of G
(resp. K), and let p be a maximal parabolic subalgebra of g with Levi
component m and nilradical u. Let f) be a Cartan subalgebra of g and m
and let b be a Borel subalgebra of g with ) C b C p. The Weyl group of
g (resp. m) is # (resp. #;,) and we have #'= #_ #'™ where #™ is the
set of minimal length left coset representations. The projection of #” onto
W ™ given by the decomposition # = %, # ™ is denoted by w — w. Let
A, A(m) and A(u) be the sets of f)-roots of g, m and u respectively. Put
2p = ZaeA’“a'

For A € h* we denote by M(A) the g-Verma module of highest
weight A — p. Then L(A) and N(A) denote the simple quotient and
maximal m-locally finite quotient of M(A) respectively (cf. [7]). For
x € #'™ we denote by N, and L, the modules N(xp) and L(xp). We
adopt the convention that if all roots are the same length, they are called
short.

DEFINITION 2.1. Set A& = {(y,?)|y,» € A" and either (y,») # 0 or
both y and » are long roots}. Let &(A™) denote the collection of all
subsets £ of A™ which satisfy the following conditions:

(a) If y, varein @, y # », then (y,») & A.

) If yisin Q and §isin A* withy # £, (y,§) € A and ¢ < y then

thereisa {in Q with { #v,({,§) €A and { < v.
We note that #(A") is defined for any positive system of any root
system. When there is no chance of confusion we will denote this set
simply as &.

Fix x in #"™. Then %, will denote the set of all £ in . which
satisfy xQ2 € A(u) U —A(u). By &, we will denote the collection of & in
&, which satisfy the additional condition:

(¢) If y isin @ then thereis a { in @ with y < { and x{ € A(u).

For Q € &, put Q"= {y € Q|xy € A(u)} and @ = {y € Q|xy €
~A(u)}. We say that @ is x-positive (resp. x-negative) if & = Q% (resp.
€ = Q7). Note that the x-positive elements of ., are automatically in &,.
Let rg = Il cqg+s, and g =TI, cqo-5,.

We can now state our main result.

PROPOSITION 2.2. Let x and y be in W' ™. Then:

(a)

Hom(Ny, N,) = {C if y = xrg for some x-positive Q in £,

0 otherwise.
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(b)

Hom(Ny, Nx) = {C if x = ytq for some y-negative Q in &,

0  otherwise.

We will prove only part (a) of (2.2). The proof of (b) is exactly the
same and we omit the details.

In order for the reader to better relate (2.2) to the theory of composi-
tion factors we recall the following proposition from [7].

PROPOSITION 2.3. Assume that g is of classical type and let x and y be
in W™ Then
(a) The mappings @ — Q* and Q — xrq, are injective when restricted to
é..
(b) The simple module L, is a composition factor of N, if and only if
y = xrg for some Q in & . Moreover, the composition factors of N, occur
with multiplicity one.

We will verify in section four that (2.3) also holds when g is of
exceptional type (cf. (4.3)).

3. The classical cases. Assume that g is of classical type. Let notation
be as in [7], sections eight through thirteen. There are five classical cases to
consider which we denote by HS.i, 1 <i <5 [7, Table 8.1]. These
correspond respectively to the cases: SU( p, q), SO2n — 1,2), Sp(2n,R),
SO(2n — 2,2) and SO*(2n). In the cases of HS.2 and HS.4 the result can
be obtained directly from [6, §7] and [6, §9] respectively. If (g, p) is of
type HS.1, HS.3 or HS.5 with constant p equal to one [7, (8.1)] then the
result follows from [6, §6]. So we may assume that (g, b) is of type HS.1,
HS.3 or HS.5 with constant p > 1. We proceed by induction on the
constant p. If a is a simple root we put #, = {x € #' ™ |xa € -A(u)}.
Let w, be the fundamental weight corresponding to «. For x or xs, in
W, write N and L2 for N(x(p — w,)) and L(x(p — w,)) respectively.

LemMMA 3.1. Let a be a simple root and let x, y € W, Then:

(a) Hom(N;, NJ') = C or zero depending as y = xrg for some x-positive
set Q in &, or not.

(b) Hom(N}, NJ*) = C or zero depending as x = yto, for some y-nega-
tive set Q& in &, . or not.
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Proof. Suppose that « is a short root and let A,: 0" — O, be the
equivalence of categories guaranteed by [7, (10.1) and (11.2)]. The induc-
tive hypotheses assure that (2.2) holds in the category ¢’. Thus (3.1)
follows from the formulas of [7, (10.5) and (11.7)].

If B is the long simple root of HS.3 then let a be the adjacent short
simple root. (3.1) holds for «; and so, by the formulas of [7, (12.15),
(12.16) and (12.17)] and the equivalence of categories in [7, (12.14)], (3.1)
must also hold for B. This completes (3.1).

In [2], an algorithm was given for computing Hom(N,, N,) induc-
tively, using [7, Proposition 11.2]. This algorithm is the main ingredient in
the remaining part of our proof. For x and y in #'™ set d(y,x)=
dim(Hom(N,, N,)). We know from [2] or [7] that d(y,x) < 1. If x has
maximal length in #'™ then N, = L_, there are no nonempty x-positive
sets in ¥, and d(y,x) # 0 if and only if x = y. Thus we may assume
that x does not have maximal length.

Fix a nonempty x-positive set Q in &, and set y = xry. By [8, proof
of (4.2)], if & is a set of simple roots then the standard map from N, to N,
is nonzero and d( y, x) = 1. Thus we assume that £ has some non-simple
roots.

Choose y to be any root in  that is minimal with respect to <
among the non-simple roots of . We claim that there is short simple root
B with

(3.2) (B,yY) =1.

If y is of the form e, — e, then set B=e¢,— e, ;. If Yy =r¢,+ e, with
i<j<nthenset B=¢e —e, . If y=e +e, 1<i<n—1,then set
B = e, — e, ;. Finally, suppose that y = e, _; + e,. Since y is not simple,
(g, p) must be of type HS.3. Set A = 2¢,. Then (A,y) €4 and A < y.
Thus, by (2.1), there is an a €  with a # y and a < y. This forces a to
be e,_, — e,. This contradicts the assumption that { is in &, since xa
and xy cannot both be in A(u) U — A(u). Thus the final case does not
occur. This proves the claim.

Let B be as in (3.2). Then B < v; and so by (2.1), there is an « in
with a« <y, a # vy and (a, 8) € 4. Minimality of y forces a to be
simple. Thus, since B is a short root, a and B are adjacent simple roots.

LemMA 3.3. Let Q, a, B and vy be as above. Then a and vy are the only
roots in § not orthogonal to 3.

Proof. Since xa € A(u) and (xa", xB) = -1, x8 & A(u). Similarly,
since xy € A(u) and (xy",xB) =1, xB & -A(u). Thus xB € A(m).
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Let p be the unique simple root in A(u). Let { be any third root in .
Then, x{ € A(u). However, xs,5,8 = xf + xa — (B, " )x{ cannot have
p-coefficient larger than 1; and so, (B8,{") > 0. Similarly, xs.s.8 = x8
— xy — {(B,§V)x¢ cannot have p-coefficient less than -1; and so,
(B,§"V) < 0. Thus (B,¢) = 0. This proves the lemma.

From the lemma we see that y8 = xrg8 = mxs,s.B = m(xs,B — xv)
where m € #,. Also, xs,8 = x(a + B). Since xa, xy € A(u), we have
exactly two possibilities,

xs,B€A(m) and yB € -A(u)
or
xs,€A(u) and yB € A(m).

In each of these cases, by [2, (2.3)], d(y,xs,) = 0. The short exact
sequence
0->N,—->¢N—>N, -0
gives rise to the long exact sequence
0 - Hom(N,, N,) - Hom(N,, ¢,N&) —» Hom(N,, N, ) - -

We have seen that the last term here is zero. Combining this with (3.1) and
the adjoint property of ¢, and ¢, we see d(y, x) = dim(Hom(y N, N{))
= dim(Hom(N, N)) = 1.

Conversely, suppose now that d(y, x) = 1. Then by (2.3) there is an
Q in & with y = xr,. We must show that Q is x-positive. Let a be a
simple root in {. Then ya € ~A(u), so there is a surjection ¢,N; —> N,
— 0. This gives an injection 0 - Hom(N,, N,) - Hom(Ny, N). Thus by
(3.1), @\ {«a} is an x-positive set in &, ,. It remains only to show:
a € Q*. Suppose a € ©7, 1.e. xa € -A(u). If p is any other simple root
in @ then, as above, @\ {p} is x-positive and thus xa € A(u). This
contradiction assures that « is the unique simple root in Q. Set z = xs,,.
Then @ is a z-positive element of &, and y = z[I os,. But then, by the
preceding paragraph, d(y,z) =1 and d(y, zs,) = 0. However, d(y, zs,)
= d(y,x) = 1. This contradiction shows that a must lie in % and
completes the proof of (2.2) in the classical cases.

4. The exceptional cases. Here we verify (2.2) when g is of excep-
tional type E, or E,. To make sense of (2.2) in the exceptional cases we
must first prove a generalization of (2.3) for these cases.

For x,y € #'™ write (N,,L,) for the multiplicity of L, 6 as a
composition factor of N,. We write F, for the set of all y € #'™ with
(N,, L,) = 1. The labeled posets #"™ for the two exceptional cases are
given in Figures 4.1 and 4.2. These are consistent with the notation of [4]
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and the labelings of the posets are consistent with the following labelings
of the Dynkin diagrams:

a b c d e
(4.1) E;: O ° ol ] °
of
a b c d e f
(4.2) E;: O ° [ ° ° [
og

. «a . .
In the labeled posets, the notation w, - w, means that « is a simple root,

w, = w,s, and w, € #,. We will use the Bourbaki convention for denoting
roots. Simple roots will be denoted by the letter which labels them in the
Dynkin diagram (4.1) or (4.2). In E,,

ra rl) rc rc/ re
r, =ra+rb+rc+rd+re+ rff.
InE,,
Fo Ty To Ty T, Ty
, =ra+rb+rc+rd+re+ rff + 1,8
g

Recall from [7, (8.3)] the definition of the orthogonal sets of noncom-
pact positive roots = and 27 for each x € # ™. For any orthogonal set
£ contained in A(u) set sg = I cgqs,. Recall that if @ is any simple root
and x € #, then 2, , =2 \{-xa} and 27 =] \ {-xa}. Recall
also the definition of the sets .%, . from (7, (9.4)].

PROPOSITION 4.3. Let (g, p) be of exceptional type E¢ or E, and let x
and y be in #°™. Then

(a) x7'Z_isin &.

(b)(N,, L) =1ifandonly ify = sqx for some 2 C .

(o) (N,, L)) =1ifand only if x = xrg for some Q € é,.

(d) ([1]) The composition factors of N, occur with multiplicity one.

() x = isin &,

Proof. We begin by proving parts (a) and (b). Choose x € #; (cf.
(4.1) and (4.2)). In Tables 4.1 and 4.2 we have listed -x = and all those
N, in which L appears as a composition factor, i.e. F,. The computation
of —x~'S_ has been done directly and the composition factors are taken
from [4]. We claim that for each x € #}, -x"'Z is in .. It suffices only
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TABLE 4.1
E¢ data for w, € #]. The sets -w;'2, and F, = {i|(N,,L,) = 1}.

J ——wj_leJ Fj
21 f 23,21
19 f,d 23,22,21,19
18 f,e 22,20,19,18
7 f,(o 1 f 1 0) 20,18,9,7
5 f,a 9,7,6,5
3 f, b 6,5,4,3
TABLE 4.2

Case E; data for w, € #/. The sets -w;'Z, and F, = {i|(N,, L,)=1}.

J —wj_lZJwJ F;
47 f 49 47
45 f. g 49 48,47 45
43 f, d 48,46 45,43
41 f,c 46,44 43,41
38 f, b 44.42,41,38
36 f,a 42,39,38,36
16 f, (0 01 f 21 42,38,19,16

0 0 1

13 f,a 42,39,38,36,19,17,16,13

11 b, 1 11

44,42,41,38,17,14,13,11
46,44,43,41,14,12,11,9
48,46,45,43,12,10,9,7

49,48,47,45,10,8,7,6

©
o
o
/’\/\/}/“\/“\
[N
[\
N B =W =N =N =N
[3V]
i
e N NN

to show that —x~'Z_ satisfies (2.1b). Choose £ € A" and y € —x7'Z,
with ¢ <y, £ # v and (§,vy) # 0. Then y cannot be simple; and so, by
Tables 4.1 and 4.2, either g is Eq and x = w, or g is E; and x = w, with
J € {6,7,9,11,13,16}. A case by case check in these seven cases shows
that (2.1b) holds. For each x € #} we see from Tables 4.1 and 4.2 that
card(F,) = 2% Thus, to prove (4.3b) for x € #; it suffices to
observe that for each © C X, sox € F,. This computation can be verified
from the tables.

Now fix any x € #'™. If x =e then £, = & and F, = {x}. So
assume that x # e. Then there is a simple root « with x € #_. If a = f
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then we have already seen that (4.3a) and (4.3b) hold for x. So assume
that a # f. By a theorem of Vogan, [10], or more specifically [7, (10.1)},
there is an equivalence of categories 7. 0, - 0,. Define w € “/f by

w(L,) = L,. Then by (4.3a) and (4.3b) for w, -w'Z, <, and
FNW, = {sﬂwm c 2, ,}- It follows from [7, (10.4) and (10 5)] that
-x'2, ., €%, and ENH, = {sgx]Q C 2.«)- Thus, by [7, (9.5)],

-x71Z e Z. We also see, exactly as in [7, (12.4)], that F, = {sox|$ C
2. }. This completes the proof of (4.3a) and (4.3b).

Part (c) follows from parts (a) and (b) and [7, (9.6)]. Part (d) comes
from [1]. Finally, (e) follows from (a) and [5, (5.1)]. This proves (4.3).

The proof of (2.2) in the exceptional cases proceeds as in the classical
cases. We need only establish (3.1) and (3.2) for the exceptional cases.
These will be (4.5) and (4.6) (respectively) below. For any x € #'™, put
H = {y€e#"™ |Hom(N, N,) = C}. Recall from [1] that we know
d(y,x) <1 for all x,y € # ™. Moreover, from [2], the sets H, are
known explicitly. We wish only to show:

(4.4) H, = {xrg|Q an x-positive set in &, }.

X

LeMMA 45. Let a be a simple root and let x,y € #,. Then
Hom(N, NJ) = C or zero depending as y = xrg for some x-positive set §}
in &, , ornot.

Proof. In Tables 4.3 and 4.4 we have listed the x-positive sets in &,
and the sets H, ,= {y € #; |Hom(N/, N/) # 0}. The x-positive sets are
found by direct computation while H, . is gleaned from [2]. From the
tables it follows by direct computation that (4.5) holds for a = f. By [7,
(10.1) and (10.5)], the lemma holds for all simple «.

TABLE 4.3

E¢ data for w; € #,. The w-positive sets in ., s and H, ;= {i|lw, € #,
Hom( Nf) #* O}

3j w;-positive sets in S, Hy; s

21 0, {d} 21, 19

19 9, {e} 19, 18

18 @,{(0 ! “1’ ! 0)} 18, 7

7 0, {a} 7,5

5 0, {b} 5,3

3 0 3
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TABLE 4.4

E; data for w, € #/. The w-positive sets in S s and H, = {i|w, € ¥,
Hom( N/, wa./) + 0).

i w;-positive sets in Sy, Hy, g
47 0, {9},{57,(1 23 ; 2 1)} 47,45, 6
45 0, {d},{d,(l 28 1)} 45,43, 7
43 0, {c},{c,(l 2z 1)} 43,41, 9
41 9, {b},{b,(l b 1)} 41,38,11
38 0, {a}, {7}, {a,7} where y = (0 01 ? 2 1) 38, 36, 16, 13
36 0,{(0 01 f 2 1)} 36, 13
16 9, {a} 16, 13
13 0, {8} 13, 11
11 0, {c} 11, 9
9 0, {d} 9,7

7 0, {9} 7,6

6 (1] 6

Let y be any non-simple positive root. We now claim:
(4.6) There is a simple root B with (B,y") = 1.

Let S be the set of simple roots and identify S with the Dynkin diagram
of g. Write y =%, gr,p. Let S, = {p € S{r, # 0}. Then S, forms a
connected Dynkin subdiagram of S. Suppose that y satisfies the following
condition.

(4.7) There exist two adjacent simple roots 8 and { with

' rg = r, =1 and B an extreme root of the diagram S..
Then (B,yY) =1 and B <y, as required. Thus we are reduced to
considering only those roots y which do not satisfy (4.7). These roots,
together with appropriate 8, are listed in Tables 4.5 and 4.6. In Table 4.6,
which gives the necessary roots for E,, we have only included those roots
for which r, # 0. The E, roots for which r, = 0 can be thought of as roots
for E and are then included in Table 4.5. The tables complete the proof
of (4.6).
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TABLE 4.5

E, roots y which do not satisfy (4.7) and corresponding 8 with (B,v")
= 1.

¥ g
01 210 .

1
1 2210
() g
01 2 21
("rir) e
1 22 21
(it
12 3 2 1

1 C
1 23 21
(72 |

TABLE 4.6

E, roots y with r, > 1 and which do not satisfy (4.7) and corresponding
B with (B,yY) = 1.

-
[ V]
[\
-
o

— - — — — =
[ &) [N »N [ ] [\ [N
w w w w [ [
w »n &) [\ N (3]
— — - — — —

[
[
w
w
N

TN N TN NN TN TN TN T
—
[
[

[ N N O I N O T O Sy R I S I
()
—

N N N e N N S N
o
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