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ARITHMETIC PROPERTIES OF THIN SETS

KATHRYN E. HARE

We prove that A(p) sets do not contain parallelepipeds of arbi-
trarily large dimension. This fact is used to show that all A(p) sets
satisfy the arithmetic properties which were previously known only for
A(p) sets with p > 2. We also obtain new arithmetic properties of
A(p) sets.

1. Introduction. Let G denote a compact abelian group and G =T its
necessarily discrete, abelian, dual group. When E is a subset of I', an
integrable function f on G will be called an E-function provided its
Fourier transform, f, vanishes on the complement of E. Similarly, an
E-function f will be called an E-polynomial if the support of its Fourier
transform is finite.

A subset E of I' is said to be a A(p) set, p > 0, if for some
0 < r < p thereis a constant c( p, r, E) so that

(1) I lo < cCp.r  E) 1]

for all E-polynomials f. An easy application of Holder’s inequality shows
that if p < q and E is a A(q) set, then E is a A(p) set. For standard
results on A( p) sets see [11] and [7].

A number of authors (cf. [11], [7], [2], [10] and [1]) have shown that
A( p) sets with p > 2 satisfy certain arithmetic properties. In [9] Miheev
was able to extend some of these properties to all A(p) sets in Z. In §2 we
will show that generalizations of the properties attributed to A(p) sets
with p > 2 in the papers cited above are satisfied by all A( p) sets, p > 0,
in all discrete abelian groups.

One of the important open questions in the study of A(p) sets is
whether there are any A( p) sets, with p < 4, that are not already A(4).
The technique used most often to show that a given set is not a A( p) set,
for some particular value of p, is to show that the set fails to satisfy an
arithmetic property which A( p) sets are known to fulfill. As a conse-
quence of our results, it is impossible to find a A( p) set with p < 2 which
does not satisfy all the arithmetic properties of a A(2) set which are
currently known.

The proofs of these results depend upon the following theorem.
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144 KATHRYN E. HARE

DEFINITION 1.1. A subset P of I' is called a parallelepiped of
dimension N if P =TI~ {x,,¥,}, where x,,¢, €T fori=1,..., N, and
|P| =2V

THEOREM 1.2. If E C T'is a A(p) set, p > 0, then there is an integer
N such that E does not contain any parallelepipeds of dimension N.

We prove this result in §3. The conclusion of this theorem was
previously known for A(1) sets [4], and for all A(p) setsin Z (for p = 2
in (8] and for p > 0 in [9].) In §4 random sequences are considered to
show that parallelepipeds are not sufficient to characterize A(4) sets.

2. Arithmetic properties.

DEerINITION 2.1. A subset P of T is called a pseudo-parallelepiped of
dimension N if P =TIY {x,, ¢,), where x,,¢, € T fori=1,...,N.

REMARK. Parallelepipeds and pseudo-parallelepipeds are generaliza-
tions of arithmetic progressions, for any arithmetic progression of length
2"V is a parallelepiped of dimension N.

Our results on the arithmetic properties of A( p) sets will be seen to
follow from Theorem 1.2 and

PROPOSITION 2.2. For each positive integer n, there are constants c(n)
and 0 < &(n) < 1, so that if E C T does not contain any parallelepipeds of
dimension n, then whenever P, is a pseudo-parallelepiped of dimension r

|[E N P|<c(n)2rm,

REMARK. This proposition is proved in [9] for ECZ and P, a
parallelepiped of dimension r. With appropriate modifications the same
proof yields Proposition 2.2.

Combining Theorem 1.2 and Proposition 2.2 we immediately obtain

COROLLARY 2.3. Let E C I' be a A(p) set for some p > 0. There are
constants ¢ and 0 < e < 1 so that whenever P, is a pseudo-parallelepiped of
dimension r

|EN P|<c2.
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The arithmetic progression of length N, {xy,..., x¥"}, is contained
in the pseudo-parallelepiped xy - [TM;Y1,¢*} of dimension M pro-
vided 2™ > N. By choosing M with 2! < N < 2™ we have

COROLLARY 2.4 (see [11, 3.5], {2}, or [1] forp > 2,[9] for E C Z). Let
E C T bea A(p) set. There are constants ¢ and 0 < ¢ < 1 such that if A is
any arithmetic progression of length N then

|E N A] < 2¢Ne.

In particular, if E is a A(p) set in Z, then any interval of length N
contains at most 2¢N°* points of E. Thus E has density zero. Moreover, if
E={n.},thenX, .o(1/|n.)) < oo, so the set of prime numbers is not a
A(p) set for any p > 0[9].

DEeFINITION 2.5 [7, 6.2]. For positive integers d and N, x,...,x, € I
and1l < r < o0, let

d d
Ar(N9X1"'-’Xd)={nX;J: 2 Inj[ SNr}
Jj=1 Jj=1
Let

d
Aoo(N9X1a'--,Xd) = {1—[1?(3’" Sup ,nj‘SN}'
j=

l<j<d

REMARK. These sets may also be viewed as generalized arithmetic
progressions. Indeed, if I' = Z and b € Z then

A,(N,b) = {-Nb,...,~b,0,b,..., Nb)

is an arithmetic progression of length 2N + 1 for any .

COROLLARY 2.6 (see [7, 6.3-6.4}, [1] for p > 2 and r < ). Let
E C I' be a A(p) set. There are constants c and 0 < ¢ < 1 such that
|4, (N, %1, x4) NE|< c(2N +1)“
forall x,,...,.x,€T,NeZ and1 <r < 0.

Proof. Observe that
d

Ar(N’Xl"“’Xd)CAOO(N’XI""’Xd)= [-Ileo(N’Xi)'
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Since 4 _ (N, x,) 1s an arithmetic progression of length at most (2N + 1),
the set 1., 4_ (N, x,) is contained in a pseudo-parallelepiped of dimen-
sion Md, where 2™ > 2N + 1 > 2™~ Now apply Proposition 2.2. O

DEFINITION 2.7 ([11, 1.6]). For E € Z and n € Z, let r,( E, n) be the
number of ordered pairs (m,, m,) € E X E with m; + m, = n.

COROLLARY 2.8 (see [10] for p > 2 and [11, 4.5] for p = 4). If
ECZ" is a A(p) set there is some q < oo and constant ¢ so that if
1/q + 1/q" = 1 then E satisfies

(}: (E,n)"

n=1

1/q
< ¢NV7

for all positive integers N.
Proof. If (m,, m,) € E X E satisfies m, + m, = n then certainly m,,
m, € (0, n]. Thus
r(E,n) <|(0,n] N E|< cn®

for some constants c and 0 < ¢ < 1.
If ¢ =2/(1 — ¢) then

N 1/q
( 2_:1 rz(E,n)q) <

N 1/q
) (cne)q) < eNe*Vi< eNVY, O
n=1

DEFINITION. 2.9. Let M be a positive integer. We will say that 4 € T’
is a weak-M-test set if |AA™'| < M|A|.

REMARKS. 1. If 4 = {x¢,...,x¢"} is an arithmetic progression of
length N, then 447" = {(¢*: -N +1 <k < N — 1}, hence 4 is a weak-
2-test set.

2. In [2] A is called a test set of order M if |A°A~*| < M|A|. Since
|AA7Y| < |A%A7"| any test set of order M is a weak-M-test set.

PROPOSITION 2.10 (see [2] for p > 2 and A a test set of order M). Let
EcCT be a A(p) set. There are constants ¢ and 0 <e <1 so that
whenever M is a positive integer and A is a weak-M-test set, then

|[ENAl<c|lA].
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Proof. Let t=|EN A| and choose n>1 so that E contains
no parallelepipeds of dimension » + 1. We will assume that 7>
4(M|A|)} %" and derive a contradiction.

Let AA™"\ {1} = {xy,---» X4} With x, # x; if i # j. Then d < M|A4|.
let E'=FENA.

For each i = 1,..., d choose a maximal collection C, ; of ordered sets
{a, B} satisfying @, B € E’ and af~' = x,, and which are pairwise
disjoint (as unordered sets). Let C; = UL, C, ..

Suppose {a, B} & C, for a, B € E’ with a # B. Since af™! = x; for
some i and {a, B} & C,; it must be that one of { x,a} or {B8,x} € C},
for some x € E’. Thus

|C1i_>_%‘{{a,,8}: a,BEE',a#,B}]?_t(t—;ll

and hence

He—1) _t(t—=1)
max |C, ;|= > .
15@' v 3d 3M| A

If t <4 then t < 4 M|A) /% for any n > 1, thus ¢ > 4 and we
obtain the inequality

2
aMmlA|’

Let D, denote the set of left hand terms of C,,. Observe that if
Yi,..., ¢, € D, with ¢, # ¢, for i # j, then {\,bj,z[/jx;ll}, j=1,...,k,
are distinct pairs in C; ;, and so by the disjointness condition all the terms
of {¥1,...,¥,} - {1, x;'} are distinct.

Further, if |C;,| > 1 then C;; contains two distinct pairs, {a;, B;},
J=1,2.8Since ;8" = x ;, these four elements of E form a parallelepiped
of dimension 2, namely {a;, a,} - {1, x,-‘ll}. Hence if E contains no
parallelepipeds of dimension 2 then ¢ < (4M|A|)*/? proving the proposi-
tion for n = 1.

We proceed inductively to obtain for k =2,...,m — 1, k < n, sets
Cy.;, and D, satisfying:

(1) C,, consists of pairwise disjoint two element sets { a, 8} with
aB_I = Xik’ a, B € Dk—l;

(ii) D, consists of the left hand terms of C, , ;

(iii) |Cy | = |Dy] = 1 /(4M]A4)*~"; and

@iv) If {¢y,...,¢,} are distinct members of D, then all the terms of
the set {,...,¢,} - TTh, {1, xgl} belong to E and are distinct.

|C1.i1 | = mlax |Cil =
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In particular, (iv) implies that if ;, ¢, are distinct members of D,,
then E contains the k + 1 dimensional parallelepiped {4, ¢,} -
M1 X,

For i=1,...,d, let C, ; be a maximal set of pairwise disjoint two
element sets { a, 8} with a, 8 € D, _, and af~' = x,. In the same manner
as before we see that

1
|G| = max |G, |2 351D, 110,11 = 1)

1
>
3M| 4|

= 2
-1 m—1 - 1
(amla)™ T\ (am1a)”
and since we are assuming
tzmAl

— > 4,
(amja)™
we have
om
lCm,zml = [ oam_1°
(4M] A4])

Let D, be the left hand terms of C, , and suppose y,..., ¢, are
distinct terms of D,. Then {4y, x;'} are pairwise disjoint sets in C,, , ,

0 B={y,...,¥, ¥ 1Xi»---»¥,X; } is a collection of distinct terms of
D By (iv) the terms of

m m—1
(y,o b, ) - H<1’X§1} =5[] <anl>
Jj=1 j=1

are distinct members of E. This completes the induction step.
Since E contains no parallelepipeds of dimension n + 1, |D,| must be
at most one. This contradicts our initial assumption. O

m—1°

The union problem for A( p) sets with p < 2 is open. However we do
have

PROPOSITION 2.11 (see [9] for E C Z). Let E, and E, be A(p) sets.
Then E, U E, does not contain parallelpipeds of arbitrarily large dimension.

Proof. Choose constants ¢ and 0 < & <1 so that whenever P, is a
parallelpiped of dimension n, [E; N P,| < ¢2"* for i = 1,2. Then

((E, U E,) N P,[<2c2" < 2" =|P,]
for n sufficiently large. a



ARITHMETIC PROPERTIES OF THIN SETS 149

Observe that all these results hold for sets which do not contain
parallelepipeds of arbitrarily large dimension. In [6] we discuss additional
properties of such sets.

3. Proof of Main Theorem. We turn now to proving Theorem 1.2.

Since any A( p) set with p > 1 is a A(s) set for any s < 1, we may
without loss of generality assume p < 1.

We will show in fact that N depends only on ¢( p, p/2, E), as defined
by (1). Since a translate of a A(p) set is a A(p) set with the same
constant, it suffices to show that A( p) sets do not contain parallelepipeds
of the form P =T1M,{1,x,}, |P| = 2™, for M > N.

The proof will result by establishing a number of lemmas. The main
idea in the proof of the principal result in [9] is used in Lemma 3 4.

Let us say that { x;,..., Xy} C I is quasi-dissociate if
N
I—[xff= 1 fore,=0,+1,i=1,...,N,
i=1
implies e, = O foralli =1,..., N.

LEMMA 3.1. Fix a positive integer N, and let N, = 3™ + 1. Any subset
of I of cardinality N, contains a quasi-dissociate subset of cardinality N,,.

Proof. This is essentially an application of the Pigeon Hole Principle.

Consider the subset {x,}M; c T. Choose ¥, € {x;,X,} so that
¥, = 1.If A, = {¢7: ¢ = 0, £1} then |4,| < 3 so it is possible to choose
¥y € (X, )i, with ¥, & 4,

Now proceed inductively. Assume 4, .., y, have been chosen. Let

= {Ypys - Yore,=0,+1,i=1,...,n}.

Since |4,| < 3" we may choose 1,&,,H e (x;,) it withy,,, & 4,
We may choose {¢,}™, < {x,}M, in this way since N, = Y
Now suppose Hf\;ﬂlxp? =1 with ¢, =0, £1,i =1,..., N,. Let k be
the largest integer with ¢, # 0. We cannot have k =1 for then ¢y =1
and hence ¢, = 1. If k > 1 then without loss of generality, ¢, = 1, so
¥, = [T ¢, 5. But this implies ¢, € 4,_,, contradicting its selection.

Thus ¢, = 0 for all i = 1,2,..., N, and hence { ¢}, is a quasi-dissociate
set. O
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Let us say that the parallelepiped P, =TTV {1, x,} is
(i) of order 2if x> =1fori=1,...,N;
(1) dissociate if TTY.; x% = 1 with ¢, = 0, +1, 2, implies ¢, = 0 for
alli=1,...,N;and
(i) quasi-dissociate if TT., x& =1 with ¢, = 0, +1 implies ¢, = 0 for
alli=1,..., N.

With this notation an immediate corollary of the previous lemma is

COROLLARY 3.2. If E contains P =T1" {1, x,}, a parallelepiped of
dimension N = 3™ + 1, then E contains a quasi-dissociate, N-dimensional
parallelepiped.

Next we will prove

LEMMA 33. Let E be a A(p) set, 0 <p <1, with constant
c(p, p/2, E). There is an integer N, depending on c(p, p/2, E) such that E
does not contain any parallelepipeds of order 2 with dimension greater than
M.

Proof. Choose an integer N, so that

oy 20PN
20 = S, > <P p/2 E)

and set N, = 3™ + 1. By Corollary 3.2 if E contains a parallelepiped of
order 2 with dimension N, then E contains a quasi-dissociate parallele-
piped of order 2 with dimension N,, say I'1™ {1, x,}. Being quasi-dissoci-
ate and of order 2 the set { x,} ™, is probabilistically independent. Hence

1/p

No 1/p No
P » )
(fljl|1+x,-|) =(1j[1f|1+x,s) = 2A=1/pINy
Similarly
No 2/p
(f [T+ x~’p/2) =207,

i=1

Thus if f(-x) = nfvﬁl(l + X’(x)), then f c TrlgE(G) and

1fll, = 207P% > ¢(p, p/2, E)2" 2% = ¢(p. p/2, E)|[ £ |52

contradicting the fact that E is a A( p) set with constant c( p, p/2, E). O
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LEMMA 34. Let E be a A(p) set, 0 <p <1, with constant
c(p,p/2, E). There is an integer N depending on c¢( p, p/2, E) such that E
does not contain any dissociate parallelepipeds of dimension N.

Proof. It is shown in [9] that for any fixed r € (0,1) with r/(1 — r)?
< p?/256,
(A =p2r (e
4= (1 4 (1 - r)

4 1-r
Choose N so that AY > ¢(p, p/2, E)B", and suppose E contains the
dissociate parallelepiped ITY.,{1,x;}. Let R be the least solution of
=2R/(1 + R?).
Let f =TI~ ,(1 + Rx,)- Then f € Trig.(G), and

N ) 1/p
@ W= ([ O+ rel)”

N —\\ p/2\1/p
X: T Xi
fl=]_[1 1+r(——2 )) ) .

An application of MacLaurin’s formula shows that for any a € (0, 1)
_ 2
ﬁ(_l_____za)_x_ + Rem( x)
where [Rem(x)| < (r/(1 — r))? provided x € [-r,r] and r € (0, 1).
Now —r < r((x;x + x,;(x))/2) < r so applying MacLaurin’s formula
to (2) with a = p/2 we obtain

Il = (4 &) [ 1T

e )

. (1 _ (/4 = p/4r? (L )3)2/” _3

= (1+R)"?

1+x)*=14ax—

X, +X;
2

)4
1+2r(

l 2)(1 = p/2)r? 3

—a+ RV i———l_ll(l_ (p/2)( - p/Dr (=)
+ 2, xi+x:\ _ (p/2A = p/2)r* (X2 +x° v

2"\ 72 2 4

because of the dissociateness assumption.
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Similarly
. P
[ flp2 < (1 + R?) H p/4)(1 - p/4)r’ +( r )3)2/ .

i=1 4 1-r

Thus
I£llL = @+ R4V > (1 + R)M*¢(p, p/2, E)BY

> c(p,p/2, E)|| flpr
contradicting the fact that E is a A(p) set with constant

c(p,p/2, E). 0

LEMMA 3.5. For each positive integer Ny there is an integer N, = N,(N,)
so that if P =T1%,{1,x,} is a parallelepiped of dimension N, with the
property that for each i = 1,2,..., N, the set { j # i x? = x?2} is empty,
then P contains a dissociate parallelepiped of dimension N,.

Proof. This is another application of the Pigeon Hole Principle similar
to Lemma 3.1. O

LEMMA 3.6. For each positive integer N, there is an integer N = N(N,)
so that if E contains a parallelepiped of dimension N, then a translate of E
contains either a dissociate parallelepiped or a parallelepiped of order 2, with
dimension N,,.

Proof. Fix N,. Put N = 2NN, with N, = N,(N,) as in Lemma 3.5.
Assume that a translate of E contains P = HN {1, x;}, a parallelepiped
of dimension N.

We will say that x; ~ x; if x7 = x?. Let S, be the equivalence class
containing x,;. We consider two cases.

Case 1. For some i € {1,2,...,N}, |S,|=2N,. Without loss of
generality i =1 and {x;,X2,--->Xs5,} C S, i€, xi=xi for k=
1,2,...,2N,. Then x,x;' = ¢, satisfies ¢7 = 1 for k = 1,...,2N,.

Certainly 1—[}’21{ X19P2j-1> Xa¥2,} P and hence is a parallelepiped of
dimension N, contained in E. A further translate of E contains the

N;-dimensional parallelepiped [T, {1, , 03}, } of order two.

Case 2. Otherwise |S;| < 2N, forall i = 1,2,..., N. In this case there

must be at least N, distinct equivalence classes, say Sy, ..., Sy . Lemma 3.5
may be applied to IT%2,{1, x,} to obtain a dissociate parallelepiped of
dimension N, in the original translate of E. O

Proof of Theorem 1.2. Put together Lemmas 3.3, 3.4 and 3.6. O
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4. Random sequences. If E does not contain any parallelepipeds of
dimension 2 then a modification of [11, 4.5] can be used to show that E is
a A(4) set. Parallelepipeds are not sufficient to characterize A(p) sets
however. In this section we will use a method of Erdos and Rényi [3] to
show that for each p > 8/3 there is a set E( p) which does not contain
parallelepipeds of arbitrarily large dimension and yet is not a A( p) set.

Let 0 < a <1 and let {£,}2_; be a sequence of independent random
variables such that P(§, =1)=p,=1/n*and P(§,=0)=1—p,. Let
{»,} denote the values of n (in increasing order) with £, = 1. Thus p, is

the probability that » is contained in {», }.
If {»,} contains a parallelepiped of dimension d then there are

integers n, m, ki, ..., k,«2, such that { v, } contains
X(ky,..., kya-2,n,m)
= {k,k,+nk,+mk +m+n:i=1,..,2"2)
where
| X(kyy .. kpaa,n,m)| =24

Without loss of generality we may assume 1 < k;, <k, + n <k, + m <
k,+m+n, so {ky,...,ky2,n,m} CZ* Since {§,}>_, are inde-
pendent random variables the probability that {»,} contains
X(kyy ..oy kya-2,n,m)is

P(X(kl,...,kzd-z,n,m) - {Vk})

2d~2 a

1
N ,=1—[1 ki(k,+n)(k,+ m)(k, + m + n)

Thus if X7, 4., denotes the sum over those positive integers

n,m,ky, ..., kysuchthat |X(ky,..., ky-2,n,m)| = 2 then

S = Y P(X(ky,..., kyi-2,n,m) C {»,})

A
g

pom ke kpeezt =1 k,(k,+ n)(k,+m)(k,+ m+ n)

.....

21]—2

> (Z(k(k+n)(k+}")(k+’"+”))a)

n.m\ k

Let ¢ = 2972, By using the inequality

1 <(l)a(l 1-0
k+n~ \k n)
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for 0 < o6 < 1, we obtain

s< Y (%)(1—o)ta(§(%)z(l+u)a)t.

If we choose ¢, @ and o so that (1 — 6)ar > 1 and 2(1 + o)a > 1,
then S < oo. An application of the Borel-Cantelli Lemma shows that in
this case { v, } contains only finitely many d dimensional parallelepipeds
a.s.

If a>1/4 and t>1/2(a —1/4) we see that the inequalities
(1 — o)at > 1and 2(1 + o)« > 1, can be simultaneously satisfied for any
o € (0,1) with

1 1

E;—l<0<1—'t—a—.

Since

- (P1+ +p”)2 - ntxn2(l~a)

by the Strong Law of Large Numbers

< oo,

. szvkpi
klirrso 2 =1 as.
Thus
vl—a
lim —%— = S.
Mok A

and so there is a ¢ > 0 such that for all N sufficiently large,

Hri} N[1,N]|= N as.

PROPOSITION 4.1. For each p > 8/3 there is an integer d = d( p) and
a set E = E(d, p) which contains no parallelepipeds of dimension d but is
not a A(p) set.

Proof. For p > 8/3,say p = 8/(3 — 4¢) with ¢ > 0, let « = 1/4 +
¢/2 and let d be any integer satisfying 1 = 272 > 1 /e. Choose {»,} as
described above so that {»,} contains only finitely many parallelepipeds
of dimension d and

{we} DL N[~ eN2/7er,
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Let E be the set {»,} with the finitely many integers which form

paralielepipeds of dimension d deleted. If E was a A( p) set then by [11,

3.5]

|EN[1,N]|< N>,

But E and {»,} have the same asymptotic density and 2/p < 3/4 — ¢/2,
thus E cannot be a A(p) set. O

Thus the notion of parallelepipeds is not strong enough to char-

acterize A(p) sets for p > 8/3. The question as to whether or not
parallelepipeds characterize A( p) sets for p < 8 /3 remains open.

[2]
131

(5]

(6]
(71

(8]

(9]
[10]

(11]
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