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In this paper we study the regularity problem of harmonic maps
between closed compact manifolds (AM”, g) and (N, /) in dimensions
n > 3.

1. Introduction. Harmonic maps are critical points of the energy
functional. For technical convenience we assume, by virtue of the Nash
imbedding theorem, that the target manifold N is isometrically imbedded
in the smallest Euclidean space R*. At the end of this section we will
discuss the independence of our definitions on the imbedding of N in R,

DerINITION (1.1). A map u = (u', u?,...,u%): M — R* is said to
belong to the Sobolev space L3(M,R¥)if fori =1,2,... k

2
f |vu'l" dV < o
M
where |V u'| is the covariant derivative, in local coordinates,
2 .
[Vu'l(x) = g**(x) - d,u’ - u’,

dV is the volume element of M. For u € L3( M, R¥) one defines its energy
as

E(u) = é fM iVuflde=fM Ivul’dv.

DEFINITION (1.2). A map u is said to belong to L}(M,N) if u €
L3(M,R*) andif u(x) € N, ae. x € M.

REMARK. L3( M, R*) with the usual norm
k
e = [£00+ X [ wlav
i=1"M

is a separable Hilbert space. Li(M, N) has strong and weak topologies
induced from that of L3( M, R*). Moreover, the set
{ue LM, N):|uha< C}

is weakly compact in L3( M, R¥).
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DErFINITION (1.3). A weak solution u € L}(M,N) to the formal
Euler-Lagrange equations of the energy functional is called a harmonic
map from M into N. The equations in local coordinates form a nonlinear
elliptic system

Au'(x) = g*f(x) - A (Bau,aﬁu), i=1,2,...,k,

u(x)

where 4,(X,Y) € (T,N)* for vectors X, Y € T,N is the second funda-
mental form of N given by

A,(X,Y)=(DyY)",

X and Y are considered to have been extended to vector fields on N in a
neighborhood of u € N.
It is easy to see that u is harmonic if and only if

4
dt |10

where u, is a 1-parameter family of maps defined by
u(x) = T(u(x) +n,(x)),
1, € C(M,RY), te]0,1].

IT is the orthogonal projection of R* into N. Next we introduce the
concept of stationarity. One takes u, = u - ¢, for ¢, a 1-parameter family
of compactly supported C* diffeomorphisms of M with ¢, = Id. Clearly
E(u,) is differentiable in . If u is critical for all variations of this type
and if u is harmonic then u is called a stationary map.

By our definitions a stationary map is harmonic. The converse is not
known. What is known to be true is that a C* harmonic map is stationary.
One of the properties enjoyed by stationary maps is the monotonicity
formula. We will show that the monotonicity formula still holds under
some assumptions about the singular set of harmonic maps.

In this paper we will study stationary maps whose singular set is of
codimension greater than 2. Our main theorem is

E(u,) =0,

THEOREM. Suppose u is a stationary map, whose singular set is con-
tained in the graph of a C** function with dimension d < n — 2. There
exists an € > 0 such that u is regular if E(u) < e.

The main theorem will be proved by a blow up argument which seems
to work well for general elliptic functionals of quadratic type (cf. [Kin,
Har, Lin]).
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Schoen and Uhlenbeck (1982) developed a statisfying regularity the-
ory for energy-minimizing harmonic maps. They showed that the singular
set of an energy minimizing map has codimension bigger than 2. For
general harmonic maps, it was shown in [Liao] that the isolated singulari-
ties are removable if the total energy is small. In the case n = 2, the result
was due to Sacks and Uhlenbeck (1981).

To conclude this introduction we remark on the independency of our
harmonic map definition on the imbedding of N in R*.

Suppose there is another isometric imbedding N in R*. The situation
is this: we have (weakly)

Au'(x) = g*B(x) - A\, (B,u,0u)  i=1,2,.. k.

We want to show that the same system is satisfied by & = A o u, where 4 is
a smooth isometry from N onto N.

Extend & arbitrarily to a smooth map from an open neighborhood of
N into R, We compute that (in the weak sense)

(13)  Awi(x) = g723,( g7/ g3 (h'(u(x))))
- 0, (5 )
= 3;n" - Au/(x) + g - 8pu/ - 3,3,h" - 3’
= g (k' - A7(D,u,0pu) + dgu’ - 3,0, - B,u').

Consider X, Y € T, ,,N. One can easily check that

(x)
(1.4) A(Dh(X), Dh(y)) = Dh(A(X,Y)) + D*h(X,Y)

where D is the usual differentiation in R, A is the second fundamental
form of N C R Indeed, we have

(1.5) D?*h(X,Y) = XYh —(D,Y)h.

By a rigid motion in R*, we may assume dh(X)=X, dh(Y)=7Y,
denoting by v the covariant derivative in N, by v the covariant deriva-
tive in N. We have

(1.6) A(Dh(X),Dh(Y)) = XYh — (v ,Y)h.
Subtracting (1.5) from (1.6), we get
A(Dh(X),Dh(Y)) = D*h(X,Y) +(D,Y — v ,Y)h.
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Notice that N and N are isometric. We can replace V,Y by v, Y. Thus,
we get (1.4).

By assumption u € Li(M, N). This ensures that d,u, « = 1,2,...,n,
exist almost everywhere. Hence, we come to the conclusion that

Aw'(x) = g (x) - Ay (3,2, 0yi1)

weakly.

In the next section we will make some general remarks about the
regularity problem of harmonic maps. Section 3 consists of a collection of
preliminary results. In the last two sections we study stationary maps
whose singular set is of codimenion greater than 2.

2. Regularity problem of harmonic maps. In this section we want to
make precise the concept of regularity of harmonic maps.

A harmonic map u is by our definition a weak solution to a nonlinear
elliptic system in local coordinates. Even in the unconstrained case there is
no reason to hope that it always will be continuous (cf. [Fr]).

Next we remark that if a harmonic map has small oscillation then it is
smooth. This is a well known fact to specialists in this area but had not
appeared explicitly in its full scale. It was shown in [H, W] that a weakly
harmonic map with small oscillation is Holder continuous. Recently a
proof was given in [Sch] to show that if a weakly harmonic map u is
Holder continuous then Vu is locally bounded, i.e., Vu € L? . By the
harmonic map system, one then gets Au € LY. By the L7 theory of
linear elliptic systems one deduces that u € L, . for p < oo. From the
harmonic map system we see that Au € L{) .. Hence, u € L{) .. Repeat-
ing this procedure, we get that u € L, for p < oo and k= 1,2,3,....
By Sobolev imbedding theorem u € C*.

We say that a point x € M 1s a regular point if there is a neighbor-
hood U of x such that x is Holder continuous on U. In view of the above
remark, we could assume small oscillations in place of Hoder continuity
as well. Let Q be the set of all regular points in M. Q is an open set. Its
complement is called the singular set of u, denoted by 2(u). Clearly,

3 (u) 1s a closed set.
3. Preliminary results. As mentioned in the introduction, for sta-

tionary maps, we have a monotonicity inequality.

LEMMA (3.1) ( Monotonicity inequality). Suppose u is a stationary map
from B(O) into N C R*. B(O) is the unit ball in R" equipped with a
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Riemannian metric. For n > 2 we have for 0 < o < p < dist(x,,dB)

(3.1) eChe2. pin /

sz(xo)

quIde—eCAp‘-p%_”-/ \vul’dv
Bpl(x())

> 2 eCA’-lx—xolzfn-|6,u12dV
B, ,(x0)\B, (xo)

where A and C are constants.
For a proof one can read [Pr]. This type of inequality gives some
useful information about the map u. In particular, we see that

(3.2) / Ix = xo|° " |.ul’dV < C - E(u)
B(0O)

where E(u) is the total energy of .
The basic a priori estimates used in this work were obtained by R.
Schoen and K. Uhlenbeck. We state it here as a Lemma.

LEMMA (3.2) [Sch]. Suppose u € C*(B;", N) is harmonic with respect to
a metric g on B;'. Suppose that

AQl (811[3) < gaﬁ < A '(801/3)7
lavga'8| S A * r—l.

There exists ¢ = ¢(A, n, N) > 0 such that if
r2n. vu 2dVS €
J, v
then

2, 2 L p2—n 2
(3.3) r sup{qul}sC r LrIVu] av.

r2

We outline its proof because of its importance in this paper. The
proof of this lemma given in [Sch] makes use of Lemma 1, noticing that
‘C? harmonic’ implies ‘stationary’, to construct a scaled version v of u.
The map v satisfies

|vv|2(0) =1, sup{|Vu]2} <4

in a ball B, with ry <1 if the energy of u is small. Then it follows from
the Bochner formula that in B,

A(lvylz) > -C-|vo|’.
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The conclusion (2.3) is an immediate consequence of the mean value
inequality of C. B. Morrey [M, 5.3.1].

In our regularity proof, this lemma is used in the following way.
Suppose that a point x is away from the singular set =(u). Apply the
Lemma to B,(x) where r = dist(x, 2(u«)). Then

r? ~|Vu|2(x) <C- r2‘”f \vul’av.
Bf
In some cases we can bound
C-r2f |\vul av
[, 19l

by the total energy E(u). Thus we get an a priori estimate of |V u|*:

CE(u)

(3.4) vl <« =2
r

LEMMA (3.3). (First variation formula.) For a smooth family ¢, of
diffeomorphisms which are the identity near 0B we let u, = u o ¢,. We then
have

4

dt
where X = the variation vector field = (d/dt),|,_q, €;, i = 1,...,n form
an orthonormal basis on B.

E(ut)

-, [ldul” - divX = 2( du(v, X), du(e,)) | av

This is a standard result. One can prove it by a change of coordinates.
We mention the following regularity lemma by C. B. Morrey.

LemMma (3.4). (C. B. Morrey). Suppose 0 < a <1 and ¢ < c0. If
ue L(M,N) and

(3.5) v |vulldx < ey
B,[x]

forany x € Band v € (0, %), then u is Holder continuous on B.

4. Higher dimensional singular set. In [Liao] it was proved that
isolated singular points are removable if the total energy is small. A
natural question arises, i.e., what can we say if the apparent singular set
has higher dimension? In this and the next sections we will take on this
problem and prove our main theorem.
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By rescaling and by taking normal coordinates, we can work on a ball
B in R" with a Riemannian metric g, which is almost Euclidean. We
prove the following

PROPOSITION (4.1). Suppose for any K > 0, there exist numbers &,
o € (0,1) depending only on the metric g, K and N so that if
(1) = C the graph of a C** vector valued function

(4.1) [iBARS R, n—d>2, |fha.<K,

and
(2) u € C*(B\ 2, N) is a stationary map with E(u) < ¢, then

o’ "E,(u) < 3E(u),

where E (u) = [p |V u|* dv, B, is the geodesic ball of radius o, where u is
defined by u (x) = u(ox). Thus Proposition (4.1) asserts that

(4.3) E(u,) < 3E(u).

This is an energy improving type of inequality.
We prove it by contradiction.

Proof. Assume that the conclusion is false. Then for i =1,2,3,...,
there is a stationary map

u, € C*(B"\ 2, N),

whose singular set 2, C the graph of a C*vector valued function f; on
R? |fil,.« < K, such that E(u,) < 1/i but

(4.4) 0’ "E (u;) = YE(u,).
Define a scaled map v, by

o, = (u, = ) E(u)]7,
where u; is the average of u;. Note that

E(v)=E(u) -E(u)" =1.

1

By the weak compactness, there is a subsequence (again denoted by v,)
such that (weakly)

v, > v, € L}(M,R¥).
Dividing (4.4) by E(u;), we get
(4.5) o’ "E,(v) 2 §.
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The harmonic map u; satisfies elliptic system
(4.6) Au, = g“’BA(aaul,aﬁui),
where A is a quadratic form. Dividing (4.6) by E(u,)'/?, we get

Av, = E(u,)"? - g*# - A(gp;, 30,).
Letting i — oo, since E(u;) — 0, we get
Av, = 0.
By the Weyl Lemma v, is smooth. Our plan is to show
E,(v,) » E,(v,) asi— .

Let > 0 be an arbitrary constant. The C* boundedness of f, enables us
to extract a subsequence (again denoted by f;) so that f, = f uniformly in
C! norm. The limit f is C"*. Let the graph of f be 2.

S={(x,f(x) €eR":x’€R'N B}.
Consider the tube neighborhood
2= {x eR:dist(x,2) < A}.
Fix A, > O such that for A <A,
4.7 v,
(47) [, s 170

2 1
<3

Cover X, N B, by balls centered at points x,, j=1,2,..., N(A), with
radii p = C; - A. Because the metric g on B is close to the Euclidean
metric, we can arrange so that the number of these balls is bounded. More
explicitly

NA)< C - X9

By the monotonicity inequality
2
wr [ vular < G- E(u).
B,(x,)
In terms of v, we have
/ 'VvildeS Cy-p" 2

B,(x,)

From these estimates, we get

f lvu,|2stN(>\)-f (Vo PdV < G- A4 N2,
B,NZ, B,(x,)
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By assumption n — d > 2, we can take A; > 0 such that
2 1

4.8 vl dV < 3,

(4.8) [, Ivoldv<sn

for i=1,2,3,... and all 0 <A <A,. Fix A >0 such that A <
min(A,, A,). There is an integer I; such that

Z,NB,CZ,NB,
if i > I,. Using the estimate (3.4), we get
|Vl < G

on B,\ Z,. In particular, there is a subsequence (again denoted by v,)
such that

f IVv,lde%/ IVUw|2dV, asi > o0.
B\Z\ B2\
Thus we can take I, > I, so that for i > I,
1
f (|V0i|2 —|V0w|2) dV( <3
From inequalities (4.7), (4.8), and (4.9), we get for i > I,

f ({vU,.|2 —|vvw|2) dVlS %n + %n + %n =1.

(4.9)

Hence we have
E (v;) —E,(v,) asi— co.
In particular, from (4.5) we get
(4.10) 0> "E (v,) = 3.
On the other hand we have from linear theory (cf. [M])

62 "E,(v,) <062 "6" - sup v ' < 02 - C;,
B,
where C, is a universal constant (depending on »). If we fix o small such
that

o’ <icH!
we would have a contradiction to (4.10). Thus the conclusion of the

proposition is true.

S. Proof of the main regularity theorem. We proceed to prove our
main result that a stationary map u, whose singular set = has codi-
mension at least 2, is regular if its total energy is small.
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First let us consider a scaling property. Define
uy . B— R
by
u)\,xo('x) = u(xy — Ax)

as before. We want to show that condition (1) in (4.1) is preserved under
scaling. To see this, let

ue C*°(B\Z,N),
[flia <K,
2={(v,w)eR:v=f(w)eR"“weRNB}.
Let
2, ={(v,w) R v=X"(Aw),w € R“N B}.
Suppose x = (w,v) € the singular set of u,. Then
(Aw, Av) € =,

Thus Av = f(Aw). That is v = A"}f(Aw). Hence x must belong to =,.
Denoting A! - f(Aw) by f,(w), we get

Viw) = vf(Aw),
VA1) = Vh(w,) [=[Vf(Awy) = vf(Awy) |
< K|Awy — Aw,|" < K- |wy — w, |
for 0 < A < 1. Thus f, is again C** and
[ila <K

Next we assume that u satisfies the assumptions of the main theorem.
Let o € (0,3) be given in Proposition (4.1). We write u, = u,,, for
X, € 2. Observe that

E(u,)=0>"-E (u) <iE(u).

By the scaling property we remarked above, u satisfies all conditions in
Proposition (4.1). Hence

0> "E,(u,) < 3E(u,).

We can write this as
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1.€e.,
(62)> " E,(u) <272 E(u).
Observe that one can write this inequality as
E(u,) <272 E(u).
Again u . satisfies the conditions in Proposition (4.1). Thus
0?"E,(u,2) < 3E(u,2),

1.€.,

02”"-(02)2_'1-E03(u) - 272 E(u).

1
2

IA

Hence
(6) 7" Ep(u) <27° - E(u),
E(uaa) < 2-3. E(u)

Repeating this procedure, we get for i = 1,2,3, ...

(5.1) E(u,) <27 E(u).
We claim that there is a 8 > 0 such that for any r € (0, 0)
(5.2) r? "E(u) < C-rf- E(u).

To see that (5.2) holds, take 8 = In2/In(o~') where o is obtained by
Proposition (4.1) and is less than 1/2. Given any r € (0, 0), there is an
integer i such that
01+1 <r< o',
We have
In2
In(o7?)

ln(01+1)

In(67'7#) =1In(o7') + Blnr > In(c7?) +

> 1In(c7') + In(27') + In(27)
> -In(20) + In(27%) > In(27")
since 0 < 20 < 1. Thus
(5.3) o 'rf > 27
We get from (5.1) that
r2"E(u) < C,-(6') " E,(u) < C, - 27E(u).
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By (5.3), we have

r2 " E(u) < Co™t - rf- E(u).

Since o is a constant we can take C = C,0 ! and (5.2) is proved.

By a theorem of C. B. Morrey (cf. [M]) u is regular on a small ball
centered at x,. Apply this argument to every point of 2. We then have
the desired result that u is regular provided its total energy is less than e
given by the Proposition (4.1). Thus the main theorem has been proved.
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