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KUNIO MURASUGI

Let L be a link in S3 which has a prime period and L* be its factor
link. Several relationships between the Jones polynomials of L and L*
are proved. As an application, it is shown that some knot cannot have a
certain period.

1. Introduction. Let L be an oriented link that has period r > 1. That
is, there exists an orientation preserving auto-homeomorphism φ: S3 -» S3

of order r with a set of fixed points F = S1 disjoint from L and which
maps L onto itself. By the positive solution of Smith Conjecture, F is
unknotted. Let Σ3 = S3/φ be the quotient space under φ. Since F is
unknotted, Σ 3 is again a 3-sphere, and S3 is the r-fold cyclic covering
space of Σ 3 branched along F.

Let ψ:,S 3 ->Σ 3 be the covering projection. Denote ψ(L) = L*,
which is called the factor link, and let VL(t) and VLJ^t) denote, respec-
tively, the Jones polynomials of L and L*.

In this paper, we will prove some relationships between VL(t) and
Vu(t) which are analogous to those between their Alexander polynomials
[M2]. In fact, we will prove

THEOREM 1. Let r be a prime and L a link that has period rq, q > 1.
Then

(1.1) VL{t)=[Vu{t)\" mod(r,ίr(/)),

where tAt) = Σp*(-t)J-tir-l)/2.

If L is not split, then we are able to prove a slightly more precise
formula.

Let lk(X, Y) denote the linking number between two simple closed
curves X and Y in S3. Then we have

THEOREM 2. Let r be a prime and L a non-split link that has period rq,
q>\.

319



320 KUNIO MURASUGI

(1) // lk(L, F) = 1 (mod 2), then

(1.2) VL(t) * [Vjt)]" mod(r,ηr(0),

where ηr(t) = [Σ'-J0U + l)H) y](l + tr) - t'~\
(2) // lk(L, F) = 0 (mod 2), then

(1.3) ^ ( O = K ( θ Γ mod(ι , {,(/)).
Note that η r(ί) = 0 mod(r, £r(ί)) (See Lemma 6 in §3.) As a simple

consequence, we obtain

COROLLARY 3. Let b be an n-braid and let Vb(t) be the Jones

polynomial of the closure b of b. Let r be a prime and q>\. Then

Formulas (1.1), (1.2), and (1.3) involve slightly larger ideals than those

in the corresponding formulas about the Alexander polynomials [M2].

However, they are the best possible. To see this, consider an ̂ -component

trivial link L. L has any period r and a factor link L* is also an

^-component trivial link. Since VL(t) = VLm(t) = (-l)"~\St + 1/ ft)n~\

the formula VL(t) = [VL(t)]r (mod/) holds only if the ideal / contains

£,.(/)• We should note that while the Alexander polynomial of a link may

vanish, the Jones polynomial of a link never vanishes.

Corollary 3 is also verified for n = 3 by a direct computation using

Theorem 21 [J] and Theorem [M2].

These formulas may have more theoretical values than practical

values. (See Proposition 7 in §4.) Nevertheless, we can prove that 10105

cannot have period 7 (Proposition 10). This solves one of several unde-

cided cases for knots with 10 crossings.

2. Proof of Theorem 1. Since it suffices to prove Theorem 1 for q = 1,

we assume that L has a prime period r. In this section, we prove that

Theorem 2 implies Theorem 1.

Suppose that L has period r and let φ be an orientation preserving

auto-homeomorphism of S 3 that maps L onto itself. Suppose that L

splits into k components Lv L 2 , . . . , Lk. Then φ must map a split

component not having period r onto another split component not having

period r. Therefore, split components of L are divided into λ + 1 sets

Ax = [Lv . . . , L r}, A2 = \Lr+v . . . , L 2 r ) , ...,Ah = ( L ( / 2 _ 1 ) r + 1 , . . . , Lhr)

a n d B = { L h r + V . . . , L k } s u c h t h a t a n y t w o l i n k s i n A i ( i = l , 2 , . . . , h )

are ambient isotopic and a link in B has period r. The factor link L*,

then, has h 4- (k - hr) ( = k - h(r - 1)) split components. Noting that

the factor link of the r-split component link Lsr+ι U ••• U L ( ί + 1 ) r is
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Lsr+V 0 < s < h - 1, we have

(2.1) (1) ]^0=[-(v/7+^)pΠM'), and

[ / 1 \~\k-h(r-l)-lh-l k

-K + T Π ^ + 1 ( 0 Π vLj{t).
\ yjt ]\ 5 = 0 sr+1 j = hr+l J*

Now Theorem 2 implies that for y = hr + 1,..., k, VL(t)= VL(t)r

mod(r, ξr(t)) and hence
r[k-h(r-l)-l]h-l k

ππ
Γ / I

(2.2) κ j / r - - U + - ^
Γ / 1 \1*-A(r-1)-1

Comparing (2.2) with (2.1) (1), we see that Theorem 1 will follow from

Lemma 4 below.

LEMMA 4. For a prime r,
k-h(r-l)-l

j=-}"~1 mod(r,ίr(/)).

. Since ίΓ(/) = (1 + t)r'1 - t{r~l)/1 (modr) by Lemma 6
(proved in §3), it follows that (Jt + ( l / V ^ ) ) ^ 1

 = ( ( / + 1 ) / / / ) M Ξ 1

(mod(r,{ r(/))). Since r is a prime, (_i)^-Mr-i)-i = (_i)^-i (modr). D

3. Proof of Theorem 2. We may assume that q = 1 and L is not split.

Let ζ be the rotation of R2 about the origin 0 through 2π/r. Since L

is a link having period r, L has a diagram L ( ί {0}) on i?2 which is

divided into r pieces Lo, Ll9...,Lr_1 such that f(L;) = L / + 1, / =

0 , 1 , . . . , r - 1, Lr = Lo. Let i?(0,27r/r) be the closed domain bounded

by two half lines θ = 0 and 0 = 2π/r in the polar coordinate system. We

may assume that Lo = L Π i?(0,2π/r). Let f̂1? ^4 2 , . . . , Aί be the points

of intersection of L o and the line 0 = 0 and \ziζ(Ai) = B^ i = 1,2,...,/,

4 f # 5 r By joining 4̂,- and Bt on i?2 by a circle C7 centered 0, we obtain

a diagram L* of the factor link L* = ψ(L). For simplicity, we write

L^ = L/f. L^ divides R2 into finitely many domains, which we classify

as shaded or unshaded. Now unshading the domain containing 0, we have

the graph Γ* of L*. We may take 0 as one vertex of Γ*. Furthermore, we
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can assign + 1 or -1 to each edge of Γ* [M4]. Similarly, we have the
graph Γ of L by unshading the domain containing 0. Γ is also an oriented
graph. Using Γ and Γ*, we can evaluate VL{t) and VLJ^t) as follows. (See
[M4].)

Let p' and n' be, respectively, the number of positive and negative
edges in Γ. Let S(a, b), 0 < a < p' and 0 < b < n\ be the collection of
subgraphs obtained from Γ by removing exactly a positive edges and b
negative edges. S(a, b) contains (ζ) (jf) subgraphs.

For y e S ( f l > 4 ) , let μ(γ) = bo(y) + bτ(y)9 where Z>,(γ), ΐ = 0,l,
denotes the /th Betti number of γ as a 1-complex. Then the bracket
polynomial P~L(A) defined in [K] associated with the link diagram L is
given by the following formula:

(3.1) PL(A)= Σ Ai>'-2«-
0<a<p' y<=S(a,b)
0<b<n'

Note that (3.1) is equivalent to the formula (2.10) in [M4].
We will use (3.1) to evaluate P~L(A) and P~L^(A).
Let p and n be, respectively, the number of positive and negative

edges in Γ*. Then Γ has exactly rp positive and rn negative edges, i.e.
pf = rp and n' = rn. Let S*(a,b) be the collection of subgraphs of Γ*
which is defined in a similar way to S(a, b). Then we have

(3.2) PU{A)= Σ A>-2a-n+lb Σ [-(A2 + A-2)]μ(y^~\

0<b<n

Since the rotation ξ: R2 -> R2 maps L onto itself, we may assume
that ζ maps the graph Γ onto itself, preserving the sign of each edge. In
other words, ξ defines an automorphism of the oriented graph Γ.

If lk(L, F) = 1 (mod 2), then the unbounded domain is shaded.
Therefore, ξ fixes only the origin 0. If lk(L, F) = 0 (mod 2), however, the
unbounded domain is unshaded, and hence, ξ keeps exactly two vertices 0
and oo fixed, where oo is a point associated with the unbounded domain.
Therefore, if lk(L, F) = 0 (mod 2), ξ may be considered as an automor-
phism of the graph Γ in S2 which keeps the north and south poles fixed.

Case AAk(L, F) = I(mod2).
In this case, Γ is the r-fold cyclic covering of Γ branched at 0. Take

Case 1. γ is not fixed under ξ, i.e. f(γ) Φ γ.
This is, of course, the case when a Ψ 0 (mod r) or b Φ 0 (mod r). In

this case, γ, f(γ), f 2 (γ) , . . . , ζr~\y) are all distinct, but, since any two of
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these are isomorphic, we have exactly r identical terms in P~L(A), and they

vanish by reducing modulo r.

Case 2. y is fixed under ξ setwise, i.e. f(γ) = γ.

In this case, a = b = 0 (mod r). Write a = ra' and b = rb'. Then γ

defines a unique quotient subgraph γs|c( = y/ζ) £ S*(a\ b').

Let a and α*, be, respectively, the terms in P~L(A) and P~LJ^A) which

are associated with γ and γ*. Since pf = rp and nf = r«, we have

(3.3) (1) α = ̂ ( ^ 2 ^ - ^ 2 ^ [ - ( ^ 2 + ̂ - 2 ) ] / x ( γ ) - 1 , and

(2) a* = Ar-la'

We will compare μ(γ) - 1 and μ(γ*) - 1.

If we use the fact that γ is the r-fold cyclic cover of γ*, it is not

difficult to find some relationship between bλ(y) and 6χ(γ*).

Consider connected components of γ. Let DQ, Dv . . . , Dk,

D1Λ,..., Dlr, D2V..., D2r,..., DmV..., Dmr be connected components

of γ such that

(3.4) (1) Do contains the origin {0}, and ζ(D0) = Do,

(2) />f (i = 1,2, — , k) is a component ( € {0}) of γ such

(3) {Dj 1 ? . . . , Dy ϊ Γ }, (7 = 1,2,..., m) is a set of components

of γ which permutes by f

Then connected components of γ* consist of the sets: D[ = DJζ

(/ = 0,1,2,...,/:) and i); α = Djλ (j = 1,2,. . . , / * ) .

We compare ^(D,.) and b^D^χ) with ft^Z)/) and b^Djj).

LEMMA 5.

(3.5) (1) M A ) ) - ' * ! ^ ) *

(2) ^(A) - 1 = rfaiDl) - 1} /or 1 < i < k,

(3) bx{Dn) = ^ ( i ) y , λ ) = ^ ( Z ) ^ ) for 1 < 7 < m α π J

1 < λ < r.

Proof. (1) Let d^ and ej, denote, respectively, the number of vertices

and edges of DQ. Then, since Do is the r-fold cyclic covering of D$

branched at 0, the number of vertices and edges of Do are given by
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r(d'ϋ — 1) + 1 and re'Q respectively. Therefore

'Q - e'o) - r

and hence, bx(D0) = rb^D^).
(2) Since Z), is the r-fold (unbranched) cyclic covering of Z>ό> it

follows that χ{Dt) = rχ(i)/), where χ denotes the Euler characteristic.
Since χ(Dt) = 1 - ftx(Z),.), we have

and hence, ft^Z),) - 1 = r{bY{Dl) - 1}.
(3) is obvious.
Now we compare μ(γ) - 1 and μ(γ*) — 1. Using Lemma 5, we

obtain

k m r

= bx(D0) 4- £ bx{ Z), ) + E Σ biiDj,x) +k + l + rm-l

k m

= rb^D'o) 4- £ { ^ I ( A O - ^ •+• l) + Σ r^i(^/i) "̂  ^ + r m

7 = 1 y = l

A: m

Do) 4- 2^ ^ivA j "̂ " 2^ ^

— rk — rm — rk 4- k 4- k 4- rm

= '•[^(γ*) 4- &0(γ*) — l] — 2/c(r —

Using this equality, we have

(3.6) cmaί m o d J H ^ + Λ-2)

In fact, a simple computation shows that

B. lk(L, F) s 0 (mod 2).
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We consider connected components of γ e S(a, b). Let
Do, Di,. , Dk9 D^ D1V . . . , Dlr, D2V . . . , D2r,..., DmV . . . , Dmr, be

connected components of γ which satisfy (3.4) (2) and (3). Furthermore,
DQ and D^ are such that

(3.7) Do contains {0} and D^ contains {oo}, and ξ(D0) = Do

and ξ(DJ = DM.

It may occur that Do = D^. We should note that γ is the r-fold cyclic
covering of γ* branched at 0 and oo.

Now (3.5) (2) and (3) are still valid under the present case. Only (3.5)
(1) should be changed to the following.

(3.8) (i) If Do Φ D.,, then b^D,) = rb^Dfi and

M A O ) = ' * I ( J > ; ) .

(ii) If Do = />„, then b^D,) + 1 = r{bλ{D^) + l}.

Proof, (i) follows from the fact that Do and D^ are, respectively, the
r-fold cyclic coverings of D'o and D^ branched at 0 and oo.

(ii) Do(= D^) is the r-fold cyclic covering of D$ branched at 0 and
oo. Let df and e' denote the number of vertices and edges of Df

0. Then

1 _ bx(D0) = 2 + r(d' - 2) - re' = r(d' - e') - 2r + 2

which yields bx{D0) + 1 = rίft^D^) + 1}.
Using (3.8) (i) and (3.5) (1), (2), we obtain the following formulas,

(i) When Do Φ D^

Σ biW + ^(

m r

+ Σ Σ *i(0, .λ) + A: + 2 + rm - 1

i(0ό) + _Σ {rbx(D;) - r + 1}

m

ι{D^) -f Σ ^1(^,1) + k + 1 + rm

(continues)
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(continued)

_ ( ,

— kr + k —

(ii) When

k
\~*

/ = 1

rk- r

( * ; ) •

— rm

k

KUNIO MURASUGI

m

+" bΛD ) ~\~ / . bA D'

7 = 1

4- k 4- 1 + rm

m r

i) + k-\h 2

Σ Σ *i(^>λ) + ̂  + 1 + ™
1 = 1 y = l λ = l

= rb^Dfi + r - 1 + Σ ^(D/) + Σ ̂ i(^;,i) + * +rm

= η M J>ό) + Σ 6i(/)/) + Σ bλ(D'hl) + /c + 1 + m - 1
I / = 1 y = l j

— rk — rm + r — I + k + rm

Therefore, we have

(3.9) a = aί mod([-(^2 + A~2)}r~l - l).

Now it only remains to show the following simple lemma.

LEMMA 6. For any prime r,

(1) (/+ I ) * ' " 1 ' - / ' - 1 - ηΓ(/) (mod.).

(2) (ί + lΓ 1 -/'- 1 / 2 ^/) (modr).

Proof. If r = 2, the lemma is obvious. Therefore, we assume that r is

an odd prime. Then it suffices to prove the following.

(3.10)

(1)

(2) (2;;/)-(-l) J(y + l) (modr),

(3) ( ' • - 1 ) Ξ ( - 1 ) ^ (modr).



JONES POLYNOMIALS OF PERIODIC LINKS 327

Proof. Firstly, (3) is obviously true for j = 0 and 1. Since φ = Cj 1 )
+ (rjZ\), it follows by the induction hypothesis that 0 = (rJλ) + (-1)-7'"1

(mod r) which yields (r~ι) = (-l) y (mod r). This proves (3). Secondly, (1)
is trivially true for j = 0 and 1. Now for 1 < 7 < r - 1,

2 r - 2

Using the induction hypothesis, we can write

for some integer k. Then

) ( l ) ( y ) (-iy-ι2r + ^ ( 2 r - y - 1).

Since (2 r~2) is an integer and r is a prime, y | k(2r — j — 1) and hence

(modr).

This proves (1). Finally, since r is odd and r — j — 2 < r — 1 for 0 < j <
r - 1, (3.10) (1) implies that

= (-ir J *'O + 1) » (-l)'O + 1) (modr).

This proves (2). Π
Let / be the ideal in Z[A, A'1] generated by r and

[-(A2 + A-2)]1{r~l) - 1 (or [-{A1 + A'2)} r~ι - 1 in Z[A,A-1))

when lk(L,F) = 1 (mod2) (or lk(L,F) = 0 (mod2)). The Lemma 6
yields that PL(A) = [P~L^A)Y (mod/). Let w(L) be the twisting number
(or the writhe) of L. Then, since w(L) = rw(L*), it follows that

fL(A) = (-A)'3w(L)PL(A) = M ) - 3 ™ ( ^

( m o d / )

Here fL(f1/4) = ^ ( 0 [K] and Theorem 1 follows from Lemma 6. A
proof of Theorem 2 is now complete.
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4. Applications and remarks. Formula (1.1) may not be used to

determine whether a knot (but not a link) K has small prime period

r < 5. In fact, we have the following

PROPOSITION 7. Let Kbe a knot. Then for r = 2,3 or 5,

(4.1) Vκ{t)^\ mod(r, *,(/)).

Proof. First, note that ξ2(t) = 1 - / - {t, £3(t) = 1 - It + t1 and

ξ5(t) = I - t - t3 + tA. Now, as is well known (Definition 17 [J]), 1 -

Vk(t) = 0 mod£ 5 (0, and hence Vκ(t) s 1 mod£5(/). Furthermore, con-

gruences 1 - / + t2 = (1 - t - i/ί)(l - t - ft) (mod2), (1 - /)(1 - /3)

s (1 - ί + r2)(l 4- t2) (mod2) and (1 - ί)(l - ί3) s ( 1 - 2 / 4 - ί 2 ) .

(1 + ί + t2) (mod 3) prove Proposition 7.

It is also easy to show that for any prime r > 5, ξs(t) | ζr(t).

P R O P O S I T I O N 8. Let r be an odd prime > 5. Let ω and r denote,

respectively, a primitive (r — l)/2th-root and ( r + \)/2th-root of unity. If

a link L has period r, then

(4.2) (1) VL(ω)=VL+ω) (modr)

(2) VL(r) = V^T-1) (modr).

Proo/. From Theorem 1, we see that VL(t) = VLφ(t)r = VL^{tr)

mod(r, ir{t)). Note that

€r(0 = T r y - '(r"1)/2 = 1^7(1 - ί(r

Since

a substitution ω or T for r in FL(/) and FL φ(ί r) proves (4.2).

COROLLARY 9. Under the conditions of Proposition 8, // L* is un-

knotted, then

(4.3) VL(ω)^ F L ( τ ) s l (modr).

Using Corollary 9, we can prove the following

PROPOSITION 10. The knot 10105 in [R] /jos no period.
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Proof. According to [B-Z, p. 312], 7 is the only possible period of
10105. Suppose that K has period 7. Since K is alternating and fibred
[Ml], the factor knot K* is either unknotted or fibred [M3]. Since
Δκ(t) = 1 - 8ί + 22t2 - 29t3 + 22t4 - 8/5 + t6 = (1 + t)6 (mod7), it
follows from [M2] that K* must be unknotted. Therefore, by Corollary 9,
Vκ(ω) = l and Vκ(τ) = 1 (mod7), where ω = elmi/3 and r = elmi/A

= / T . Since Vκ(t) = r 7 - 4 r 6 + 8 r 5 - 1 2 r 4 + 15r 3 - 15r 2 +
14r x - 11 4- It - 3/2 + t\ we have Vκ(fΛ) = -1 (mod7). Therefore,
K cannot have period 7.

REMARK. A similar argument reveals that if K = 10101 in [R] has
period 7, then the factor knot cannot be unknotted.
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