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We give the complete solutions of the equations 2*3V + 1 = 27 +
3%,2%37 +2°=3"+1 and 2°3Y + 3" = 2% + 1 in integers x, y, z, w.
We use this to prove that every large rational number has at most four
representations of the form 2°3f + 27 + 3%, Finally we prove that, for

given integer » and prime numbers p;,..., p;, every rational number
m has at most C representations of the form )" pht ... pkt where
ki, ..., ki, are integers.

0. D. J. Newman conjectured that if w(n) denotes the number of
solutions of n = 2% 4 3% 4 2¢34 then w(n) is bounded (see Erdés and
Graham [4] p. 80). Evertse, Gy6ry, Stewart and Tijdeman [6] Theorem
6(a) settled this conjecture. We call two representations x| + - - - + X,
and xj + --- + x,, distinct, if the unordered tuples (x,...,x,) and
(x{,...,xy) are not the same. In §2 we prove that the number of
distinct representations of a rational number m as 2238 + 27 4+ 39 js
at most four, if m exceeds a certain constant. The number four is the
best possible.

To prove this result we need not only the Main Theorem on S-Unit
Equations (Lemma 4) as in [6], but also the complete solutions of the
diophantine equations mentioned in the first paragraph of this paper.
Here we recall the remark of Brenner and Foster ([2] Comment 8.037)
that the class of equations

1+ (pg)®* = p® +¢°

where p, g are given distinct primes, does not seem to be amenable
by their (congruential) method. We show in §1 how the more general
equation
1+p*¢Y=p"+4q”

can be treated by Baker’s method for estimating linear forms in the
logarithms of algebraic numbers. The essential tool in §1 is Lemma
1, due to Ellison [3] and specially made for the primes p = 2, g = 3.
De Weger [10] has proved a corresponding result for all primes p, g
with 2 < p < g < 200 and the method works for any pair of prime
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numbers. Thus the methods in §§1 and 2 extend to any pair of prime
numbers p, g in place of 2,3. The referee kindly pointed out to the
authors that the methods used in §1 are quite similar to the following
result, which is Theorem 2.3 in Paul Vojta’s thesis [8]. In particular,
Vojta gives an effective procedure for obtaining our Theorems 1-3,
although he does not actually carry out this procedure.

THEOREM (Vojta [8]). Let S be a finite set of places of Z containing
at most 3 elements. Fix integers a,b,c,d. Then there are only finitely
many solutions to the equation ax + by +cz+d =0 in S-units x, y, z;
and these solutions can be effectively bounded in terms of a, b, ¢, d, and
S.

The crucial point is that the set .S can contain at most 3 elements.
In a letter to one of us, P. Erd6s asked whether we can prove that
every integer has at most C representations of the form

203857 2038 4 2650 ... 4 34 4 54

We prove in §3 the much more general result that for any positive

integer n and any prime numbers py,..., p; there exists a number C
such that every rational number m has at most C representations of
the form )7, p{‘" ptk" where k;1,..., k;; are integers. Some weaker

results in this direction are given in [6, §6]. We cannot answer Erdés’
question in a later letter to find a number C which depends only on
n and ¢ (hence is independent of the primes p;,..., p;), since the
corresponding problem for the Main Theorem on S-Unit Equations
has not been solved yet. In Theorem 6 we extend the above mentioned
results to algebraic number fields.

1. The diophantine equations 2*3Y + 1 = 27 4 3%, 2X¥3V 4 27 =
3" + 1 and 2¥3Y + 3% = 27 + 1. Let Z denote the set of rational
integers, and N the set of non-negative rational integers. We call the
solutions (x, y, z,w) = (x, 0, x,0) and (0, y,0, y) for the first equation,
= (0,,0,y) for the second equation and = (x, 0, x,0) for the third
equation (where x, y € Z) the trivial solutions. We shall determine all
non-trivial solutions in Z*.

THEOREM 1. The equation

(1.1) 23V +1=224+3%
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has exactly twelve non-trivial solutions (x, y, z,w) € Z*:
(1,1,2,1),(1,2,4,1),(2,0,1,1),(2,1,2,2),(3,1,4,2),(3,2,6,2),
(4,0,3,2),(4,2,6,4),(5,1,4,4),(-2,2,-2,1),(2,-1,1,-1),
(6,-2,3,-2).

THEOREM 2. The equation
(1.2) 237 422 =3"+1
has exactly eight non-trivial solutions (x, y, z, w) € Z*:
(1,0,1,1),(1,0,3,2),(1,1,2,2),(1,2,6,4),
(2,1,4,3),(3,0,1,2),(3,1,2,3), (-1,1,-1,0).
THEOREM 3. The equation
(1.3) 2¥37V 4+ 3% =2%2+41
has exactly nine non-trivial solutions (x, y, z, w) € Z*:

(1,0,2,1),(1,1,3,1),(1,1,5,3),(1,5,9,3),(3,0,4,2)
(3,1,5,2),(4,1,7,4),(4,3,9,4),(3,—1,1,-1).

The following lemma, proved by Baker’s method for estimating lin-
ear forms in logarithms of algebraic numbers, is basic for the proofs.

LeMMA 1. If x, y € Ny with x > 10, then
|2*¥ — 3¥] > exp(x(log2 — 0.1))

apart from the exceptional pairs (x,y) = (10,6),(11,7),(13,8),(14,9),
(16, 10), (19, 12), (27, 17).

Proof . For x > 27 this was proved by Ellison [3] (cf. de Weger [10],
Theorem 4.3). It is easy to check the remaining range 10 < x < 27. O

The next result is due to L. Hebreus who lived around 1300.

LEMMA 2. The equation 2* + 1 = 3Y has exactly two solutions
(x,y) € Z?, namely (1,1) and (3, 2).

The equation 37 + 1 = 2* has exactly two solutions (x,y) € Z?,

namely (1,0) and (2, 1).

Proof . See Alex [1] Lemma 2.1.
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Proof of Theorem 1. First we find all solutions in N§. It is obvious
from (1.1) that x = 0 if and only if z = 0, and that w = 0 implies
y = 0. In these cases we have trivial solutions only. Further, if z =1
in (1.1), then y = 0, hence, by Lemma 2, (x, y,z,w) = (2,0,1, 1) is the
only non-trivial solution. From now on we assume that x > 1, y > 0,
z>2,w>1.

From (1.1) and min(y, w) > 1, we see that

3min(y,w) | 2z _ 1
which implies

2. 3min(y,w)—l <z
Hence

min(y, w) < log z + 0.4.

Similarly, from (1.1) and min(x, z) > 2,

2min(x,z) l ¥ _1
which implies

2min(x,z)~2 <w.
Therefore
min(x, z) < (log2)~'logw + 2.
We distinguish between four cases.

Case 1. y <logz + 0.4 and x < (log2)~!logw + 2.
If z < w, then (1.1) implies

3w—logz—04 ~ 3w—y . 9x . 2(log2)“logw+2,

hence

w< 2logw + 1.7.
We infer
(1.4) 2<z<w<4

If z > w, then (1.1) implies
22—(log2)"logw—2 <2FX <3 < 3logz+0.4

hence
z<31llogz+2.7.

We infer

(1.5) 1<w<z<O.
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By (1.4) and (1.5) we find in Case 1:

{ y < log9 + 0.4, hence 0< y <2,
x<log8/log2+2, hencel <x<4.

By (1.4), (1.5) and (1.6) all solutions of (1.1) in Case 1 are contained

in the list: (x,y,z,w) = (1,1,2,1),(1,2,4,1),(2,1,2,2),(3,1,4,2),

(3,2,6,2),(4,0,3,2),(4,2,6,4).

(1.6)

Case 2. y <logz+0.4 and z < (log2)!logw + 2.
Clearly, if w = 1, then z = 1, y = 0, x = 2. Thus we may assume
w > 2. We have

y <logz + 0.4 < log((log2)~'logw +2) + 0.4

<loglogw +2 < 0.1w + 2.

Since (1.1) implies 3"~7 < 2%, we obtain
09w -2 <w-—y<(log2/log3)x,
hence
(1.7) w<0.8x +2.3.
If x > 9, then we have by Lemma 1 for non-exceptional pairs
(x,w—y):
exp(x(log2 — 0.1)) < |2¥ — 3¥~7| < 27 — 1 < 2(los2)" logw+2
and so, by (1.7)
x(log2 —-0.1) < logw + 1.4 < 1og(0.8x + 2.3) + 1.4.

This implies x < 5 which is a contradiction. For the exceptional pairs
we find 10 < x <27,2<w<23,2<2<6,0<y<2 The
exceptional pairs (x,w) = (10,6 + y), (11,7 + y), (13,8 + »), (14,9 +
¥), (16,10 + ), (19,12 + ), (27,17 + y) with 0 < y < 2 do not yield
new solutions of (1,1). If 1 < x < 9, then 2 < w < 9 by (1.7),
hence 2 < z € 5, 0 < y < 2. In these ranges we find the solutions
(x,y,z2w)=(2,1,2,2),(3,1,4,2),(4,0,3,2),(5,1,4,4).

Case 3. w <logz + 0.4 and x < (log2)~'logw + 2.
In this case we have
(1.8) x < 1.5loglog z + 3.
If z — x > 27, then it follows from (1.1) and (1.8) and Lemma 1 that
exp((z — 1.51oglog z — 3)(log2 — 0.1))
< |277% — 3¥| < 3%/2 < 3logz+04 )
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Hence
z<19logx + 1.5loglogz + 3.4

and therefore z < 8, which yields a contradiction.

Ifz—x<27,then2<z<31by(l.8),hencel <w<3,1<x<3.
By (1.1) we have

y <log(23! + 33)/log3 < 19.6.

Thus 0 < y < 19. By checking the ranges for x, y, z, w we find that
the solutions of (1.1) in Case 3 are contained in the list: (x, y, z, w) =
(1,1,2,1),(1,2,4,1),(2,1,2,2),(3,1,4,2),(3,2,6,2).

Case 4. w < logz + 0.4 and z < (log2)~!logw + 2.
In this case we have

z < (log2)~!(log(log z + 0.4)) + 2 < (log2) ! loglog z + 3.

Hence 2 < z < 3, w = 1. By (1.1), 2¥37 < 23 4+ 3! = 11, hence
1 < x <3,0< y <2 Thereis only one solution in these ranges,
(x,y,z,w) =(1,1,2,1). We conclude that equation (1.1) has exactly
nine non-trivial solutions (x, y, z, w) € N2, namely

(1,1,2,1), (1,2,4,1), (2,0,1,1), (2,1,2,2), (3,1,4,2),
(3,2,6,2), (4,0,3,2), (4,2,6,4), (5,1,4,4).
Next, we consider the case in which some of X, y, z, w are negative.

It is easy to verify that there are only trivial solutions if x < 0 and
y <0andif x <0and y < 0. Hence we may assume xy < 0.

(1.9)

Case (i). x< 0 and y > 0.
We have
3V 4 olxl = olxl+z 4 olxigw,

Thus w > 0 and |x| + z = 0. Therefore x = z. It follows from (1.9)
that the equation
213w 41 = 2kl 4 3y

has only one solution (|x|, w, |x|, y) = (2, 1,2,2). Hence (-2,2,-2,1)
is the only non-trivial solution of (1.1) in Case (i).
Case (i1). x>0 and y < 0.

In this case we have

2% 4 301 = 2231 4 3lyl+w,
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Then z > 0 and |y| +w = 0, hence w = y. From (1.9) we see that the
equation

2237l 4 1 = 2% 4 3
has exactly two solutions (z, |y|, x, |¥]) = (1,1,2,1),(3,2,6,2). There-
fore (2,—1,1,-1) and (6, —2, 3, —2) are the only non-trivial solutions
of (1.1) in case (ii). O

The proofs of Theorems 2 and 3 are somewhat simpler than the
proof of Theorem 1, since we can use the following lemma.

LEMMA 3. (a) If 29 | 35 + 1, thena < 2. (b) If 3% | 22 + 1, then
b<3.

Proof . (a) The assertion is true for » =0 and b = 1, and 30+2 = 36
(mod 8). (b) The assertion is true fora = 0,1, ..., 53 and 24+34 = 2¢4
(mod 81). m]

Proof of Theorem 2. First we consider all solutions in Ng. We find
only trivial solutions if z = 0 or w = 0. Thus we may assume that
x>0,y>0,z>1,w>1. By (1.2) and Lemma 3(a),

min(x, z) < 2.
By (1.2) and min(y,w) > 1, we derive from 3mir(»¥) | 2z — | that
2. 3min(yw)-1 < 7 hence
min(y, w) < log z + 0.4.

We again distinguish four cases.

Case1.0<x<2and 0<y<logz+04.
If z> 9 and (z, w) is a non-exceptional pair, then, by Lemma 1,

exp(z(log2 — 0.1)) < |27 — 3¥| < 2¥3V < 2231082404

hence
z< 2logz+ 3.1.

This implies z < 6 which yields a contradiction. For each exceptional
pair (z,w) the number 3" — 2% + 1 has a prime factor greater than
3, so that there are no solutions of (1.2) in Case 1 with z > 9. If
1 <z<9, then 0 <y < 2. By (1.2) we have 3* < 2232 4 29, hence
1 < w < 5. By simple computations we find that the solutions in Case
2 are contained in the list:

(xy.zw)=(1,0,1,1),(1,0,3,2),(1,1,2,2),(1,2,6,4),(2, 1,4, 3).
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Case 2. 0 < x <2and w<logz+0.4. By (1.2) we have
27 < 3% <« 3logz+0.4

and so z = 1. Hence w = 0. This is impossible.

Case3. 1<z<2and y<logz+04.

If z =1, then y = 0 and, by Lemma 2, we find the two solutions
(x,y,z2w) =(1,0,1,1),(3,0, 1, 2).

If z=2,then0 < y <1 If y =0, then 3¥ — 2*¥ = 3 which
is impossible. If y = 1, then 3% — 3 -2%¥ = 3, hence 3*~! | 2* + 1.
By Lemma 3(b) we have 1 < w < 4. Since 2* < 3*~1, we find
x < 4. Now we obtain the following solutions of (1.2): (x,y,z,w) =
(1,1,2,2),(3, 1,2, 3).

Case4.1<z<2and w<logz+0.4.

Thus w = 1. By (1.2) we have 3 < 3. Hence y = 0. This yields
the solution (1,0,1,1).

We conclude that (1.2) has exactly seven non-trivial solutions
(x, ¥, z, w) € N3, namely

(1,0,1,1),(1,0,3,2),(1,1,2,2),(1,2,6,4)
(2,1,4,3),(3,0,1,2),(3,1,2,3).
The argument for solutions with some negative values is similar to

that in the proof of Theorem 1. Using (1.10) we obtain only one
additional non-trivial solution in Z*4, namely (-1, 1, -1, 0). o

(1.10)

Proof of Theorem 3. Without loss of generality we may assume that
x>1,y>0,z>2,w>1. By (1.3) and Lemma 3(b), we have

min(y, w) < 3.

By (1.3) and min(x, z) > 2, we derive from 2min(x2) | 3% — |, that
2min(x.z)-2 < w_hence

min(x, z) < (log2)~'logw + 2.

We again distinguish between four cases:

Case1.0<y<3and 1 <x< (log2)~'logw + 2.
Since (1.3) implies 3% < 2%, we have w < 0.631z and

(1.11) |27 — 3%| < 2%3Y < 2(loe2)7'logw+233 — 108w < 69z.
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If z > 11, then, from (1.11) and Lemma 1, we obtain for non-excep-
tional pairs (z, w),
z(log2 —0.1) < log|2? — 3"| < logz + 4.3.

Hence z < 11, which yields a contradiction. For each exceptional pair
(z, w) the number 27 — 3" + 1 has some prime factor greater than 3.
Thus there are no solutions in this case with z > 11.

If2<z<11,then0 <w<0.631z < 6.95, hence 1 < x < 4. By
checking these ranges for x, y, z, w we find the solutions: (1,0,2,1),
(1,1,3,1),(1,1,5,3),(3,0,4,2),(3,1,5,2),(4,1,7,4), (4, 3,9, 4).

Case2. 0<y<3and2<z< (log2) llogw + 2.
By (1.3), we have

W< 2% < 2(log2)“logw+2
hence w = 1 and therefore z = 1, which is impossible.

Case3. 1<w<3and1<x< (log2) !logw +2.
Hence 1 < x < 3. Obviously z > x. It follows from (1.3) that
277 - 37| <|3% - 1]/2 < 13.

If z—- x> 9, then we obtain from Lemma 1 for non-exceptional pairs
(z—Xx,p) that (z — 3)(log2 — 0.1) < log13. This implies z < 7 which
yields a contradiction. It is easy to check that |227* — 3Y| > 13 for
each exceptional pair (z — X, y). Thus each solution of (1.3) in Case
3 satisfies z — x < 9, hence z < 12. If 2 < z < 12, then, by (1.3),
0 < y < 7. We find that all solutions in this case are contained in the
list: (1,0,2,1),(1,1,3,1),(1,1,5,3),(1,5,9,3),(3,0,4,2),(3,1,5,2).

Case4. 1<w<3and2<z<(log2)~!logw+2.

Hence 1 <z<3,1<x<3,0< y< 1. These ranges are covered
in Case 1.

We conclude that (1.3) has exactly eight non-trivial solutions
(x, ¥, z, w) € N¢, namely
(1,0,2,1),(1,1,3,1),(1,1,5,3),(1,5,9,3)
(3,0,4,2),(3,1,5,2),(4,1,7,4), (4, 3,9, 4).
The argument for solutions with some negative values is similar to

that in the proof of Theorem 1. Using (1.12) we obtain only one
additional non-trivial solution in Z*, namely (3, -1, 1, —1). m]

(1.12)

2. The number of representations of the form 2234 + 27 4+ 3%, In this
section we tacitly assume that the numbers o, f, 7,  in a representation
2238 4 27 4 3% are integers.
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THEOREM 4. There exists a real number M such that every rational
number m > M that admits more than three distinct representations
2038 4 27 + 30 s of the form 29 4 3b. If m = 22 + 3b, then the repre-
sentations are given by

247130 4 ga-1 4 3b = pa=231 4 ga=2 4 35 — pl3b=1 4 a4 30~
=2330"24 22 4 3072,

The proof of Theorem 4 is based on the following version of the
Main Theorem on S-Unit Equations:

LEMMA 4. Let py,..., p; be prime numbers. There are only finitely
many rational numbers Xo, X1, ..., X, each of the form +pi*--- p,k'
(k1, ...,k € Z) such that

) mi d, (x)) =0, i=1,...,1),
(2.1) Orsnjlgn(lor (X)) =0 (i t)
(2.2) Xo+X1+-+x,=0,
but

Xi,+---+x;, #0 for each proper, non-empty subset

{il,...,ik} Of{O, l,...,n}.

Proof. See van der Poorten and Schlickewei [7] and Evertse [5).
We express (2.3) succinctly by saying that no subsum of xo+ -+ + Xp
vanishes.

(2.3)

We shall further use the following lemma, the proof of which is
based on Lemma 1 like the proofs of Theorems 1-3.

LEMMA 5. The equation 2* + 3Y = 2% 4+ 3% has exactly five solutions
in integers with x > z, y < w, namely

(% yzw)=(2011),(31,1,2),(40,3,2),(51,3,3),(8 1,4,5).

Proof. The case y > 0, z > 0 has been treated by Stroeker and
Tijdeman [9], §10, Ex. 1. There are no solutions with y < 0 or z < 0.
If y=0o0r z =0, then (x, y, z, w) satisfies 2*3¥ + 1 = 2% + 3% or
2* +3Y =1+ 273" and the conclusions follow from Theorem 1. O

Proof of Theorem 4. Suppose m has two distinct representations
(2.4) m=2%3F 4 27 30 = 23k 4 ory 30
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By applying Lemma 4 to
(2.5) 238 4 on 4 30 _gx:3p _ o1 _ 3%

we find that m < M, for some absolute constant M, if (2.5) has no
vanishing subsums. Let m > M,. Since the representations are dis-
tinct, m has exactly two vanishing subsums, which are complementary.
Either both vanishing subsums have three terms or one subsum has
two and the other four.

(a) Both vanishing subsums have three terms. After interchanging
the subscripts, if necessary, we are in one of the following cases:

(al) 2238 4 21 — @3B =, 301 — 272 — 3% =,

(a2) 2138 421 — 272 =, 30 — 2%23B: _ 3% =,

(a3) 2238 421 — 3% =, 3% — 2038 — 27 = (,

(ad) 2138 4 30 _203B = 21 — 27 — 3% =,

(a5) 201381 30 _ 272 = (, 21 — 2223F2 _ 302 =,

(a6) 27 4 3% — 23k = (, 235 — 272 — 3% =,

By applying Lemma 4 in Cases (a3), (a5) and (a6), we see that
ay, 1, 71,01, az, Ba, ¥2, 6, are all bounded, whence m is bounded by
M, say. We assume m > M,. We treat the other cases separately.

Case (al). We have 3% = 272 4+ 3% Hence §; > 0, 6, = 0. By
Lemma 2, we obtain (dy, ¥5,d,) = (1,1,0) or (2,3,0). Furthermore
20138 4 27 = 2%3F: Let A = min(ay,y;, a2) (may be negative). At
least two among «;, ¥;, o, are equal to 4. If ay = 4 then #, > 0, hence
B1 = 0. Thus we have 2”~441 = 38 or 22441 = 3% and, by Lemma
2, B, € {1,2}. Otherwise a; = y; = A. Then 381 41 = 22-438: hence
Br€{0,1}, B =0, or By = B, = —1. We conclude that in Case (al)
m can be written as 293% + ¢ witha € Z, b € {-1,0,1,2}, c € {3,9}.

Case (a4). We have 27 = 2724 3% hence, by Lemma 2, (1, ¥, ;) =
(1,0,0) or (2,0,1). Further 238 4 3% = 2®3B: By a similar rea-
soning as in Case (al) we find that in Case (a4) the number m can be
written as 293% 4+ ¢ witha € {-3,-1,0,1,2}, b € Z, c € {2, 4}.

Case (a2). We conclude that m can be written as 24+ 3% with a, b €
Z.

(b) One vanishing subsum has two and the other has four terms.
After interchanging the subscripts and rewriting terms, if necessary,
we are in one of the following cases:

(bl) 2038 =238 21 4 30 =27 4 3% o) #£0, B #0,

(b2) 20 =272 201381 4 36 — 23B 4 352’
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(b3) 3% = 3% 2:3B 4 21 =203k 4 o7,

Case (bl). We have o) = a5, 1 = B>. Since we started with distinct
representations, we may further assume y; > y,, 0; < d,. By Lemma
5,

(71,61, 72.62) = (2,0,1,1),(3,1,1,2),(4,0,3,2), (5, 1,3,3),
or (8,1,4,5).
Thus m is of the form 223% + ¢ with a,b € Z, c € {5, 11,17, 35,259}.

Case (b2). We have y; = y,. Since the representations are distinct,
we may assume J; < d,. Put B = min(f;,d;, f;). Then 20388 4
36-8 = J®:3h-B 4 30:-B_ Note that at least two among S;,d, B>
equal B. If 8; = 8; = B, then Theorem 3 implies 2% 3%1—B 4 34-B ¢
{3,5,9,17,33,129,513}. If B = B, = B, then Lemma 5 implies
2u3p-B 4 30-B ¢ (5 11,17, 35,259}. If 6, = B, = B, then Theorem
1 implies 2 3A-81.39-8 ¢ (7/3,13/4,5,7,73/9,13,17, 19, 25,73,97,
145}. Factors 3 can be combined with 38, We conclude that in Case
(b2) m is of the form 24 4+ 3%c with g, b € Z, c € {1,13/4,5,7,11, 13,
17,19, 25, 35,43,73,97, 145, 259}.

Case (b3). We have d; = d,. By a similar reasoning as in Case (b2),
but with applying Theorem 2 in place of Theorem 3, we can show that
m is of the form 2%c + 3% with a,b € Z, c € {1,7/3,5,7,73/9, 11, 13,
17,19, 25,35,41,73,97, 145, 259}.

In each case we have found a representation of m as sum of two
terms, e.g. 2%43%¢ in Case (b2). We call the constructed representation
a common pairing of the representation (2.4). The common pairing
is obtained from each of these representations by taking two terms
together. Note that in each case the common pairing consists of two
terms each of which has only prime factors less than 300 and such
that min;<;<s(]ord,(x;)|) is bounded. It now follows from Lemma
4 that for m large, m > M3 say, the common pairing of any two
representations (2.4) of m is the same, since a vanishing subsum of
X + X1 — X — x3 with positive rational numbers X, X;, X3, X3 and xy +
X1 — X3 — x3 = 0 yields xg = X, X; = X3 Or Xy = X3, X] = X».

For each possible common pairing we shall check the possible split-
tings in representations of the form 2238 + 27 4 39,

Case (bl). m = 293> + ¢ with a,b € Z\ {0}, c € {5, 11,17, 35,259}.
Here ¢ has to be split as 27 + 3. By Lemma 5 there are at most two
distinct representations 2%3# + 27 + 3% of m.
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Case (a2). m = 2% 4+ 3% with @, b € Z. If a = 0, then b is large and
a splitting 3% = 2238 4+ 27 is impossible by Lemma 2. If 5 = 0 then a
is large and a splitting 2¢ = 2¢3# 4 39 is impossible, also by Lemma
2. Therefore the splitting is either 22 = 2238 4 27 or 3% = 2¢'38’ 4 39",
By Lemma 2, the first possibility can be achieved in at most two ways,
2a-130 4 2a-1 apd 24-231 4 2a-2 and the second also in at most two
ways, 2136-1430-1 and 2336-24.36-2, They are given in the statement
of Theorem 4.

Case (al). We may assume m = 243 + ¢ witha e N, b € {1, 1,2},
¢ € {3,9}. (The case b = 0 has been treated in the preceding case.)
The only possible splitting of ¢ is 2! +3%if ¢ =3 and 23+3%if ¢ = 9.
By Lemma 2, there is only one splitting, 2¢43~! = 24-23-1 4 24-2 jf
b = —1, only one splitting, 243! = 24+130 4 24 if p = 1, and only one
splitting, 2232 = 24+330 4 24 if ) = 2. Here we use that the splitting
should be of the form 2*3# + 27, Thus there are at most two distinct
representations 238 + 27 + 39 of m.

Case (a4). We may assume m = 223% + ¢ with a € {-3,-1,1,2},
b €N, c € {2,4}. The only possible splitting of ¢ of the form 27 4 39
is 20+ 30 if ¢ = 2 and 20+ 3! if ¢ = 4. Otherwise 243% should be split
as 2238 4+ 3%, By Lemma 2 there is only one splitting for each value of
a. Thus there are at most two distinct representations 2238 + 27 + 39
of m.

Case (b2). We may assume m = 2% 4 3%c with a,b € Z, ¢ €
{13/4,5,7,11,13,17,19, 25, 35,43, 73,97, 145,259}.  Obviously 3°c
should be split. If a < 0, then b is large and a splitting of 3%c
as 2°38 4+ 27 is impossible by Lemma 4, for m > M, say. Thus
3¢ = 238 + 3%, Put B = min(b,$,6). If b = B = B, then we
have ¢ = 2% + 3°~B which has at most two solutions, since the values
2* 4 37 of the solutions of Lemma 5 are distinct. If » =6 = B, then
¢ = 2236-B 4 1, which gives at most one solution. If 8 = § = B,
then 35~B¢ = 22 + 1. Suppose 3%¢ = 22381 4 381 = 2m3B: | 3B: with
B) < B,. Then 2% + 1 = 2%3B:-Bi 4 3B:-B:i By Theorem 3, there
are at most two possible splittings for any c, since the 3-free parts of
2241,2441,2541,27+1,2% + 1 are distinct. Then there are at most
two distinct representations of m.

Case (b3). We may assume m = 2% + 3% with a,b € Z, ¢ €
{7/3,5,7,73/9,11,13,17, 19, 25, 35,41, 73,97, 145,259}. By a similar
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reasoning as in Case (b2) but applying Theorem 2 instead of Theo-
rem 3, we reach the conclusion that there are at most three distinct
representations of m. O

3. The number of representations of the form ) ] _, p{‘“ pf‘”. Let
T ={p1, ..., p:} be a finite set of prime numbers. Let S be the set of
integers of the form p{" p,k' with ky,..., k, € Z.

THEOREM 5. There exists a number C depending only on n and T
such that every rational number has at most C distinct representations
as sum of n elements from S.

More generally, we consider an algebraic number field K of finite
degree. Let My be the set of places on K (i.e. equivalence classes
of multiplicative valuations on K). Let Sk be a finite subset of My
containing all infinite places. Write

S={aeK||a|l,=1forall v ¢Sk}

Clearly, S is a multiplicative subgroup of K* (= K\ {0}). Let P"(S) be
the set of projective points (xo: X : - -- : X,) where the homogeneous
coordinates are in S and determined up to a multiplicative factor in
S. We shall apply the following generalization of Lemma 4.

LEMMA 6. There are only finitely many projective points (xo: X; :
.-+ 1 Xp) € P(S) satisfying
Xo+XxX1+--+x,=0

but
Xj, + -+ x;, # 0 for each proper non-empty subset

{iy,..., ik} of {0, 1,...,n}.

Proof . See van der Poorten and Schlickewei [7] and Evertse [5].
We shall prove the following generalization of Theorem 5.

THEOREM 6. For every finite subset W of K* there exists a number
C, depending only on n, S and W such that every algebraic number in
K* has at most C, distinct representations of the form
(3.1) WIS 4+ WySp With wy, ..., Wwpa € W s1,...,5n €S
without vanishing subsums.
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REMARKS. (1) The restriction ‘without vanishing subsums’ is nec-
essary in view of the following example. Take K = Q and let S
correspond to the ordinary absolute value and the prime numbers 2
and 3. The number a = 1 has infinitely many distinct representations

3.2k 2kl _2k 11 (keZ)

(2) Obviously, Theorem 5 is a special case of the above theorem
with K = Q, W = {1}.

Proof of Theorem 6. We apply induction on n. Clearly, the asser-
tion is true for n = 1. Now suppose that the assertion holds for all
positive integers less than n. We shall show that it also holds for n.
In the proof, Cyo(n, S, W), Cy(n, S, W), Cy(n, S, W),... denote positive
numbers which depend only on the indicated parameters. For any fi-
nite subset W of K* there is a finite subset Sx (W) of Mk such that
W c S(W), where

S(W)={aeK ||al, =1 for all v ¢ Sx(W)}.

Thus Lemma 6 can be applied to the multiplicative group S(W)S =
{5152 | s1 € S(W),s, € S}.

Let o be a number in K* having two distinct representations of the
form (3.1) each without vanishing subsumes,

O = WS|4+ WnSp = WiS] + -+ W),
Then
(3‘2) wlsl+"'+wnsn—wllsll—"‘—W:lS:lZO.

Suppose that there exist r disjoint subsets I;,..., I, in I ={1,...,n}
and corresponding disjoint subsets Jj, ..., J, such that

r r
(3.3) Ur=U72=1
=1 =1
Y wisi— > wisi=0 forl=1,...r
i€l JEI

but the left hand side of (3.3) has no vanishing subsums. If r = n then
g+h =2foralll =1,...,r, where g, h; denote the cardinal numbers
of I; and J;, respectively. Therefore the two representations are not
distinct, have vanishing subsums or « is zero. This is a contradiction
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with the hypothesis. Thus we have | < r < n—1. Now apply Lemma 6
to each equation in (3.3). Hence there are only finitely many projective
points in P&+h=1(S(W)S):

® .. * > - . /. ’. M I. l.
(W,'“Sl“ . . W’Ig,sllg, : WJnSJn : : w}lh,sjlh,)

for /| = 1,...,r such that the corresponding equations (3.3) hold.
Hence we have only finitely many points in {1} x (S(W)S)&~L:

-1 -1
(1’ (winsiu) Wi Sis +« - (winsin) Wilglsilgl)

for / = 1,...,r such that the corresponding equations (3.3) hold. Put

8
-1
=1+ Z (W,‘“Si“) Wi Siy for/=1,...,r.
k=2

Since the representations have no vanishing subsums, uy, ..., %, are all
non-zero. Clearly they belong to a finite set W’ of K* which depends
only on », S ahd W. (Since the number of splittings depends only on
n, we can make W' independent of r and the particular splitting by
taking the union of elements uy, ..., u, over all splittings.) Note that

r r

(3.4) a=> (wisi,) w =Y (Wi,u) s,

I=1 I=1

where 1 <r <n-1and w;,u; (1 <! <r) belong to a finite set W of
K* which depends only on 7n,.S and W. Note that the sums in (3.4)
have no vanishing subsums. According to the induction hypothesis we
conclude that there exist numbers Cy(r,.S, W) such that o has at most

n—1
Ci(n S W) =3 Co(rn.SW")

r=1

distinct representations of the form (3.4) with

w, uyew" s; €S forl=1,...,r.
n 4l n

Because the number of ordered splittings of I in subsets I,..., I, as
well as in Jj, ..., J; is bounded by a number C,(n), we have that o has
at most

C3(n, 8, W) = CH(n)Ci(n, S, W)

pairs of distinct representations of the form (3.1). O
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