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If X is a topological space we denote by C(X) ® Mn the algebra
of continuous functions from X to the algebra Mn of n x n complex
matrices. A complete characterization of those topological spaces Y is
given (in terms of vector bundles on Y) such that each unital algebra-
homomorphism Φ: C(X) Θ Mn —• C(Y) <g> Mkn is of the form a o
(Φ' ® idΛ) for some homomorphism Φ': C(X) -+ C(Y) ® Λ/* and
some suitable inner (or C(Ύ)-linear) automorphism a of the algebra
C ( 7 ) ® Λ/fc,. In particular this decomposition is assured provided
that Y is a finite CW-complex of dimension < 2k and K°{Y) does
not have /?-torsion.

Our interest in such homomoφhisms arose in connection with a
question of E. G. EίFros [1] concerning the structure of inductive limits
of C*-algebras of the form C(X) ® Mn. In this context certain classes
of homomorphisms related to a covering X —• Y have been considered
by C. Pasnicu [5]. When restricted to the case of automorphisms our
results give nothing new (see [4], [6] and [7]).

1. Preliminaries. Let GLΛ(C) be the general linear group (nonsin-
gular nxn matrices over the complex field) and denote by \n its unit.
Let Vectm(7) denote the set of isomorphism classes of complex vector
bundles of rank m on the topological space Y. In Vectm(y) we have
one naturally distinguished element—the class of the trivial bundle
of rank m. Let Tn Vectm(F) be the subset of Vectm(Γ) given by all
vector bundles E such that the direct sum E Θ E © θ E (n-times)
is isomorphic to the trivial bundle of rank nrn.

If A, B are unital complex algebras we denote by Horn (A, B) the
set of all unital algebra-homomorphisms from A to B. Two homo-
moφhisms Φi,<I>2 € Hom(Λ B) are said to be inner equivalent if
φ 2 = uΦ\u~ι for some invertible element u e B. Let Hom(A,B)/ ~
be the set of classes of inner equivalent homomorphisms from A to
B.

We need some elementary sheaf cohomology. Let G be a Lie group
and let H be a closed subgroup of G. For each topological space Y
the fibration H —> G -» G/H induces the following exact sequence of
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pointed cohomology sets:

H°{XH) -> H°{XG) -> H°{XG/H) Λ HX{Y,H) - H\Y,G).

We have H°{XH) = C(Y,H) (continuous maps from Y to H) and
H°{XG) = C(1ΓG). These sets are pointed by the constant map / =
lG given by the unity of G. Similarly H°{XG/H) = C{Y,G/H) is
pointed by the constant map / = {H}. The cohomology sets Hι (Y,H)
and HX(Y,G) are pointed by the trivial cocycles {YΛH) a n d {YΛG)
respectively [2]. Given / e C{XG/H) the cocycle δ{f) represents the
obstruction for lifting / to a function in C{XG). By the exactness of
the above sequence / has a continuous lifting if and only if δ{f) =
{X1//). The action of G on G/H induces an action of C{Y,G) on
C{Y,G/H). If fhf2 e C{XG/H) then δ{f{) = δ{f2) if and only if
fi = gf\ for some geC{XG).

2. Results.

PROPOSITION 1. Let Y be a topological space. Then there is a bijec-
tion Hom{Mn> C{Y) ® Mkn)/ —> Tn

Proof. We describe the exact sequence induced by the following
fibration:

GLk{C) Λ GLkn{C) Λ GLkn{C)/GLk{Q

where the imbedding γ is given by

γ{u) = u ® lrt, Af̂ , = AfΛ ® AfΛ.

There is a commutative diagram of pointed sets:

C(yGLta(C)) - C(XGLkn(Q/GLk(Q) Λ i
II i « i/ϊ

-. Hom(Mn,C(T)®Mkn) ^ Vectk(Y)

The vertical arrows are bijections. To describe a recall that

Hom{Mn,Mkn) ~ G L ^ ( C ) / G U ( C )

as topological spaces, the homeomorphism being induced by the map
η: GLkn{C) - Hom(Mw,M^) given by ι/(v)(fl) = v{\k ® a)v~\
a e Mn. Let ?/i be the map

C{XGLkn{C)/GLk{Q) -+ C{XHom{Mn,Mkn))

induced by η. By definition we set a = a\η\ where

rt, Mkn)) -> H o m ^ , C(7) ® Mkn)
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is given by a{(Ψ)(a)(y) = Ψ(y)(a), aeMn,yeY. If in

Hom(Mn,C(Y)®Mkn)

we distinguish the homomorphism β κ α 0 l ^ α will be an isomor-
phism of pointed sets.The maps β and β\ are the natural ones. Namely
if (£//, gij) is a GLfc-cocycle, then β(Uit gij) is the isomorphism class
of the vector bundle obtained by clutching the trivial bundles £/, x Ch

with the transition functions (gij). The map β\ is defined in a similar
way. The other maps are defined to make the diagram commutative.
If v e C(XGLkn(Q) then /(v) : Mn -> C(Y) ® Mkn is defined by

f ( v ) ( a ) ( y ) = v ( y ) ( l k ® a ) v ( y ) - \ aeλfn, y e Y

The map / takes the vector bundle E to the direct sum E ® E ®
• Θ E (fl-times). After the above identifications, it follows that two
homomorphisms Φi, Φ2 £ Hom(Mn, C(Y)®Mkn) are inner equivalent
if and only if δ'(Φ\) = δ'(Φι). The isomorphism class of the vector
bundle δ'(Φ\) represents the obstruction for lifting Φ\ to an invertible
element in C(Y)® Mkn. Also, by the exactness of the second row in
the above diagram, the image of δ' is equal to Tn Vect^(Γ).

THEOREM 2. Let X, Y be topological spaces. Then the following as-
sertions are equivalent:

(i) The set Tn Vect^(Γ) reduces to the trivial bundle of rank k.
(ii) Each homomorphism Φ e Hom(C(X) ® Mn,C(Y) ® Mkn) is

inner equivalent to a homomorphism of the form Φ' ® id« for some
Φ' e Hom(C(X), C(Y) ® Mk).

Proof. The implication (i) => (ii) follows easily from Proposition
1. Indeed, if we choose a point x in X and a homomorphism Φi in
Hom(Λ/fl, C(Y) ® Mkn) which is not inner equivalent to the homo-
morphism a κ-> \k® a then the homomoφhism C(X) ® AfΛ 9 f π
ΦI(F(JC)) G C(7) ® M^rt failed to satisfy (ii).

To prove the other implication we assume, as a preliminary step,
that Φ acts on matrices as an amplification:

{) U®α aeMn.

Under this assumption we get

α) = φ ( / ® 1Π)Φ(1 ®α) = Φ(l ®α)Φ(/® lrt)

,,)> aeMn, feC(X).
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The previous computation shows us that the algebra Φ(C(X) <g> ln)
lies in the relative commutant of lc(Y) ® U ® Mi i n C(Y) ® Λf̂  ® Mw

which is equal to C(Y) ® Λf̂  ® 1Λ. It follows that there is a unique
homomorphism Φ' e Hom(C(X), C{Y) ® Λffc) such that Φ ( / ® \n) =
Φ/(/) ® 1Λ. Using again our assumption on Φ we get Φ = Φ' ® idw.

Consider now an arbitrary homomorphism Φ and let Φi denote its
restriction to Mn. Using (i) it follows by Proposition 1 that there is
some invertible element ue.C{Y)® Mkn such that

Φi(α) = Φ(l ®ά) = u(\ ® lfc ® αjw"1, <z e Afπ.

Hence the homomorphism u~ιΦu acts on matrices as an amplification.

REMARK 3. The assertion (i) in the above theorem holds provided
that Y is homotopy equivalent to a finite CW-complex of dimension
< 2k and the AΓ-theory group K°(Y) does not have w-torsion. This
follows from the stability properties of vector bundles (see [3, Ch. 8,
Th. 1.5]).

Note that Tn Vecti {Y) is a subgroup of the group (Vecti (Y), ®). We
have a natural action of Tn Vecti (Y) on Tn Vect^(Γ) given by (L, E) «->
L®E. By similar methods one can prove the following

THEOREM 4. Let X, Y be topological spaces. Then the following
assertions are equivalent:

(i) Tn Vecti(Y) acts transitively on Tn Vect^(F).
(ii) For any homomorphism Φ e Hom(C(ΛΓ)®Afrt, C(Γ)®AffcΛ) ίΛer^

/51 α« automorphism a of C(Y) ® Af̂ π vî /z/cΛ w C(Y)-linear such that
a o φ = φf ® idw /or M ^ homomorphism Φ' e Hom(C(X), C(Y) ®
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