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It is shown that every orthogonal basis in a topological algebra is a
Schauder basis. A new class of topological algebras called ®-algebras
is introduced. They are characterized in terms of seminorms. Among
other results, a necessary and sufficient condition for a locally convex
s-algebra with an unconditional orthogonal basis to be an A-convex
algebra is given.

0. Introduction. One of the interesting questions in the classical
basis theory is whether every basis in a topological vector space of a
certain type is a Schauder basis. Positive answers to this question have
been established in the situations where the open mapping theorem
holds, for instance, when the topological vector space is an F-space
(Arsove [1]), in particular, a Banach space.

In the context of topological algebras, the second author and Wat-
son showed that an orthogonal basis in a locally m-convex algebra (a
setting where the open mapping theorem does not necessarily hold)
is always a Schauder basis ([7], Proposition 3.1). Here we establish
this result in its ultimate general setting; indeed, we show that every
orthogonal basis in a topological algebra is a Schauder basis (Theorem
1.1).

Improving upon a result of Husain and Watson [7], we show that ev-
ery locally m-convex algebra with an identity and an orthogonal basis
is topologically isomorphic with a dense subalgebra of the algebra s of
all complex sequences with the pointwise operations and the topology
of pointwise convergence (Theorem 2.1).

In §3, we introduce a class of topological algebras with orthogonal
basis which we call ®-algebras. Examples of such algebras are given
and a characterization of ®-algebras in terms of seminorms is proved
(Theorem 3.3).

In §4, we study different types of topological algebras with orthog-
onal bases. Among other results, we give a necessary and sufficient
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condition for a locally convex s-algebra with an unconditional orthog-
onal basis to be A-convex (Theorem 4.6); and we use this result to
characterize the algebra s (Theorem 4.7).

In the sequel, all topological algebras and topological vector spaces
are Hausdorff with jointly continuous multiplication and over the field
C.

For standard terms used here we refer the reader to Singer [11] and
Zelazko [12]. In addition, we shall use the following definitions and
results given in our paper [5]. Let 4 be a topological algebra. A sub-
set S of A is called squarely idempotent if for every x,y € A with
x2,y2 € S we have xy € S. A seminorm p on A is called squarely
submultiplicative if p(xy) < Vp(x2) V/p(y?) for all, x,y € 4. A
topological algebra with a base of squarely idempotent neighborhoods
of 0 is called an s-algebra. It turns out that a locally convex alge-
bra is an s-algebra if and only if it has a defining family of squarely
submultiplicative seminorms ([5], Proposition 2.3). The significance
of s-algebras lies in the following. An orthogonal basis in a Banach
algebra need not be unconditional. However, an orthogonal basis in
a By-algebra A is unconditional if and only if 4 is an s-algebra ([5],
Examples 2.1 and Theorem 2.5).

1. Orthogonal bases are Schauder bases. A sequence {e,} in a
topological vector space FE is said to form a basis in E if for each
x € E there exists a unique sequence {e;(x)} of scalars such that x =

ney €n(x)en. Each e is a linear functional. If each e}, is continuous,
{e,} is called a Schauder basis. A basis need not be a Schauder basis.
However, if E is an F-space [1] or, in particular, a Banach space, then
by the open mapping theorem it follows that every basis in E is a
Schauder basis.

If 4 is a topological algebra, then a basis in A, as a topological
vector space, is called orthogonal provided that e, e, = dmne, for all
m, n € N, where d,,, is the Kronecker delta. An orthogonal basis in a
topological algebra is unique up to a permutation, if it exists [7].

Husain and Watson [7] showed that every orthogonal basis in a
locally m-convex algebra is a Schauder basis. Here we show (Theorem
1.1) that this is true in general for any topological algebra.

1.1. THEOREM. An orthogonal basis {e,} in a topological algebra A
is a Schauder basis.
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Proof. Let n € N. For each x € 4, x =Y °_, ey, (x)en implies

enx = e, (x)en.

Since e, # 0 and A is Hausdorff, there exists a circled neighborhood
U of 0 € 4 such that e, ¢ U. From the continuity of multiplication,
we find a circled neighborhood V' of 0 with V'V C U. Put

r =inf{d > 0: e, € dU}.

Since U is circled and e, ¢ U, we have r > 1 > 0. Since each neigh-
borhood of 0 is absorbing, we find ¢ > 0 with e, € V. Put

W=@"'ryw.

To complete the proof, we show that |e;;(x)| < 1 for all x € W. Indeed
for x e W,

es(x)rlep=r"'xe, =tr-'x-t7le, e W CU.

Since U is circled, we have |e;(x)|r~le, € U. If e}(x) # 0, then
en € |e;(x)|~!rU. Hence, by the definition of r, we have |e}(x)|~'r > r
and consequently |e;;(x)| < 1, as required.

1.2. NoTtATIONS. Let A be a topological algebra with an orthogonal
basis {e,}. Each x € A can be expressed as x = ) 2, ex(x)e,. Let
X denote the element of s given by X(n) = e;;(x), n € N. The set
A = {%: x € A} constitutes a subalgebra of s and ¢: x — % is an
algebra isomorphism of 4 onto 4. We endow A with the pointwise
convergence topology induced from s.

1.3. CorOLLARY. Let A be a topological algebra with an orthogonal
basis {e,}. Then
(i) A is dense in s and the isomorphism o is continuous.
(ii) A nonzero multiplicative linear functional f on A is continuous
if and only if f = e} for some k € N.

Proof. (i) The continuity of o is a consequence of the continuity
of each e;; (Theorem 1.1). Since A clearly contains all sequences of
scalars with finitely many nonzero terms, it follows that A4 is dense in
s.

(ii) If f = e}, for some n € N, then, by Theorem 1.1, f is continuous.
To prove the converse, we notice that

flen)f(x) = flenx) = flen(x)en) = €5(x).f (en)
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for every x € 4 and n € N. Since f is continuous and nonzero, we
have f(e;) # 0 for some k € N. It follows that f = e;.

2. Locally m-convex algebras with orthogonal bases. Let 4 be a
complete locally m-convex algebra with an orthogonal basis and an
identity. Husain and Watson [7] showed that A4 is topologically iso-
morphic with the algebra s. Here, with the assumption of complete-
ness dropped, we show that A is topologically isomorphic with a dense
subalgebra of s (Theorem 2.1).

2.1. THEOREM. Let A be a locally m-convex algebra with an or-
thogonal basis {e,} and let P be a defining family of submultiplicative
seminorms. Consider the following statements:

(i) 0: 4 — s is onto.

(ii) A has an identity.

(iil) For each p € P, p(e,) # O for at most finitely many e,’s.

(iv) A is topologically isomorphic with a dense subalgebra of s.

(v) A is topologically isomorphic with s.

Then (i) = (ii) = (iii) = (iv). If A is complete, then all the five
statements are equivalent.

Proof . For the first two implications, see Lemma 3.2 of [7]. Under
condition (iii), the topology generated by P on A via the isomorphism
o 1s the same as the topology induced from s. Hence, by Corollary 1.3
(1) we have (iii) = (iv). Finally, it is clear that (v) = (i) and under
the additional hypothesis of completeness of 4 we have (iv) = (v).

From Corollary 1.3 (i) we see that a topological algebra 4 with an
orthogonal basis has a continuous isomorphic image in s. Further, if 4
is locally m-convex, this continuous image becomes a homeomorphic
one when A4 has an identity (Theorem 2.1).

2.2. COROLLARY. Let A be a topological algebra with an orthogonal
basis {e,} and an identity e. There is one and only one locally m-
convex topology on A coarser than its original topology, namely, the
relative pointwise convergence topology on A transferred to A via a.

Proof . Let T be a locally m-convex topology on A4 coarser than its
original topology. For each x € 4, the convergence of ) | e;;(x)e, to
x for the original topology implies its convergence to x for the coarser
topology 7 and so {e,} remains an orthogonal basis in 4 when A4 is
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endowed with 7. The proof is completed by an appeal to Theorem 2.1
and Corollary 1.3 ().

3. P-algebras. Let 4 be a topological algebra with an orthogonal
basis. As we have seen in §2, o: 4 — A is a continuous isomorphism
when A is given the relative pointwise convergence topology induced
from s. This topology is generated by the family of seminorms

Pp(X) = sup{lp(n)X(n)|: n € N},

% € A, where ¢ ranges over the set Cgo(N) of all nonnegative functions
on N with finite support. This motivates the following

3.1. DEFINITION. A topological algebra 4 with an orthogonal basis
{e,} is called a ®-algebra if a family ® of nonnegative functions on
N generates a topology on A by means of seminorms

py(X) = sup{|p(n)x(n)|: n € N},

% €A, ¢ e ®, such that 0: 4 — (4, {py: ¢ € ®}) is a topological
isomorphism.

In addition to the algebra s, we have the following two examples of
®-algebras.

3.2. ExamrLEs. (i) Let C,(N) denote the algebra of all bounded
complex sequences with the pointwise operations and let Cf(N) be
the set of all nonnegative sequences converging to zero. The strict
topology [2] on C,(N) is defined by the seminorms

py(x) = sup{|p(n)x(n)|: n € N},

x € Cp(N), ¢ € Cf(N). With this topology, C,(N) is a complete A4-
convex [3] algebra with identity. The sequence {e,}, where e,(m) =
Omn 1S an orthogonal basis in C,(N). Clearly, C,(N) is a ®-algebra
with @ = Cf(N). Since C,(N) is not topologically isomorphic with s,
it follows from Theorem 2.1 that C,(N) is not locally m-convex.

(ii) Let D be the open unit disc in the complex plane and let H (D)
denote the Fréchet space of all analytic functions on D with the point-
wise addition and scalar multiplication, and the compact-open topol-
ogy. For each n € {0} UN let e, be the element in H(D) given by
en(z) = z", z € D. Thenforeach f € H(D)wehave f =) ;e;(f)en
converging in H (D), with e;;(f) being the nth Taylor coefficient of f.
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This shows that {e,} is a basis in H(D). Endowed with the Hadamard
multiplication
(f8)(z) = 2mi)~! u f(w)g(zu™"yu™" du,
uj=r
|z| < r< 1; H(D) is a By-algebra {10]. The nth Taylor coeflicient of
Jg is e;(f)er(g) [10] and hence,

fe =Y en(Nen(g)en
n=0

which shows that the basis {e,} is orthogonal in H (D). The element
e € H(D) defined by e(z) = (1 — z)~! = }_2°,z" is an identity in
H(D).

An equivalent family of seminorms on H (D) is given by

I/1l- = sup{le; (S)r"|: n € N},
0 <r< 1 (cf [8], p. 45). This shows that H(D) is a ®-algebra with
®={p,: 0<r< 1} where ¢,(n) =r", n € {0} UN. By Theorem 2.1,
H (D) is not locally m-convex. Since every barrelled 4-convex algebra
is locally m-convex [9], H(D) is not 4-convex either.
Now we have a characterization of ®-algebras.

3.3. THEOREM. Let A be a locally convex algebra with an orthogonal
basis {e,} and an identity e. Then A is a ®-algebra if and only if a
defining family P of seminorms on A satisfies the following condition

(%): Forall x,y € A and p,q € P,

plen(x)en) < qley(y)en) forall n €N implies p(x) < q(p).

Proof. (=): It is clear that the seminorms described in Definition
3.1 satisfy condition ().

(«): Foreach p € P, n € N and x € 4 put ¢,(n) = p(e,). We then
have

¢p(n)X(n) = p(en)ey(x) = pley(x)en)
and from the convergence of Y>> , e;(x)e, it follows that
sup{|¢,(n)X(n)|: n € N} < .
Set
X1, = sup{|p,(n)x(n)|: n € N}.

Clearly, {||-||,: p € P} is a family of seminorms on 4. We show that

o:A— (4,{] p. P € P}) is a homeomorphism, which will complete
the proof.
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Let x € A, m € N and p € P; and put x,, = e;,(x)e,. Clearly,
pler(xm)en) = dmnp(ey,(x)en) for all n € N and hence by condition
(x) we have p(x,) < p(x). It follows that

%1l = sup{p(xm): m € N} < p(x).

This shows that 6: 4 — (4,{|| - |,: p € P}) is continuous; and it
remains to show that it is open.

Let p € P. Find g € P such that p(xy) < q(x)q(y) forall x, y € 4.
To complete the proof we show that there exists K > O such that
p(x) < K for all x € 4 with ||X||; < 1. Indeed, for such x and for
every n € N we have

plen(x)en) = len(x)p(en)l = len(x)p(e})]

< len(x)|(a(en))® < |%llqa(en) < alen) = alen(e)en),
where the rightmost equality follows because e;;(e) = 1. Thus from
condition (*) we have p(x) < g(e). We also have g(e) # 0 for other-
wise p(x) = p(xe) < g(x)q(e) =0 for all x € 4. Take K = g(e).

3.4. REMARK. The Banach algebra ¢; with the pointwise operations
has the orthogonal basis {e,} where e,(m) = J,,,. It is easy to verify
that the /, norm satisfies condition () of Theorem 3.3 and that, on
the other hand, ¢; is not a ®-algebra. Note that £; does not have an
identity. We do not know an example of a locally convex algebra with
an orthogonal basis and an identity which is not a ®-algebra.

4. A-convex algebras and locally convex s-algebras with orthogonal
bases. In our paper [5] we introduced and studied s-algebras (see the
introduction of the present paper for the definition). It is easy to verify
that every ®-algebra is an s-algebra. The converse is not true; indeed,
the Banach algebra /; is an s-algebra [5] which is not a P-algebra
(Remark 3.4). Further, for 1 < p < oo, the convolution algebra L,(T)
over the torus group T is a Banach algebra which is not an s-algebra [5];
and H(D) (Example 3.2 (ii)) is an s-algebra which is not 4-convex.
Theorem 4.6 below gives a necessary and sufficient condition for a
locally convex s-algebra with an unconditional orthogonal basis to be
A-convex; and Theorem 4.7 characterizes the algebra s. For further
information about s-algebras see [S].

First we have Theorem 4.1 and Corollary 4.2 the proofs of which
are omitted since the proofs of these results known for Banach spaces
({11}, Theorem 16.1) can be adapted for the more general case of
locally convex spaces. (Detailed proofs for the locally convex space
case are given in [4], Theorem III.17 and Corollary II1.18.)
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4.1. THEOREM. Let E be a locally convex space with an uncon-
ditional basis {e,}. Let u be the topology of E defined by a family
{Il-l: h € H} of seminorms. For x € E and h € H put

111 —Sup{Zle ) (en)]: fEFh}

n=1
||x||Z:sup{ :Jeﬂ}
h

where F), is the set of all linear functionals on E with |f(x)| < ||x||s
for all x € E; and B is the set of all finite subsets of N. Then each of
{I-W,:he H}y and {|| - ||} : h € H} is a family of seminorms defining
topologies u' and u", respectively, on E such that ||x||, < ||x||} < ||lx]l}
forall x € E and h € H. Moreover, u Cu' = u".

and

> en(x)en

neJ

4.2. CorROLLARY. If E in Theorem 4.1 is a Fréchet space, then u =
u' =u" and {e,} is a Schauder basis.

We note that the conclusion of Corollary 4.2 follows from the open
mapping theorem which is valid in Fréchet spaces. In the topological
algebra setting we prove the same conclusion under different condi-
tions.

4.3. CorROLLARY. Let A be a locally convex s-algebra with an un-
conditional orthogonal basis {e,}. Let u be the topology of A defined
by a family {|| - ||,: h € H} of squarely submultiplicative seminorms.
With the same notations as in Theorem 4.1 we have u = u' = u”. (Note
that {e,} is already a Schauder basis by Theorem 1.1.)

Proof. In view of Theorem 4.1, it is enough to show that " C u.
Let x € A, h € H and let ¢ > 0 be given. Since the basis {e,} is
unconditional, the net {}_,_;e;(x)en}scp (Where B is the set of all
finite subsets of N ordered by inclusion) converges to x. Hence, there
exists Jy € B such that for J € g with Jy C J we have

Zé’;(X)en

neJ

< Ix|lx + &

h
Let I € 8. Then by the orthogonality of the basis {e,} we have

Ze;(x)en = Ze;(x)e,, . Z en(x)en

nel nel nelUy
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and hence

2
( S erx)en ) <
h

nel
since || - ||, is squarely submultiplicative. Consequently,

>_en(x)en > enl(x)en

nel neluJy

Z en(x)en

nelUly

Ze;; (xX)en

nel

»

h h

<[ixlln +e
h
for all I € B. Hence, from the definition of |f - ||} we have

<

h

ol < 1xlln +e.

Since & > 0 is arbitrary, we have ||x|[} < [|x||5.

4.4. PROPOSITION. Let A be an A-convex algebra with an orthogonal
basis {e,} and let P be an absorbing family of seminorms defining the
topology of A. Then for each x € A and p € P, the set {e;(x): n €
N, p(en) # 0} is bounded.

Proof. It follows from the definition of A-convexity that for
each x € 4 and p € P there exists K(p, x) > 0 such that p(xy) <
K(p, x)p(y) for all y € A. In particular,

len(x)|p(en) = plen(x)en) = p(xen) < K(p,x)p(en)

for all n € N. We then have |e;(x)| < K(p, x) for all n € N with
plen) # 0.

4.5. COROLLARY. If, in addition to the hypothesis of Proposition 4.4,
there exists p € P with P(e,) # 0 for all n € N, then for each x € A,
the set {e;;(x): n € N} is bounded.

4.6. THEOREM. Let A be a locally convex s-algebra with an uncon-
ditional orthogonal basis {e,}. Then A is A-convex if and only if A has
a defining family P of seminorms such that for each x € A and p € P,
the set {e;(x): n € N, p(e,) # 0} is bounded.

Proof. The “only if” part follows from Proposition 4.4. For the
“if” part, assume that 4 has a defining family of seminorms satisfying
the stated condition. It follows that the same condition is satisfied
by every defining family of seminorms, as can easily be verified. In
particular, the condition is satisfied by a defining family {||-||,: h € H}
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of squarely submultiplicative seminorms, which exists because 4 is a
locally convex s-algebra. For each x € 4 and h € H there exists
K(h x) > 0 such that |e}(x)| < K(h, x) for all n € T}, where T), =
{n € N: |les||lp # 0}. From Corollary 4.3 with the same notations we
have u = u'. We complete the proof by showing that each ||- ||}, h € H
is absorbing. For f € F, (as defined in Theorem 4.1) and n € N\ 7,
we have |f(e,)| < |len||» = 0 and hence for x € 4,

eyl = Sup{ZIG'n Men(W)I1f (en)l: f € Fh}

neN

neT,

= SUD{Z lex ()] len(¥)11.f (en)l: fGFh}

K(h, x)sup{Z ez ()| 1f(en)l: f € Fy

neTy,

= K(h x) sup{Zle )| f(en)l fth}

neN

= K(h )|y,

for every y € 4 and so || - ||, is absorbing.

4.7. THEOREM. Let A be a By-algebra with an unconditional orthog-
onal basis {e,} and an identity e. Then A is topologically isomorphic
with the algebra s if and only if A has a defining family P of seminorms
such that for all x € A and p € P the set {e;(x): n € N, p(e,) # 0} is
bounded.

Proof. If A is topologically isomorphic with s then, by Theorem
2.1, A has a defining family P of seminorms such that the set {n €
N: p(e,) # 0} is finite for every p € P. It is clear that the family P
satisfies the stated condition.

To prove the converse, notice that A4 is an s-algebra because it is a
By-algebra with an unconditional orthogonal basis ([5], Theorem 2.5).
Thus, if 4 has a defining family P of seminorms satisfying the stated
condition, then A is A-convex by Theorem 4.6. Now, being A-convex
and barrelled, A4 is locally m-convex [9]. The proof is completed by
an appeal to Theorem 2.1.

In Example 3.2 (ii) above we showed that H(D) is not 4-convex.
This also follows from Theorem 4.6 by considering the equivalent
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family {|| - ||;: 0 < r < 1} of seminorms (given in Example 3.2 (ii)),
together with any element in H (D) with an unbounded set of Taylor
coefficients.

(1]
(2]
(3]
(4]
(3]
(6]
(7]
(8]
(9]
[10]
(11]
[12]
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