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ON THE SATO-SEGAL-WILSON
SOLUTIONS OF THE K-dV EQUATION

RUSSELL A. JOHNSON

We discuss the class of solutions of the K-dV equation found by
Sato, Segal, and Wilson. We relate this class of solutions to properties of
the Weyl m-functions, and of the Floquet exponent for the random
Schrόdinger equation.

1. Introduction. In a series of recent papers, Date, Jimbo, Kashiwara,
and Miwa [5,6,7,8,9] have developed ideas of M. and Y. Sato [23,24] for
finding solutions of the Kadomtsev-Petviashvili (K-P) hierarchy. The
solutions of the K-P hierarchy discussed in these papers are expressed in
terms of the so-called τ-function, which can be viewed as a generalization
of the Riemann Θ-function.

Even more recently, Segal and Wilson [25] have given a careful
formulation of the work of the Kyoto group. A consequence of their
analysis is the following. Recall that one equation of the K-P hierarchy is
the Korteweg-de Vries (K-dV) equation:

(1) -^ = 6u^ - —, u(09x) = uo(x),

viewed as an evolution equation with initial data uQ(x). Segal and Wilson
produce a class # ( 2 ) of initial conditions (or "potentials") uo(x) for
which (1) admits a solution u(t, x) which is meromorphic in t and x. The
class ^ ( 2 ) contains the solitons (see, e.g., [1]) and the algebro-geometric
potentials [11,18,21]. We will call the elements of # ( 2 ) Sato-Segal-Wilson
potentials.

The purpose of the present note is to describe in some detail a
subclass LP (for "limit-point"; see below) of the class # ( 2 ) . Namely,
consider the Schrόdinger equation

(2) Lφ = | ~ + uo(x)\φ = λφ

with potential uo(x). Define LP c #(2> to be the set of Sato-Segal-
Wilson potentials which are real and finite for all real x, and for which L
is in the limit-point case x = ±oo ([26]; [3, Ch. 9]). Let m+(λ) be the
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corresponding Weyl m-functions; they are defined and holomorphic for
Im λ Φ 0. Define

/ . lrn + (z2), Imz > 0, Rez Φ 0,

\m_(z2), Imz < 0 , R e z * 0 .

We show that, if u0 is in LP, then there exists r > 0 such that Jί extends
to a holomorphic function on \z\ > r with a simple pole at z = oo.
Conversely, if uo(x) is a locally-integrable, real function of x G R such
that L = -d2/dx2 + uo(x) is in the limit-point case at x = ± oo, and if
m +(λ) form branches of a function Λ?(z) (z2 = λ) which is holomorphic
for \z\ > r, then u0 G LP.

We use this observation to find M O E L P for which the spectrum Σ of
L has a Cantor-like part, i.e. Σ Π (-oo,r2) is a Cantor set for some
r G R. We then show how to "explicitly" construct a large subclass of LP.
To do so, we use the Floquet exponent w = w(λ) (Imλ > 0) introduced
by Johnson-Moser [15] and studied by Kotani [16, 17], De Concini-John-
son [10], Giachetti-Johnson [13], and others. The construction goes as
follows. Let h(λ) be a function holomorphic in the upper half-plane
U = {λ|Imλ > 0} with positive imaginary part and with certain addi-
tional properties; in particular it is supposed that the boundary value
Λ(λ) = Hm ε ^ 0 + Λ(λ + I'ε) (λ G R) satisfies ReΛ(λ) = 0 for large real λ.
In [17], Kotani shows how to find a stationary stochastic process (Ω, 3$, μ)
which (with slight abuse of terminology; see §3) has Floquet exponent
w(λ) = h(λ). By Kotani's construction, Ω is a subset of a certain Hubert
space of potentials uQ. It turns out that μ-a.a. potentials are in LP.

Our results may be summarized as follows. On the one hand, poten-
tials in the class LP c # ( 2 ) are quite special: the restriction on the
behavior of the m-functions is very strong. On the other hand, it will be
clear from §3 that LP contains much more than the solitons and the
algebro-geometric potentials.

2. The m-functions. We begin with a brief outline of the Segal-Wilson
construction of the class ^ ( 2 ) . The formulas below differ slightly from
those of [25], because we use L = -d2/dx2 + uo(x) instead of L =
+ d2/dx2 + uo(x).

Let K be the unit circle, and let H+cz L2(K) be the set of boundary

values in L2(K) of holomorphic functions on the unit disc {z\\z\ < 1}.

Thus H+= elsspan{l, z,z2,...}. One considers subspaces Wa L2(K)

which are comparable with H+ in the sense that: (i) the orthogonal

projection pr = pr(W): W -> H+ is Fredholm of index zero; (ii) the
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orthogonal projection from Wonto i/_= (H+) -1 = clsspan{z~\ z"2,...}
is compact. The group Γ+ of exponential power series

exp(xz 4- t2z
2 -f t3z

3 + ) (JC, /,. G C)

acts on the Grassmannian Gr of all such subspaces W by pointwise
multiplication of functions. One constructs a determinant bundle Det over
Gr, which in turn can be used to define the determinant of pτ(W) when
W G Gr. The r-function τw of W is now defined as follows:

rw{x, t2, t3,...) = detpr(W)/detpr[exp(-.xz — t2z
2 - ) W\.

Then ΊW is meromorphic in all variables. Moreover if detpr(W) Φ 0, then
τw{x, t2913, ...)== oo exactly when detpr[exp(-xz — t2z

2 - ) W] =
0, and this occurs exactly when exp(-xz — t2z

2 — - — ) > W intersects H__
nontrivially.

One says that a subspace W & Gr is transverse if W Π i/_= {0};
thus W is transverse iff detpr(PF) Φ 0. The poles of τw are in 1-1
correspondence with non-transverse subspaces exp(-xz — t2z

2 — ) W
if W itself is transverse.

Let us now restrict attention to the subset Gr ( 2 ) of Gr consisting of
subspaces We L2(K) which are invariant under z2:z2Wa W. The sub-
set {expΣ^Lx^^21} of Γ+ leaves such a W fixed. Let τw(x, t3915,...) be
the corresponding τ-function. Define

i.e., t3 = rϊ and all other ίf.s equal zero. Then uw(x, t) is the solution to
the K-dV equation (2) with initial condition uo(x) = uw{x, 0).

An important intermediate step in showing that uw(x,t) solves the
K-dV equation is the construction of the Baker function ψw(x,z). For
our purposes, the following description of ψ w will suffice; a more general
discussion is given in [25, §5].

Let W G Gr ( 2 ) be a transverse space, and suppose that (exp-zxz) W
is transverse for all real x. Then there is a unique function

in the space W\ in fact exp(-/xz)ψ^(x, z) is the inverse image of 1 under
the orthogonal projection of exp(-jjcz) W onto H+. The series in
parentheses converges for \z\ > 1. Moreover

+ (
dx

(x G R, |z | > 1),
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where uo(x) = -2(d2/dx2) log ^ ( i x , 0,0,...)- One calls ψw(x9z) the
Baker function of W, or of uo(x).

Note that any differential operator L = (-d2/dx2) + WO(JC) with C00

potential wo(x) gives rise to a formal Baker function

(3) ψ(*,z) = e

which formally satisfies (i) Lψ = z2ψ, and (ii) ψ(0, z) = 1. In fact, the
coefficients ά^x) are C00 functions which are determined recursively by
a0 = 1, α ; + 1 = (-i/2)Lai9 0,(0) = 0 (/ > 1). The quantity e~ιxzψ(x,z) is
the only element of the ring JS? of formal Laurent series s(x,z) =
Σ%ιbι{x)z'i with C°° coefficients bt(x) such that <?'*2.s(jc, z) satisfies (i)
and (ii).

Define ^ ( 2 ) to be the class of (real or complex) potentials uo(x) such
that, for some complex λ # 0 , there exists W e Gr ( 2 ) such that λ2u0(λx)
= -2(d2/dx2) log<τv(jc,0,0,...). Thus ^ ( 2 ) contains those potentials
obtained directly from W e G r ( 2 ) by differentiating logT^, and also
scalings of those potentials. Every u0 e ^ ( 2 ) is a meromorphic function
of x [25, §5].

2.1. DEFINITION. Let LP c # ( 2 ) be the set of Sato-Segal-Wilson
potentials w0 which satisfy the following additional properties: (i) uo(x) is
real and finite (i.e., no poles) for all real x\ (ii) L = -d2/dx2 + uo(x) is
in the limit-point case at x = ± oo.

Fix u0 e LP, and let m ±(λ) be the corresponding Weyl m-functions.
Thus

m ± (λ) = φ'±(0)/φ±(0) ( I m λ # 0 ) ,

where φ ± are non-zero solutions of Lφ ± = λφ ± which are in L2(0, ± oo).
Since these solutions are unique up to constant multiple for Im λ Φ 0, the
m-functions are well-defined. They are holomorphic, and satisfy
sgn[Imm+(λ) Imλ] = ± 1 .

Note that, with φ±(x) as above, the quantities m±(s9\) =
Φ'+(s)/φ+(s) are the m-functions for the translated potential x ->
uo(x + s)(s G R).

Define

exp / m + (s,z2)ds, I m : > 0, Re z Φ 0,
°
x

exp/ m_(s,z2)ds, Imz < 0, Rez # 0.
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Then ψ is defined for all real x and for all z e Q = {z e C | Re z Φ 0,
Imz # 0}. Clearly Lψ = z2ψ for all z e Q, and ψ(0, z) = 1, ψ'(0, z) =
m +(z2) with the appropriate choices of sign.

" i t is well-known (e.g., [14, Ch. 10]) that |m±(jc,λ) ± v^λl =
O(\λ\~1/2) as |λ| -> oo in closed subsectors of (λ e C|Imλ Φ 0}. More-
over the estimate on the right is uniform (in closed subsectors) if x
is restricted to a compact interval. It follows that ψ(jc, z) =
eiXΣ(l + O(|λ|" 1 / 2)) as |z| -> oo in each closed subsector of β, if x is in a
compact interval.

Now u0 is C00, so by, e.g. [20, pp. 37-48], ψ(jc, z) has an asymptotic
expansion

valid in Q. Moreover the at{x) are smooth functions which can be
determined recursively by substituting ψ into Lφ = z2φ. Since ψ(0, z) = 1,
we see that άt{x) = 5,-(x), where the άt are the coefficients of the formal
Baker function (see (3)).

Since u0 e ^ ( 2 ) , there is a true Baker function

t ( x , z ) = e i x z ( l + a 1 ( x ) / z + •••)

which converges for large |z|, and which satisfies Lψ = z2ψ. Write

ψ(x, z)/ψ(0, z) = ^ - ( 1 + ^ ( x ) z + . . . ) .

Using the uniqueness of ψ in the ring JSP, we see that b^x) = at(x) =
α, (Λ;) for all i and x. Thus in each sector of Q, the asymptotic series
1 + άι(x)/z 4- coincides with a series which converges for, say,
\z\ > r. We conclude that ψ(x, z) = ψ(x, z)/ψ(0, z) for \z\ > r.

2.2. THEOREM. Let uo(x) be a real, locally-integrable function of x e R
5wcΛ that L = -d2/dx2 + uo(x) is in the limit-point case at x = ±oo.
Then u0 e. LP if and only if the Weyl m-functions m +(λ) Λα̂ e the property
that

frn + (z2), Imz>0,Rez^0,
(4) Jί\z) = {

\m_(z2), Imz<0,Rez^0
extends holomorphically to the region \z\ > r for some r > 0. If <Jί{z)
admits such an extension, then Jί(z) has a simple pole at z = oo with
residue i.

Proof. We first complete the proof of the "only if" statement. If
Z E < 3 , then Jί{z) = ψ'(0,z) by definition of ψ. Since ψ(jc, z) is holo-
morphic in \z\ > r and smooth in x (because Lψ = z2ψ), we see that
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Jί{z) is holomoφhic for \z\> r. Simple division shows that Jί(z) =
ΪZ + for large \z\.

Let us consider the " i f statement. Suppose that ~#(z) admits an
extension as described. Let m±(s,z) correspond to uo(s + x), and let

, z) be defined by (4) with m±(s, z2) in place of m±(z2). Then
, z) is holomoφhic in \z\ > rλ for each s G R, and is jointly continu-

ous in s e R and \z\ > rv Here rλ > r is independent of s.
We prove the last statement. First recall that sgn[Imm ±(s9 λ) Imλ]

= ± 1 if Imλ Φ 0. Note also that Jί{s,z) is meromoφhic in \z\ > r.
These facts imply that Jί{s, z) takes values in R U {oo} if and only if z
is pure imaginary, i.e., if and only if λ = z2 < ~r2.

Next note that, for fixed s, m_(s,λ) increases and m+(s, λ) de-
creases as λ I -oo (unless λ is a pole, of course). Now, Jί(z) has no poles
for \z\ > r. Thus we can find rλ > r such that, if λ < -r2, then m_(0, λ)
and m+(0, λ) are never equal. It follows that, if s e R and λ < -r2, then
m_(s, λ) and m+(s, λ) are never equal. This implies that Jί(s, z) omits
some interval of real values on \z\> rv By the Picard theorem [2],
Jί{s, z) is meromoφhic at z = oo. By the preceding paragraph, Jί(s, z)
has at most a simple pole at z = oo, and by the relations \m±(s, λ)
± V^λ| -> 0 if |λ| -> oo with δ < |argλ| < π - δ([14]), we see that

Jί(s, z) = iz 4- . It follows from this and the first sentence of the
present paragraph that Jί{s, z) is holomoφhic for \z\ > rv The continu-
ity statement is clear.

Define

ψ(x,z) = exp / Jί(s,z)ds (\z\>rι).

We can write

where the series converges for \z\ > rx and the coefficients are continu-
ously differentiable for x. In fact they are obtained by integrating the
coefficients of Jί{s, z) and combining powers of 1/z in the exponential;
this can be proved using the Montel theorem [2].

We now follow Segal-Wilson [25, Prop. 5.22 and the preceding
discussion]. First of all, we scale u0 (i.e., replace u0 by 82u0(8x) for
sufficiently small 8 > 0) so as to make Jt(z) holomoφhic in |z| > 1 — ε
for some ε > 0. Consider the closed subspace W c L2(K) which contains
1 = ψ(0, z), Jt(z) = ψ7(0, z), and is invariant under multiplication by z2.
Then W e Gr ( 2 ) [25], and W is transverse by its very definition, i.e.,
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contains no function whose Laurent expansion about z = 0 consists
entirely of negative powers of z.

Next let φf (x, z2) be the solutions of Lφ = z2φ satisfying ZVφ^O, z2)
= δ/y.(/, j = 1,2). Then the φ, are entire in z2 for each x e R. Also,
ψ(x, z) and φχ(x, ̂ )ψ(0, z) + Φ2(x, ^)Ψ'(0, z) are both solutions of Lφ =
z2φ with the same initial conditions, hence are equal for all x e R. Since
W is z2-invariant, it follows that ψ(jc, z) e W for all x e R. Moreover
ψ(jc, z) = eιxz(\ + lower order terms in z) for each x. However, these two
properties characterize the Baker function ψw(x, z), at least if exp(-z'jcz)
W is transverse; see the beginning of this section and [25, Prop. 5.1]. Let
uw{x) be the potential in # ( 2 ) defined by W. Then uw is meromoφhic in
x [25, §5]. Thus exp(-ά z) W is transverse except for isolated points (the
poles of uw), and we conclude that ψ(x, z) = ψ^(x, z) except perhaps at
these poles. But since u0 is locally integrable, there are no poles. Thus
u0 = uw G LP, which is what we wanted to prove. This completes the
proof of Theorem 2.2.

We finish the section by using a simple limit procedure to construct
potentials in LP. First consider a quasi-periodic potential u of algebro-ge-
ometric type [11, 18, 21]. Thus the spectrum Σ of L = -d2/dx2 + u(x)
(viewed as a self-adjoint operator on L2(-oo,oo)) is a finite union of
intervals: Σ = [λ0, λ j U [λ2, λ3] U U[λ2 g, oo). Moreover one has

(5) u(x)= Σ λf - 2 £ P/x),
i»0 7 = 1

where Pj(x) ^ [λ 2 7_ 1 ? λ 2 y ] ( l < y < g ) and the motion of Pj is de-

termined by

+ / ( λ - λ o ) ( λ - λ 1 ) ( λ - λ 2 g )

See [18, 21].
Let us now choose a sequence {un}™=1 of such potentials in the

following way. Let Σn be the spectrum of Ln = -d2/dx2 + un{x) as a
self-adjoint operator on L2(-oo, oo). We suppose that -r2 < λ(

0"
} < λ(

2g

} =
r2 for some r > 0 independent of w. Further we suppose that Σn+1 c Σπ,
that C = (-oo, r 2 ) Π Π^=1 Σrt is a Cantor set, and that un(x) converges
to a limit function uo(x), uniformly on compact subsets of R. It is clear
from (5) and (6) that such a sequence can be found. Note that |WΛ(JC)| <
2 Γ 2 ( J C G R , n = 0,1,2,...).

It is easy to check that the spectrum Σ o of Lo = -d2/dx2 + uo(x)
equals C U [r2, oo) (this uses the fact that Σn decreases with n). That is,
Σ o has a "Cantor-like part".
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It must be shown that u0 e LP. Let m^\λ) be the m-functions for
L/2, and let J?n(z) be the function defined by (4) (n = 0,1,2,...). It
follows from [11] (see also [10]) that J?n(z) extends holomorphically to
\z\ > r (n > 1). It can also be shown that there is a fixed interval / c R
such that {w(

+

π)(λ) |λ < -4r2} U {jn(_π)(λ) |λ < -4r2} does not intersect
/ for larger n. This assertion follows from the convergence un-> u0 and
the bound ||wn||00 < 2r2 (n > 0); we omit the proof.

We conclude that each Ji n(z) omits the set / of values for \z\ > 2r
(n = 1,2,...). By the Montel theorem [2], {J?n}™=ι is a normal family of
holomorphic functions on { z | | z | > 2 r } . One checks that m(+}(λ) -»
m(+}(λ) if Imλ Φ 0. Hence Jt${z) = hmn^O0^n(z) is well-defined and
equals Jfo(z) for z e β, |z| > 2r. By Theorem 2.2, w0 e LP.

2.3. REMARKS (a). It seems unlikely that the above procedure will
always produce an almost periodic u0. However, using the more detailed
construction of Chulaevsky [4] one can obtain limit-periodic potentials
which are in LP.

(b) Neither the construction above nor that of [4] make it clear that
the resulting potential is meromorphic in the complex x-plane. This is a
remarkable consequence of the Segal-Wilson theory.

3. The Floquet exponent. In this section we will describe a method for
finding potentials in the class LP which generalizes the one given at the
end of §2. We will use the Floquet exponent w = w(λ) of -d2/dx2 +
uo(x) [10, 15, 16]. This quantity is defined with respect to a "stationary
ergodic process" of potentials, and not just with respect to a single u0. For
our purposes, it is convenient to adopt the following definitions [17].

3.1. DEFINITIONS. Let Ω = L^eal(R,(l + \x\3)'1 dx) with the Borel
field 38 defined by the weak topology. Let { T J ^ G R } be the shift
operators defined by (τsu)(x) = u(s + x) (u G Ω,S e R). Let μ be a
probability measure on (Ω, 38) such that μ restricted to each ball {u | \\u\\Q

< R} is Radon, and such that

(i) μ t a U ) ) = μ(A) for all x e R, A e 9S\

(ii)

Then (Ω, 38, μ) is a stationary stochastic process, and μ is invariant. If in

addition:

(iii) μ(τx(A)ΔA) = 0 for all x e= R -> μ(A) = 0 or 1
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for each i e l , then (Ω, ,3?, μ) is a stationary ergodic process, and μ is
ergodic.

Kotani [17] shows that any u e Ω is in the limit-point case at
x = ±00. Let m ± (λ) = m±(u,λ) be the Weyl m-functions; they are
holomorphic in λ for Imλ Φ 0, and jointly continuous in (w, λ) when Ω
has the weak topology.

Let (Ω, 3&, μ) be a stationary stochastic process. Define

Since u -* m+(u, λ)is μ-integrable [17], this definition makes sense. One
can show that w(λ) is holomorphic in the upper half-plane ί / = { λ e
C|Imλ > 0). Moreover Imw > 0, Rew < 0, and Imdw/dλ > 0 for λ e
U. If μ is ergodic, then w has additional properties which justify the name
"Floquet exponent". Especially, the boundary value

w(λ) = j8(λ) + ι'α(λ) = lim w(λ + iε) (λ e R)
ε-»0+

satisfies the following conditions, (i) The rotation number λ -> α(λ) =
l i m ^ ^ l / j t arg(φ'(.x) + /φ(x)) is continuous, monotone increasing,
and increases exactly on the spectrum Σu of Lu = -d2/dx2 + u(x) for
μ — a.a. w ([15]; see also [16]). (ii) The Lyapunov number β(λ) =
limx_QO(l/2x)ln[φ2(x) + φ/2(x)] determines the absolutely continuous
spectrum Σa

u

c of Lu for μ - a.e. u; in fact the essential support of Σa

u

c is

Kotani proves the following result [17].

3.2. THEOREM. Suppose w = w(λ) ώ α holomorphic function on U such
that Imw > 0, Rew < 0, and 1m(dw/dλ) > 0 for λ e i7. Suppose in
addition that limλ_^_oow(λ)//-A = 1, αra/ ί t o /Λere exists r2 > 0 Λ WCΛ
/A<2/ jS(λ) < 0 /or λ < 0 α«ί/ β(λ) = 0 /or λ > r2. ΓΛe« /^re ώ a
stationary stochastic process (Ω, ̂ , μ) swcΛ that: (i) w = wμ; (ii) μ{u G
ΩI (Lwφ, ψ) w non-negative definite as a bilinear form on Cc^mpact(R)} == 1.

We will also use the following theorem of De Concini-Johnson [10].
Though their result is stated for a slightly different space Ω, the proof
works in the case at hand.

3.3. THEOREM. Let (Ω, 38, μ) be a stationary ergodic process such that
Ω is (weakly) compact, and such that the topological support of μ equals Ω.
Let w = wμ be the corresponding Floquet exponent.
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(a) Suppose that β(λ) = 0 for a.a. λ in an open interval I c R. Then

for each u G Ω: the function λ —> m+(w, λ) extends holomorphically from U

through /, and the extended function equals m_(u,λ) for Imλ < 0. The

same statement holds with + and - interchanged.

(b) Suppose the spectrum Σ = Σu of Lu is a finite union of intervals for

μ-a.a. u G Ω, and that β(λ) = 0 /or α.tf. λ e Σ. Then each u G Ω w αw

algebro-geometric potential (see §2).

We now turn to the main result of this section.

3.4. THEOREM. Le/ w = w(λ) satisfy the conditions of Theorem 3.2.

Then there is a stationary ergodic process (Ω, ^?, μ) which satisfies (i) and

(ii) of 3.2 such that u G LP/or μ-α.α. w e Ω .

Our proof of 3.4 repeats a good share of Kotani's proof of 3.2.

Proof. Following Kotani, we construct potentials uk (k > 1) with the

following properties, (i) The function uk(x) is 7^-periodic and belongs to

Ω (i.e., is in L2[0, Tk]). (ii) The Floquet exponent wk (defined by normal-

ized Haar measure μk on the circle Ck = {τsuk\0 < s < Tk) c Ω) satis-

fies βk(λ) = Reκ^(λ) = 0 for λ > rk, where rk -> r as k -> oo. (iii)

/3A(λ) > 0 for λ < 0. (iv) wk(λ) -> w(λ), uniformly on compact subsets

of tΛ

Condition (ii) implies that the spectrum Σk of Lk = -d2/dx2 + uk(x)

contains [rA

2, oo); also, (iii) implies that Σk c (0, oo), since uk is periodic

(see, e.g., Moser [19, Ch. 3]). Again by periodicity of un Σk is a finite

union of intervals, and /^(λ) = 0 for all λ G Σk. By Theorem 3.3, uk(x)

is an algebro-geometric potential. Thus from (5) in §2,

ι=0

where

^ [ / W ] a n d 0

We conclude that \uk(x)\ < 2rl < 2(r2 + 1) for all large k.

The circles Ck are thus all contained in the weakly compact and

translation-invariant subset Ωx = cls{w | \\u\\^ < 2(r 2 4- 1)} c Ω. The

measures μk define Radon measures on Ω1? hence there is a weak limit

point μ of {μ*}/°=i. The topological support Ωμ of μ is contained in Ωx.

Since the translations ( T J X G R ) are weakly continuous on Ω1? μ is

invariant. Also w = wμ by weak continuity of u -> m+(u, λ).
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Next introduce an ergodic decomposition [22] {μγ | γ Ξ Γ} of μ. Thus
Γ is a measure space with probability measure σ, each μy is an ergodic
measure on Ω c Ω, and for all continuous functions h: Ω -> R one has

hdμ = f l[hdμy)dσ(y).

In particular, letting wy(λ) be the Floquet exponent with respect to μγ,
one has

(7) wμ(λ) = f wy(λ) dσ(y) (Imλ > 0).

Let K c U be precompact in els U (i.e., K is a bounded subset of
U). Then there is a constant c^ depending only on K such that
|Rewγ(λ)| < cκ for all γ e Γ and λ & K. This follows from the descrip-
tion of β γ(λ) as a Lyapunov number, together with the estimates of [17,
Lemma 2.8]. Let R = r2, and let « > 2. By bounded convergence we have

0 = Γ Rew(λ)έ/λ= lim Γ Rew(λ + /ε)dλ
JΓV C W /V

= lim+ Γ ί Rewγ(λ 4- iε) dσ(y) dλ

lim+ Γ Rewγ(λ + /ε)^/λ.

We conclude that, for σ-a.a. γ, βy(λ) = Re wγ(λ) = 0 for a.a. λ> R = r2.
Now use Theorem 3.3(a): for each w in the support of μγ, λ -»

m +(w, λ) extends holomoφhically from the upper half-plane C/ through
(r 2 , oo), and the extension equals m τ(u, λ) in the lower half-plane.

Next consider Lu = -d2/dx2 + u(x) with domain Sd = Cc^mpact(R) c
L2(R). Since Lw is in the limit-point case at x = ± oo, it has deficiency
indices zero, hence has a unique self-adjoint extension (its closure), which
moreover is associated to the non-negative bilinear form (Luφ, ψ) on 2
[12]. Therefore this self-adjoint extension has no spectrum in (-oo, 0). One
now proves in a standard way that m +(w, λ) are meromorphic on
Reλ < 0, and that m_(w, λ) Φ rn+(u, λ) there. Since m+(u, λ) decreases
and m_(u, λ) increases as λ j -oo, we can find rλ> r such that Jt(z) =
Jί{u, z) has no poles on \z\ > rl9 i.e., is holomorphic there. By Theorem
2.2, u e LP. Note that Jf(z) = iz + for large \z\; therefore Jί{z) is
holomorphic for Rez2 = Reλ < 0. Hence Ji{z) is holomorphic on \z\ >
r.

Finally, let u e Ωμ. We can find un in Ωμ such that un -> u weakly
and such that each un is in the support of some μ γ . The m-functions
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m±(un,λ) are meromorphic on Reλ < 0, and m+{un,λ) < m_{un,λ)
for negative real λ. Furthermore m+(un,λ) decreases and m_(un,\)
increases as λ | -oo. Choosing a subsequence if necessary, we can assume
that m±(un,-r2) are convergent sequences in R U {oo}. Then for large
n, {m+(un, λ) |Reλ < -r2} and {m_(un, λ) |Reλ < -r2} omit intervals
I ± of real values. Using the Montel theorem once again, we see that
{m+(un, •) \n > 1} and [m_(un, •) \n > 1} are normal families of mero-
morphic functions for Reλ < -r2. Using the weak continuity in u of
m +(w, λ) for Im λ Φ 0, we conclude easily that Jί{un, z) -> Jί(u, z) for
\z\ > r, and that Jί(z) = iz + . Thus ^ ( z ) is holomorphic on |z| > r,
and so w e LP by Theorem 2.2.

3.5. REMARKS (a). We have actually shown that W G L P for all u in
the topological support Ωμ of Ω.

(b) One can replace the assumption Rew(λ) < 0 for λ < 0 by
Re w(λ) < 0 for Re λ < c, for any constant c < r2.

(c) Let (Ω, 3S, μ) be a stationary ergodic process such that the topo-
logical support Ωμ of μ is compact. Suppose further that there is a fixed
constant r such that: (i) the operators Lu satisfy (Luφ9φ) > -r2(φ,φ)
for all smooth φ with compact support; (ii) Rew(λ) = 0 for λ > r2. Then
from the proof of 3.4 one sees that M G L P for each u e Ωμ.

(d) The point of 3.2 is that the function w(λ) is quite general. One
can, for example, choose w(λ) so that lim ε^ 0 + Rew(λ) = β(λ) < 0 for
all λ < r2. Then either Ω contains only the constant function u(x) = r2,
or μ-a.a. u e Ω have spectrum in (-oo, r2) ([16]; also [10]). Only the latter
possibility is of interest. It indicates (but does not prove) that there exist
M E L P with at least some point spectrum.
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