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In this paper we consider shifts on the hyperfinite II; factor arising
as a generalization of a construction of Powers. We determine the
conjugacy classes of certain of these shifts.

1. Introduction. Let R be the hyperfinite II; factor with normalized
trace tr. A shift o on R is an identity-preserving *-endomorphism
which satisfies [, «™(R) = Cl. We say that « has shift index n if
the subfactor a(R) has the same index n = [R: a(R)] in R as defined
by Jones, in [2].

In [3] Powers considered shifts of index 2 on R. These were con-
structed using functions o: NU{0} — {—1, 1} and sequences {u;: j €
N} of self-adjoint unitaries satisfying w,u; = o(|i — jl)u u;. If A(o)
is the x-algebra generated by the {u;} and tr is the normalized trace
on A(c) defined by tr(w) = 0 for any non-trivial word in the u;, the
GNS construction (7, Hy;, ;) gives rise to the von Neumann algebra
M = n(A(0))". Different characterizations were given in [3] and [4]
for M to be the hyperfinite factor R. In [4] it was shown this is the
case if and only if the sequence {...,d(2),a(1),0(0),a(1),0(2),...} is
aperiodic. For this case, the shift « on M = R defined by the rela-
tions a(my(u;)) = (1) has index 2. In [3] it was shown that the
o-sequence above is a complete conjugacy invariant for a. (We say
shifts «, f are conjugate if there exists an automorphism y of R such
thata=1y- g -y~ L)

Motivated by [3], Choda in [1] considered shifts of index #, defined
on R by a(u;) = u;;, for a sequence of unitaries {u;} generating R,
and satisfying (u;)" = 1, uyujy; = o(j)uj+ 41, where o: NU {0} —
{1,exp(2ni/n)}. In this setting and under the assumption o(R)'NR =
C1 she characterizes the normalizer N(a) of o (see Definition 3.4) and
the unitary a-generators of R.

In this paper we generalize some of the results of [1,3,4]. In §2
we consider, for a fixed n, algebras generated by sequences {u;} of
unitaries, of order n, and satisfying u u;,, = o(j)u;+1u; for func-
tions o: NU {0} — Q,, the set of nth roots of unity. We determine
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necessary and sufficient conditions for these algebras, under the GNS
representation for a certain trace, to generate the hyperfinite II, factor
R in the weak closure [Theorem 2.6]. If « is the shift determined
by the equations a(u;) = u;,;, then [R: a(R)] =n. If n=2o0r 3 it
follows from [2] that a(R)' N R = C1. Here we show the somewhat
surprising result that o(R)'N R = C1 regardless of the index (Theorem
3.2), so that Choda’s assumption holds automatically. Finally we use
this result to determine N(«) and show how Powers’ techniques gen-
eralize to characterize the conjugacy classes of shifts of prime index
n.

2. Factor condition. We begin by considering in more detail the
construction of the last section. Fix an integer n > 1. Let Q, be
the nth roots of unity, and 6: Z — Q, a function with ¢(0) = 1
and o(j)~! = g(—j). Consider the sequence {u;: j € N} of distinct
unitary operators, each of order »n, and satisfying

(1) uiuj =o(i — jluu;.

Then the u; generate a *-algebra, 4(cg), consisting of linear combina-
tions of words w of the form w = u{'u% - u;;. From (1) one observes
that for words w, w' in A(o) there is a A € Q, such that ww' = Aw'w.

Define a trace tr on A(cg) by setting tr(l) = 1 and tr(w) = 0 if w
is a word not a scalar multiple of the identity. Passing to the GNS
construction (7, Hy, Qi) we see that the representation =y, is faithful
(note that for distinct words wy, Wy, ..., Wm, and 4 = Y [* a;w;, a; €
C tr(4*4) = Y1, |a;|?) so that we shall identify 4(c) with its image
ny(A(0)) under my.. Let || ||, be the trace norm on A(g) given by
||A||3 = tr(A*A). Then we observe that Hi, is the space of /2-summable
series ) ;o a;0,, where {w;: i € N} is a sequence consisting of distinct
words in the ¥, and d,,(W') = 0 if w*w' # 41,6, (W) = A if w*w' = A1.
Let A lie in the center of A(g)", and suppose Ad; = }_ a;dy,. Then for
all words w € A(0),

w*Awd, = Z ;0w w,w-

Since J; is separating for A(c)” we have w;,w = ww; for all i with
a; # 0. From this relation it follows immediately that A(¢)” has non-
trivial center if and only if there are non-trivial words in the center.
We record this in the following (cf. [3, Theorem 3.9], [4, Theorem
3.4]).
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LeEMMA 2.1. Let A(o) and tr be as above. Then A(a)" has non-trivial
center if and only if there exists a non-trivial word in A(o) such that
w'w = ww' for all words w' in A(o).

We may uniquely define a x-endomorphism o on A(c)"” by setting
a(u;) = u;y). To show « is a shift, let 4 € (o™ (A(0)"), with tr(4) =0
and ||4|| £ 1. Then given ¢ > 0 there are positive integers N < M and
a B in the unit ball of the algebra .Z generated by u;,..., uy, (resp.,
C in the unit ball of the algebra # generated by up.,y,..., Uy ) such
that ||(4 — B)d,|| < & (resp., [|(4 — C)d,|| < &). Then there are distinct
non-trivial words w; € & (resp., w; € %) so that

k 1
B=b01+Zb,~w,~ resp., C=c01+chw;- )
i=1 j=1
From [tr(4 — B)| < ||(4 — B)d1|| < € we have |bg| < &, and similarly,
|co] < &. Then

14113 = tr(4*4) = (46, 461)
< |((4 — B)dy, 401)| + |(Bdy, (4 — C)d1)| + |(Bdy, Coy)
< &+¢&+|tr(C*B)| = 2¢ + [coho| < 2¢ + €.

Since ¢ is arbitrary, ||4]|; =0, so A = 0. thus [a™(A(0)") consists of
scalar multiples of the identity, and we have verified the following.

LEMMA 2.2. Let o be the x-endomorphism defined on A(a)" by a(u;)
= U;y1. Then o is a shift.

DEFINITION 2.3. Let w = lu’;f' '--u;”, with |A| = L kj # 0mod n,
ki, # Omodn, and j; < j, < --- < j;. Then the length of w is
Jr— Jji+ 1. If w= 41 then w has length 0.

THEOREM 2.4. Suppose n = p where p is prime. Let {a;: j € Z} be
a sequence of integers such that ag = 0,a_; = —a;. Defineo:Z — Q,
by o(j) = exp(2mia;/p). Then A(c)" is the hyperfinite 11, factor if and
only if (...,a_y,ag, ay,...) is aperiodic when viewed as a sequence over
Z/pZ.

Proof. The proof is similar to that of [4, Theorem 2.3]. If A(¢)” # R
there is by Lemma 2.1 a non-trivial word w = u’l0 e uﬁ; 41 In its center.
If w = a(w') for some word w' it is easy to show w' is also central,
so we may assume /y # O mod p. We may also assume /,, # 0 (p)
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and that m + 1 is the minimum length among all central words. If
v = ule...yln om i is another such word it is apparent using (1) that
v = Aw¢ for some integer ¢, some A € C. For let ¢ satisfy cl,, = g (p),
then by (1) one sees that wev~! is a central word of shorter length than
w, and must therefore be a scalar multiple of 1.

Now u;jw = wu; for all j. Setting j = 1, and using (1) repeatedly,
one has

=a(0 )"’u Ui u2 uﬁ;H
I

m+1

= [6(0)ea (1)) - - a(m)]wu; = exp (27:1’ (f: lsas) /p) Wiy,

s=0

Uuw = u, u’“ulz‘ . i:'m

= a(0)°a (1) ubuuyul - uln

so that {7 4 /sas = 0 (p). Making similar calculations for u;w = wu;
one obtains the following homogeneous system over Z/pZ:

lbap + hLay + bay +--+ Ilyaw = 0(p)
—lay + hay + hay +---+ Imaw-1 = 0(p)

(2) :
~lbam - ham-1 — hay, —---- Imay = 0(p)

Rewriting one has

(3) AL =1[0,0,...17 mod p
where L =[ly,...,1,]7, and

ay a a - apm
4) 4= —a a ay - dm-\

—a —a a4 - Ay

Let Ay, Ay, ... be the rows of 4. From the symmetry of A it is straight-
forward to observe that for g > m,

IOAI + llAq—] +---+ lmAq—m = [O, 0, ceey 0],

so that the rank of 4 (over Z/pZ) coincides with the rank of the
matrix A’ consisting of the first m + 1 rows of 4. By the argument in
the previous paragraph, central words of minimal length correspond
to solutions K of A'K = [0,0,...,0]7, so the only solutions to this
equation are of the form K = cL,c € Z/pZ. Hence A has a rank m
over Z/pZ.
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From the symmetry of A’ one observes A'L = [0,0,...,0]7, where
L =1[ln....I1]'. Hence L = cL for some c¢ in Z/pZ. Hence if
(Ap); is the row vector obtained from A4; by reversing the order of
the entries then (A4p); has inner product O with L. This fact, and the
property that rows A4,,,1, A2, ... are in the span of rows A4;,..., 4y
imply that BL = [0,0,...,0]7, where B is a row consisting of any
m + 1 consecutive entries of the sequence (...,a_,,a_y,4ay, a1, as,...).
Therefore, for any j € Z, if B; = [aj,...,aj1m), B],; = C(B]), where

0 1 0 ... 0
c-|0 01 0 .. 0
cly cl ce Clp—y
and c is an integer such ¢/, = —1 (p). C is invertible over Z/pZ,

so C* = I for some s, and therefore B;,; = B;, all j € Z, so that
(...,a_p,a_y,ap ay,ay,...) is periodic.

Conversely, suppose the sequence is periodic, with period length
m. Consider the homogeneous system AX = [0,0,...]7, where X =
[x0, X1,...,xm]T and A is as above. Using the periodicity a = Ajym
one observes that the (m + j)th equation coincides with the jth equa-
tion, for all j, so the system AX = 0 reduces to m equations in m + 1
unknowns. Let L = [ly,...,/»]” be a non-trivial solution. Then re-
peated use of (1) shows that the (non-trivial) word w = u’f fn +1
lies in the center, so that A(g)" is not a factor. O

COROLLARY 2.5. Suppose n = p” where p is prime. Let {a;: j € L}
be a sequence of integers such that ay = 0,a_; = —a; and 6: Z —
Q, the function defined by o(j) = exp(2mia;/p"). Then A(c)" is the
hyperfinite 11y factor if and only if (...,a-y,a9,ay,...) is an aperiodic
sequence over Z/pZ.

Proof. Suppose A(a)” has non-trivial center. Then there is a non-
trivial word w in the center. Since w? = i1, some A € C, we may
assume by replacing w with an appropriate power w?" if necessary,
that w i1s a non-trivial word such that w? = A1. As in the proof of the
theorem we may assume further that w has minimal length among all
such central words and that

ko
= Uy m+l’
where ky # 0 mod p”. Moreover, since w? is a scalar it follows from
(1) that p"~! divides k;, for all j.
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We have u;w = wu; for all j € N. Calculating as in the preceding
proof one derives the system

koao +kiag+ -+ kma@m =0 (p’)
—koay + kyap + -+ + kmam—1 =0 (p")

Let /; = kj/p""!, then we obtain the same system as in (3), where
L=1l,...,In]T. Hence the sequence (...,a_;,ay, ay,...) is periodic
over Z/pZ, as before.

Conversely, if the sequence is periodic, with period m, we showed
there is a non-trivial solution L to the system AL = 0 (mod p). Let
kj=1;p"'. Since ly # 0 (p), ko # 0 (p") so that K = [ky,..., kn]" isa
non-trivial solution to the system 4K = 0 (mod p”). It is then straight-
forward to show that the corresponding word w = u’l‘0 R u’f;l"H com-
mutes with the {u;} so that w is central and 4(c)" is not a factor. D

The corollary allows us to proceed to the general case. Let n have
prime factorization p{' - -- pg*. Let Q, be the nth roots of unity. Let

¢:Z/nZ —Z/p}L® - OZ/p;ZL
be the isomorphism given by k — (kn|Py,..., kngsP;) where P, =

n/(pgy) and ny, ..., ng satisfy 3" ngP; = 1. We denote by ¢(k), the
gth entry of ¢(k), p(k), € Z/py.

As before, let {u;: j € N} be unitaries, each of order n, satisfying
uiuj = o(i— j)uj;u;, for some function g: Z — Q,, satisfying g(0) = 1
and ¢(j)™! = o(—j). For fixed j e Nand g € {1,2,...,s} set uj, =
u;f”P 7. The following properties are easily verified:

s
(5.1) uj =[] ujq
g=1
(5.2) a(ujq) =Uji1,q J€EN.
Also, using (1) we have the properties
(5.3) Uighjy = Ujpttiq I q#4,
(5.4) gt jg = (i — )PPV uj ;.

Let A(g)4, 1 < g < s be the subalgebra of 4(o) generated by the
{ujq: j € N}L
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THEOREM 2.6. A(a)" is a factor if and only if A(o)} is a factor, for
each q.

Proof. Suppose 4 € A(o), NA(a)y,. Then 4 € A(o), for all g # qo,
by (5.3). Hence 4 € A(c)' N A(o)” since the algebras 4(c), generate
A(o). So if 4 is non-trivial, 4(o)” cannot be a factor.

Conversely, suppose A(c)” is not a factor. Then there is a non-
trivial word w = u’l‘ oyl in A(o), by Lemma 2.1. Using (1) and (5)

there is a A of modulus 1 such that

S m
w=4 H H u?q :
g=1 \j=1

{

Choose gg such that w,, = ;-”=1 u;,, 1s non-trivial. SInce uy,w = Wiy,
for all k € N, g # qq, it follows from (5.3) that we, wy, = Wy Uiy,
Hence wy, is central in A(g)4, and 4(a)y, is not a factor. O

REMARK. It is straightforward to show that if each 4(o)j is a factor
then A(c) = ®, A(g),. We omit the proof since we do not require this
result.

THEOREM 2.7. Let {kj: j € Z} be a sequence in Z/nZ such that
k_j=-kjando:Z — Q, thefunction given by a(j) = exp(2nik;/n).
Let ¢: Z/nZ — Z/p{'L & --- & Z/ pi'Z be the mapping defined above.
Then A(o)" is a factor if and only if, for each q, 1 < q < s, the sequence

(coer @lk-2)g Plk-1)g P(ko)q. P(k1)g P(k2)g, - -)

is aperiodic over Z/p,Z.

Proof. We have, for fixed g,

n,P, P, P,
gt jr1,q = (TN = g (j)neFel e Py o
= a(j) Pl u iy quig = expuik;/n) P E u; g
(an,,)
Hexp(zﬂi[kjnc/(ch)]) Ujilqlig
(4

= exp(2mingk;/(p "'))(""P")zujﬂ qtig
= exp(2mig(k;)q/(Pg )) "”J+lqulq

By Theorem 2.5, therefore, the von Neumann algebra A(o)j is a fac-
tor if and only if the sequence (...,a_3,a_y,ap, ay,a,,...) is aperi-
odic mod p,, where a; = @(k;)4(n3P,). But n2P, is relatively prime
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to pg, so the sequence above is aperiodic over Z/p,Z if and only if
(cv, @(k—1)q d(ko)q, #(k1)q,...) is also. The preceding theorem now
yields the result.

3. A conjugacy invariant for generalized shifts. In what follows we
shall adhere to the following assumptions and notation. Let n > 1
be a fixed integer, and let o: NU {0} — Q, be a mapping such that
under the trace tr, the algebra 4 (o) generated by the words u;, j € N,
has weak closure A(¢)"” isomorphic to R, the hyperfinite II; factor. As
before, « is the shift on R determined by the conditions a(u;) = ;4.

The following result justifies the terminology shift of index n.

THEOREM 3.1. The subfactor o(R) of R has index [R: a(R)] = n.

Proof. For i =0,1,...,n~ 1, let ¥; be the subspace V; = a(R)u}
in L?(R,tr). Then the V; span L?(R, tr). Moreover, if w, w' are any
words in a(R), we have tr([wu]*[w'u]]) = 0 for i # j. Since a(R) is
the strong closure of linear combinations of words we see that the V;
are orthogonal subspaces. The rest of the argument follows through
exactly as in the proof of [2, Example 2.3.2]. O

THEOREM 3.2. Let o be a shift on R constructed as above. Then
a(RYNR =CL.

Proof. Let {w;: i € N} be a sequence of non-trivial words of A(c)
such that w}w; # A1 for any i # j and if w is a non-trivial word of
A(o) then w = Aw; for some i and some A of modulus 1.

Suppose 4 € a(R)' N R, then we have Ad; = agd; + >_ a;0,, for
some a; € C, as in the discussion preceding Lemma 2.1. Then for
w € a(R),

Since 4, is separating for R there are non-trivial words in a(R)' N R
if A is non-trivial.

Assuming a(R)' N R is non-trivial, and arguing as in Corollary 2.5,
there exists a non-trivial word w € a(R)' N R such that w? = A1 for
some prime p dividing [R: a(R)]. Since o(R) is a factor, w & a(R),
so w has the form u'f“u'z" ~-u’,‘,7+1 with ky # 0 mod n. Moreover, we
may assume that m + 1 is the minimal length among all words w in
a(R)' N R such that w? is a scalar multiple of 1.

Since w?” = Al it follows from (1), then, that n/p divides each k;.

Hence w lies in the subalgebra A of 4(o) generated by u(l"/ ?) and its
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shifts, where p’ is the largest power of p dividing n. By Theorem 2.6,
A" is a subfactor of A(o)”, and by hypothesis, w € a(4)' N A”. Set
v = u(l"/ P) and Vj+1 = a/(v;). From the preceding paragraph, we
have w = v{-..vI" . where g; = k;p"/n. Let ¢': NU {0} — Q, be
the function satisfying v;v; = o'(|i — j|)v;v;, and let {a;: j e NU{0}}
be integers such that
a'(j) = exp(2mia;/p").

Since A" is a factor, the sequence (..., —a,, —ay, ag, 4y, ay, . ..) is ape-
riodic mod p, by Corollary 2.5.

From viw # wvy,v;w = wv;, j > 2, we obtain, as in Corollary 2.5,
the following system of equations over Z/p"Z:

qoao+q1a1+ -+ qma, #0(p")
—qoa1 + Q149+ - + qmam—1 =0 (p")
—qoay — 141 +  + GmAm-2 =0 (p")

Since p"~! divides each ¢ j we obtain the system

10a0+11a1+--'+lmam #O(p)
(6) —loay + hao+ -+ + Im@m-1 = 0 (p)

by setting /; =¢q;/p""".

Define a new sequence zj,... of unitaries of order p satisfying
z;zj = 0"(|i - j|)zjz;, where a”(j) = exp(2mia;/p). From Corollary
2.5 the z; generate a factor M under the usual trace representation,
with shift g satisfying f(z;) = z;4+; and [M: B(M)] = p. By [1, The-
orem 3.7] (M) N M is trivial. But (6) implies that z{° “ee zf;; 41 lies
in B(M) N M, a contradiction. Hence (6) cannot hold, and a(R)'N R

is trivial. O

DEFINITION 3.3. Let o, f be shifts on R. Then « and S are conjugate
if there is a y € Aut(R) such that a =y - B -y~ L.

The preceding definition appears in [3], where it is shown, [3, The-
orem 3.6], that for shifts of index 2 the corresponding functions ¢ =
o,: NU {0} — {-1,1} are a complete conjugacy invariant (cf. also
[1]). Using techniques essentially the same as Powers’ we prove an
analogue for more general shifts.
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We need the following definition.

DEFINITION 3.4. Let o be a shift of index » of R. The normalizer
N(a) is the subset of unitary elements ¥ of R such that Vo*(R)V* =
ok (R) for all k.

THEOREM 3.5. A unitary V € R lies in N(a) if and only if V is a
scalar multiple of a word in A(o).

Proof. 1t is obvious that words lie in N(«a). Suppose V' € N(«a). Let
0 € Aut(R) be defined by 6(u;) = {u,, where { = exp(2ni/n), and
O(uj) = u; for j > 1 (see [1, Corollary 3.8]). It is straightforward to
show that «a(R) is the fixed point algebra of #. We show that 6(V') =
¢kv for some k.

Let W € a(R), then V*WV € «a(R), so VWV = (V*WV)
6(V*)W8(V). Hence VO(V*) € a(R)' N R. Therefore V' = A0(V), by
the preceding theorem. Since 6" =id, V = 6"(V) = 26"~ \(V) =
A"V, s0 A is an nth root of unity, i.e., 8(V) = (& V for some k;.

Let Z, = ul‘k' V, then 6(Z,) = Z,, so Zl € a(R), and there is a
V1 € R such that a(V) = Z,. Hence V = u1 a(Vy). Also V) € N(a),
so that for some k,, 6(V;) = (% V;. Hence Z, = u;* V] lies in a(R).
There is then a V; in R such that o(V,) = Z,, and therefore,

V=uhz, = ubha(V) = uha(uhz,) = b ukat (1)

Continuing in this fashion we find that for any m there are constants
k; and a unitary V},,; such that

V=ubke kot (1,0),

Let s = sup{m: k,, # 0 mod n}. We shall show that s is finite.

To do so, we make the following observation (cf. [3, Lemma 3.3]).
If w is a non-trivial word generated by uy, ..., u, and w' is any word
in R, then tr(wa!(w")) = 0, for / > g. Since any 4 € R is a strong limit
of linear combinations of words in R then tr(wo!(4)) = 0, for [ > q.

Given ¢ > 0 there is a ¢ € N and words w; in the algebra generated
by uy,..., ug such that |V — V|, < ¢, where Vp = > 7_, a;w;. Let
m > q be an integer such that k,, # 0 mod #, then

& > [tr(V*[V - Vo))
= |1 —tr(@™ (Vo Jupkm - uy ) = 1,

a contradiction if ¢ < 1. This yields the result.
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Using the preceding characterization of the elements of N(«), we
may obtain the following results on the conjugacy classes of shifts of
prime index.

COROLLARY 3.6. Let o be a shift of prime index p constructed as
above. Let u, v be a-generators of R. Then u = uvk for some k relatively
prime to p, and some p in L.

Proof. Since u and v are a-generators, and since each is an ele-
ment of N(a), then by Theorem 3.5, u = uvoa(uk')--- o™ (v*), and
v = vula(u')---a™(u'), for some m € N, u,v € Q,p, and integers
tj,kj, j=1,2,...,m. Substituting the latter expression for v into the
first equation, we obtain u = {u%a(u?)- .- o™ (u)%~, for some { € Q,,
where q; = kjto+kj_1t; +- -+ kot; modulo (p). An argument similar
to the proof of [3, Theorem 3.4] shows that g; = 0 modulo (p), for
j > 1. If t, is the last non-zero exponent in the expression for v, then
starting with the expression for ¢,,., and working backwards to g,, i,
one observes successively that k&, = k,,_; = --- = k; = 0. Hence
u = pvko, O

REMARK. The result above does not hold for shifts of general index.
Taking n = 4, for example, one checks that if u is an a-generator, then
s0 is v = ua(u?), since u = uva(v?), some u € Qy.

We omit the proof of the following result, which is virtually identi-
cal to the proof of [3, Theorem 3.6].

COROLLARY 3.7. Let o, B be shifts of prime index p on R, con-
structed as above. Then o and B are conjugate if and only if they
correspond to the same a-function o: NU {0} — Q,,.

COROLLARY 3.8. There are an uncountable number of non-conjugate
shifts of R of prime index p constructed as above.

Proof. This follows immediately since there are uncountably many
functions o satisfying the statement of Theorem 2.7. O

In [3] Powers introduced the notion of outer conjugacy for shifts.
We say that shifts o and # are outer conjugate if there are a y € Aut(R)
and a unitary U € R such that o € Ad(U) = y - - y~!. The index
of a shift is an outer conjugacy invariant, and so is the first positive
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m (me{23,...}U{oo}, by Theorem 3.2) such that o”(R) has non-
trivial relative commutant. It is not known if this condition is also
sufficient, even in the case of shifts of index 2 (cf. [3]).
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