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A specific example of the Ikehara Tauberian theorem is extended
to the case where the zeta function has a pole of order p > 1 at the
first singularity. And we have an application to asymptotic behavior
of eigenvalues for some partial differential operator.

0. Introduction. In order to study the asymptotic behavior of eigen-
values for some differential or pseudodifferential operators, one fre-
quently uses a specific example of Ikehara’s Tauberian theorem. To
be more precise, let P be a positive definite self-adjoint operator on a
separable Hilbert space H with the domain of definition K which is
dense in H. If we denote the spectral resolution associated to P by
{E(A)}, we can define complex powers of P:

(0.1) P = /0 YA dEWR)

where A? for A > 0 take the principal values. If we assume that the
canonical injection from K which is equipped with the graph norm
to H is compact, it is well known that the spectrum o(P) of P is
discrete. This enables one to write the sequence of eigenvalues by
0 <A €4 £ -+, I — oo (k — oo) with repetition according
to multiplicity and let N(4) be the counting function of eigenvalues:
NQ)=#{j;4; <A} I 332, A4 is convergent for some a < 0, P? is
of trace class and for Rez < a,

[o o]
TrP? =) 2.
Jj=1
Then a specific example of Ikehara’s Tauberian theorem says:

PrOPOSITION 1. (Wiener [13] and Donoghue [5].) Let Tr P* be holo-
morphic for Re z < a (< 0). Assume that there exists a constant A such

that
A

zZ—a

Tr P* —
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is continuous for Re z < a. Then we have

N() = gl‘”(l +o(1)) asi— .

For realization P in H = L?(R") of elliptic differential or pseudo-
differential operators, Tr P? has a simple pole at the first singularity.
Applying this proposition, we could obtain the asymptotic behavior of
N(2). (See, for example, Seeley [11].) But there are some hypoelliptic
operators where Tr PZ has a pole of order p > 1 at the first singularity
s = a. We refer the reader to, for example, Aramaki [1], [2], Mohamed
[9] and Menikoff-Sjostrand [8]. To get the first term for such operators
we extended Proposition 1 as follows:

ProposITION 2. ([1; Proposition 5.3).) Let Tr P? be holomorphic
Jor Rez < a (< 0). Assume that there exist constants Ay, Ay, ..., Ap
such that

g

Tr P? — :

Zz=a)

is continuous for Re z < a. Then we have
(=174,

(0.2) NQA) = (logA)P~1A7%(1 4+ 0(1)) as A — oo.

(p-1)a

By this proposition, we could get the first term of N(1). However,
we cannot find the coefficients of the term (logd)/A=4%(j < p — 1).

The purpose of this paper is to determine the coefficients C; of the
asymptotic behavior of the form:

p—1
(0.3) N(i) =) C;(logh)/A~® + O(A™%°)

Jj=0
for some d > 0 as A — oco. The proof is more complicated than that of
Proposition 2 and essentially due to the inverse Mellin transformation.
(cf. Duistermaat-Guillemin [6].)

The plan of this paper is as follows. In §1, we give the main theorem.
Section 2 is devoted to the proof of the main theorem. Section 3 gives
an example to illustrate our theory. Finally in Appendix, we shall
discuss analytic continuation of a zeta function which is used in §3.

1. Statement. Let H be a separable Hilbert space and P a densely
defined positive self-adjoint operator on H with the domain of def-
inition K. We regard K equipped with the graph norm as a Hilbert
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space. We assume:

(H) The canonical injection from K to H is compact.

Since the domain of definition K of P is imbedded compactly to
H, the spectrum o(P) of P is discrete, i.e., both the following hold:

(1.1) A € a(P) is an isolated point of a(P).

(1.2) A € a(P) is an eigenvalue of finite multiplicity.

Thus we can denote the sequence of eigenvalues by 0 < 4; < 4; <
o+, A = oo (k — oo0) with repetition according to multiplicity.

Since complex powers of P is defined by (0.1), we can define Tr P~*
which denotes the trace of P~F if P~ is of trace class.

Then we have:

THEOREM. Let P be a positive self-adjoint operator on H satisfying
(H). Assume that
(i) P~¢ is of trace class for large Res > 0 and Tr P~ has a mero-
morphic extension Zp(s) in the complex plane C whose poles are dis-
tributed on the real line.
(ii) Zp(s) has the first singularity at s = a (> 0) and

% d\’' 1
ZP(S)_Z(j—jl)!<_Zi§) s—a

Jj=1

is holomorphic in {s € C;Res > a — d} for some J > 0.

(iii) Zp(s) is of polynomial order with respect to Im s in all vertical
strips, excluding neighborhoods of the poles.

Then we have for some dy > 0,

(1.3) Np(4) = Z (j/_ljl)! (%)ﬁl (?)

Jj=1

+0(a%%)

S=a

as A — +oo.

Here it is said that s = a is the first singularity of Zp(s) if Zp(s) is
holomorphic in {s € C;Res > a — §} for some J > 0, except a pole at
s=a.

2. Proof of Theorem. First of all, define Q = P24, then the eigen-
values of Q are u; = 2. It easily follows that Zy(s) = Zp(2as) has
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the first singularity at s = 1/2 and

dy’~' 1
(2.1) Zy(s) - Z( 1),< ) s—1/2

p B;
=%l - LGy
is holomorphic for Res > 1/2 — §/2a where B; = A;/(2a)/. Here
we note that by Proposition 2, Np(u) = #{j;u; < u} is of at most
polynomial growth in x. This enables one to define, for Re z > 0,

(2.2) Bp(z) = Tre ¢ = Ze‘z"f.
j=1
In fact, since

. B,
Jj=No(uj) ~ W(logu,)" i/,

there exists a constant C such that Cj < u; for large j. Thus it 1s
clear that (2.2) is well defined by noting the following inequality: for
some C' > 0

(o ¢] [>. <] ) o0
Z le™ 7| < Ze‘CfR“ < C'(Re z)‘2§:j‘2 < 00.
j=1 j=1 j=1
By the inverse Mellin transformation, ©y(z) and Zy(s) can be re-
lated to each other: For Re z>0,

)
(2.3) Op(z) = 5. /R T ds
where I'(s) is the I'-function:
I'(s) = / et dt
0

and ¢ > 0 is sufficiently large (cf. [6]).

Since I'(s) is exponentially decreasing as Ims — +oo in all verti-
cal strips, excluding neighborhoods of the poles, it follows from (iii)
that Zy(s)I'(s) is also exponentially decreasing in all vertical strips,
excluding neighborhoods of the poles of Zy(s) and I'(s). This al-
lows one to shift the path of integration in (2.3) by ¢ \, ¢y where
1/2 —6/4a < ¢y < 1/2. Thus we can rewrite Oy (z) into the form:

)4
(2.4) ©g(z) =Y _ BjI;(z) + Re(2)

j=1
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where

o L Z*I(s)
Ii(z) = o7 /1s—1/2|=s Go1/2) ds and
1

—_ —S
Re(2) = 5 /R Tz ds

Here ¢ satisfies 0 < € < /2a. We see from the Cauchy theorem that

i1
== (%) T

is reformed in the form

B; (d\'' _,
i) e

s=1/2

~—

Consequently Oy(z

+ R, (2).

(25)  ©g(z)=
s=1/2

~.
Il Mu

Now we choose p € S(R) so that Fp is an even function with com-
pact support and (Fp)(0) = 1, p(0) > 0,p > 0 where S(R) is the
Schwartz space of smooth rapidly decreasing functions on R and Fp
means the Fourier transformation of p:

(Fo)e)= [ e p(oan
By the Lebesgue theorem and the definition of Ny(7), we have
(2.6) I(w) = / plu—1)dNp(r) =lim [ e p(u — 1) dNy(x)

—00 el0 J_oo
=LmY e p(u - u;)
€l0 1
m w . .
— lim27)~' S / e~ &+, (Fp) (£)e™ di

el0 PR

= lim(27)"! / " @(e + it) (Fp)(t)e™ di

(%) j—1
B =timen ™ [ (L) e+ Tey|  mwera

s=1/2
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and .
RO () =lim2m) ™ [~ Refe+in)(Ep) (e dr
€ —00

In the sequel, we shall study the asymptotic behavior of I;) (u) and

R?O (1) as 4 — +o0o. In order to do so, we prove the following four
lemmas.

LEMMA 2.1. Lets € B,(1/2) = {s € C;|s—1/2| < r}. Then for every
integer j >0and0<r<1/2,

00 J . 00 J .
2.7) lim 4 (e+it)Se™dt = 4 (it)~Se' dt.
ds . ds

el0 J_oo —00

Moreover the integral in the right-hand side is uniformly convergent on
B.(1/2).

Proof. Since (d/ds)’ (e + it)™ = (e + it)~*(—log(& + it))/, it suffices
to prove that:

(2.8) leil%l/_Z(8+it)"s(log(e+it))fe"”’ dt =/_Z(it)-S(1og(,-t))jeiut dt

and the integral in the right-hand side in (2.8) is uniformly convergent
on B,(1/2). By virtue of the mean value theorem, there exists 6 €
(0, 1) such that

(e + it)~*(log(e + it))’
= (it)~*(log(it))!
1 . .
+ 8/ (6 + it) =S~ {—s(log(eb + it))’ + j(log(eh + it))/~1} db.
0
If we choose 6 > 0 so that r + & < 1/2, there exists a constant C
independent of ¢ and s € B,(1/2) such that

(€6 + it) 5 (log(e + it))¥| < C|t|~Res~149 < C|g|~3/2+7+9,
(k=jork=j-1)

for all |¢| > 1. So we have

8\/
l11>1

<eC |t|—3/2+r+6 dt — 0
¢]>1

1
/ (66 + i)~ (log(e6 + it))* d6| d
0
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as ¢ | 0. On the other hand, if we choose d sothat 0 < 26 < 1/2 —r,

then
o
7]<1

1
gs/ /(ae+|t1)5-1(80+|z|)-'-2<’-1/2d0dz
<1 Jo

1
/ (60 + it) =~ (log(¢0 + i1))* d6| d
0

1
< s/ (60)°~! da/ |22 gy 0
0 [21<1
as ¢ | 0. This completes the proof.

REMARK 2.2. By the above lemma, we have 0 < b < 1 and every

k=01,...,
» d\* o ot
iu — S pilt
et dt (ds) /oo(zt) e'* dt

(2.9) /_ Z (%)k (it)~s [

LEMMA 2.3. Let 0 < b < 1. Then we have the following

s=b

s=b

© s d\/! )
(2.10) leilrgl i <%> {(e +it)~°T'(s)} ‘b(Fp)(t)e”” dt
0 d o i) —S iut
_ /_ - (%> (07T e
+0(u™") as u — 400
Proof. Since
d\’! s
(2—5> {(e+it)™°T'(s)} .

is a linear combination of
(e +it)P(logle + it))k, (0<k<j-1),
it suffices to prove:

(2.11) 13}6’ / ” (e + it) P (log(e + it))*(Fp)(t)e™™ dt

= /oo (it) b (log(it))* e dt + O(u™") as u — +oo.

—00
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The integration by parts leads to
<x> .
(2.12) I(use) = / (e + if) " (log(e + it)) X (Fp)(1)e’™ dt

—00

_ “Elﬁ /_ Z %{(a +it) b (log(e + if))(Fp)(£)}e'™ dt

_b [ bt K int
-7 / (& + it) 0~ (log(e + it)* (Fp)(£)e™ dt

—0o0

_k o b kel »
u/_oo(8+lt) (log(e + it))* " (Fp)(t)e'* dt

— %/::(8 + it) " (log(e + it))* (Fp)'(t)e™ dt.

Here (Fp)' denotes the derivative of Fp. We first estimate the third
term of (2.12). Noting that for arbitrary § (0 < d < 1 - b) there exists
a constant C > 0 independent of ¢ such that

|(e + it)~° (log(e + ir)* (Fp)'(¢)e™!| < Clt|™"~% in supp (Fp),

it is easily seen that the third term is of O(u~!) as 4 — +oco uniformly
when ¢ | O.

Next, we consider the first and second terms of (2.12). Since we
may suppose supp(Fp) C (—N, N) for some N > 0, we can write

(2.13) / ” (e + it) "~ (log(e + it))* (Fp)(t)e™™ dt

=/ (e + it) "~ (log(e + it))ke' dt

—00

N
+ [ (e it logle + i) (Fp)(0) ~ e d
N

- /l et ity (log(e + it))k e d.
tI>N

Since (Fp)(0) = 1, |(Fp)(¢) — 1] < M|¢t| for some M > 0. Thus, taking
0 > 0 small enough, there exist constants C and C’ independent of ¢
such that

/-N (e + it)~0=(log(e + it))*((Fp)(t) - l)ei,ut| dt
-N

N
< C/ t|70%dt < C'".
-N
Similarly taking 6 > O small enough shows that we also have

/ (e +it) >\ (log(e + in)ke|dr < C [ 1|t dr < C.
>N =N
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Hence we see that the second and third terms in the right-hand side in
(2.13) are of O(1) as u4 — +oo uniformly in ¢&. Now, the integration
by parts yields that

Ki(ue) = / (e + it) "0~ (log(e + it))*e™ dt

_ L d N
=5 /_oo(8+lt) dt{(log(a—i—zt)) ety dt

k
= BKk—l(,u;e) + %Mk(ﬂ;ﬁ)

where 0o
My(uze) = / (& + ir)~ (log(e + it)}*e™ dt.

-0

Since Ky(u;e) = (u/b)My(u;e), we have, by induction,

k
k!
Ki(1;¢) =—§ [Zobs ‘5 s(u;S)} :
S
Therefore, taking (2.12) and (2.13) into consideration, we have
b k
@14 RUse) = Kelwse) = L Kioi(2) = Me(se)

+00 .
- / (e + it)~b (log(e + it))ke™™ dy

—00

modulo O(u~!) uniformly when ¢ | 0. Finally it only remains to apply
Lemma 2.1 (cf. (2.8)). This completes the proof.

LEMMA 2.4. Let s be a complex number so that 0 < Res < 1 and u
a positive real number. Then we have

(2.15) / (it)Se' M dt = 2sinsal(1 — s)u*L.

Proof. We first consider the integral
I*(s) = /()oo(it)“sei”’ dt.
The change of variable ut — ¢ leads to
It(s) =i*us! /Ooo t~Se't dt.
If we put z = re®,0 < 8 < n/2, we have

|Z——seizl < r—ReseOImse—r sin 6'.
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Since sin & > 0 in (0,7/2] and z~Se‘? is holomorphic function of
z=re? in 0 < 6 < n/2, we can deform the integral as follows:

o0
It(s) = i~sps! / (it)Seti dt
0 oo
= l-——25+1#s—1 /0 t~Se~tdt = i—2s+l‘us—lr(1 —-—S).
If we put z = re’®, —n/2 < 0 < 0, it follows from the same argument

that
I~ (s) = / ’ (it)Se'  dt = (=)~ u~Ir(1 —5).
-
Therefore
IY($)+ 1 —(s) = i{i™® — (=)~} 'T(1 = 5)
= 2sinsal’(1 —s)p L.
This completes the proof.
Finally we consider the asymptotic behavior of the remainder term

RY (u).

LEMMA 2.5. There exists 6 > 0 such that RO (u) = O(u='/279) as
U — oo.

Proof. If Zy(s)I'(s) has a pole at s = s such that 0 < sy < ¢y < 1/2,
the above lemmas show that there exist some d > 0 and ¢; (0 < ¢; < 5g)
such that RO (u) = R (u)+O(u~1/27%). Thus in the definition (2.4) of
R.,(z) we may assume that ¢y > 0 is arbitrary. Moreover, if Zy(s)I'(s)
has a pole at s = 0, there exist some d < 0 and sufficiently small ¢ > 0
such that R, (z) = R'(z) + R;(z) where

R'(z)= 5;:7 /|s|=s z75Zy(s)I'(s) ds.

We show that there exists 0 > 0 such that
w .
Ry(p) = lim / R'(e + it)(Fp)(t)e'™ dt = O(u~1/29)
& —00

as u — oo. In fact, by the preceding arguments, it suffices to prove
that

[ tog 2y (E @y dt = 012
-N
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as u — oo. For brevity we only consider the integral
50 = [ Qo0 (Ep) e di = 1} + J30)  where
JHu) = / (logt)’ (Fp)(t)e'* dt and
T () = / (log 1)/ (Fp)(t)e™ dt.
Since (Fp)(t) = (Fp)(0) + ¢t(Fp)'(6t), 0 < 8 < 1, we have
= " log )11 + t(Fp) (60))e dt.
For any a € (0, 1), there exist constants C and C’ > 0 such that

1/ iut un — y ae1
/0 (logt)/e'™ dt SC/O t4dr < Clu?.

And

1/u ) . 1/u
I/ (logt)/t(Fp)'(6t)e™™ dt| < C/ dt < C'u=l.
0 0

Thus we see that J!(u) = O(u~°~'/2). Next, by the integration by
parts, we have

2 A ~1 iut
(2.16) Ji(u)= m [/}/ﬂ jt™(logt)! Y (Fp)(t)e'™ dt

N o .
+ / (logt)’ (Fp)'(t)e'™™ dt] .
1/u
For any a > 0, we have with a constant C > 0,

N N .
/ jt~}(log 1)/~ (Fp)(1)e™™ d
1/p

N
< C/ t~17%dt = O(u®) as u — .
1/n
It is clear that the second term in the parenthesis of (2.16) is of O(1).
Thus for some & > 0, J?(u) = O(u~°"1/2) as 4 — co. Consequently
it follows that for some & > 0, Ro(u) = O(u~%~1/2) as u — co. Thus
we are reduced to prove that for some d < 0, R)(u) = O(u~1/279) as
i1 — oo. But this fact follows from the same arguments in [3] (cf. [6]).
This completes the proof.
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End of the proof of Theorem.

By virtue of the above lemmas, we have, modulo O(x~1/>79) for
some 6 > 0 as u — +oo,

W= [ plu—7)dNo(o

= 3 .Bj (27:)‘1/0o <i>j_l{(it)‘sl”(s)} e’ dt.
= (j—1! —oo \ S s=1/2
Here, taking Remark 2.2 and Lemma 2.4 into consideration,
2 B d\’ ! 0 -
=Yy (g) (o[ weal|

= Zp: .Bj .(275)”1 <%>j_l {2sinsal(s)I(1 — s)p*~ 1}

3:1/2.
By the well known equation: sinsaI'(s)['(1 —s) = 7, we have
', B (d\!

I — J el s~1

CRWE (%) w™

Now it follows from Helffer [7] that there exists a constant C such
that

+ 0(/1_1/2_5).
s=1/2

/_; /_::o p(u—1)dNo(1)dp < C

Thus we have

N (/1):/i () du + O (3122
0 w) du+ O( )

—00

Stm(E) (5)

j=1
Noting that Np(A) = Np(424) and B; = 4;/(2a)* we have for some

dg > 0,
p i—1
Aj iy d\’ A2as
G- (&) (5)
P .

f

+ O (4279,
s=1/2

+0(297%)
s=1/2

Np(A) =

-~

+0(A%%).

Y otm(@) ().

Jj=1
This completes the proof of Theorem.
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3. Example. In this section we shall give an example. Let

A——a—z—?—z—+(l+x2) 2 onR?
T Tox2 T 9)2 y '

By the celebrated Kato theorem, it follows that A4 is an essentially
self-adjoint operator on L2(R?), i.e., 4 has a unique self-adjoint ex-
tension P of 4 as unbounded operator on L?(R?). Moreover P is
semi-bounded from below. By Robert [10] (cf. [4]), we can regard P
as a L?(R)-valued operator as follows. If we define

d2
K = {ue L*(R); <—d—y2 + y2) ue L’(R)} and H = L*R),

we see that
d2

Q(x)=—d—y—+(1+x )y € L(K H)

where L(K, H) denotes the Banach space of all bounded linear opera-
tors from K to H. Thus we can regard 4 as a L2(R)-valued operator
with the Weyl symbol

ow(A) =&+ Q(x) € L(K, H).

Since —d?/dy?+ y? has the complete set of the eigenvalues u; = 2j—1
(j=1,2,...) of multiplicity one, ones of g (A4) are given by

&+ (1+xH)2p;.
It follows from [4] that

Tr P — (27)~ / Tr (€2 + Q(x))~° dx d&

is holomorphic for Res > 3/2—9 for some é > 0. Thus we are reduced
to study

16)= @n! [[Te @+ Q) dx
= Z(zn)—l/ (E*+ (1 +xH)V2pu;) s dx dé.
=1
The change of variable: ¢ — ul./ 2¢ leads to

I(s) = Zﬂ =5+1/2(27) /(éz+(1+x)‘/2)‘5dxdé
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Moreover changing the variable ¢ — (1 4+ x2)!/4£, we have
I(s) = Zﬂ $+1/2( 7)1 / (1422 [~ e
—00

In combination with the well known equation

o x4 d _T((a+1)/2)I'(b - (a—1)/2)
/0 (14 x2)1+0 57— 2I°(1 + b)

when Rea, Reb > —1 and Reb > Re (a — 1)/2, we have

[(s/2 = 3/40(s — 1/2) & 54
I6) = —=rem =18 Z .

if Res > 3/2.
Since I'(z) = 1/z —y + O(z) as z — 0 where y is the Euler number,
we have

I'(s/2-3/4) = —y+0(s—3/2)as s — 3/2.

1
s/2—-3/4
Since

I'(s—1/2)
I'(s/2 - 1/4)I(s)
is holomorphic for Res > 1/2 and G(3/2) = 2n~!, we see that G(s) =
2n~ 1 4+ (s — 3/2)G'(3/2) + O((s — 3/2)?) as s — 3/2. Therefore it
follows that
I(s/2-3/4)I(s—1/2) 4n~!
I(s/2-1/4)T(s)  s-3/2
Using the fact which shall be proved in Appendix:

G(s) =

+{2G'(3/2) = 2yn~ '} + O(s - 3/2).

iu;”‘/z i/32/2 +C+0((s - 3/2))
j=1

where
1 < o
=3 15?0 2 E_ (2k—1)"" —log(2n—1)| = (y +log2)/2,

we have

n! N (G'(3/2) —yn~1)/2+2Cn~!

1) = 53772 5=3/2

+ Ro(s)
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where Ry(s) is holomorphic for Res > 1/2. In combination with well
known equations

I'(1)=-y, I'(3/2)=n'24+1"(1/2)/2 and
I"(1/2) = —n'/2(y + 2log 2),

it follows that we have

G'(3/2) =2P()a~! —=I'(1/2)n~3/% — 41" (3/2)n~3/?
= (y+6log2 —4)n~ L.

Hence it turns out that

n! (4log2 — 2+ y)n~!
S e Py PRy * Ro(s)-
Thus by our Theorem, we have
Na(d) = 223 10ga + 231082 =10 H 873312 (33129
3n 174
as A — +oo.

Appendix. In this appendix we shall consider the analytic continu-
ation of

o0
Z(s)=)> (2k-1)%, s=o+it
k=1
where o and ¢ are real numbers. It is well known that Z(s) is absolutely
convergent for ¢ > 1 and uniformly convergent for ¢ > 1 + ¢ for any
¢ > 0. Then we shall give a proposition whose proof is essentially due
to Siegel [12]

PROPOSITION. Z(s) can be continued analytically into the half-plane
o > 0 and the continuation is holomorphic for o > 0, except for a simple
pole s = 1 with residue 1/2. Further, Z(s) has the expansion at s = 1:

Z(S)—%=C+a1(s—1)+a2(s_1)2+...
where
I P )
C = lim [2)(2k - 1)~ ~log(2n — 1)| = (v +10g2)/2

k=1
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Before the proof of this proposition, we give

LEMMA. Let f be a complex valued function belonging to
C![1,2n — 1]. Then we have

n—-1
/OZZf'(sz ~D(x-Ddx+ f(1)+f2n-1)

k=1

n 2n—1
=2Zf(2k—1)—/ Sf(x)dx.
k=1 1

Proof. Let g be a complex valued function belonging to C![0, 2].
Then, the integration by parts leads to
2

2
/ g'(x)(x — 1) dx = g(0) + g(2) - / g(x)dx.
0 0

Letting g(x) = f(x+2k~1), k=1,2,...,n— 1, it easily follows that
2 2k+1
/ P+ 2k —1)(x—1)dx = f(2k — 1)+ f(2k + 1) —/ 7(x) dx.
0 2k—1
This completes the proof of Lemma.

Proof of Proposition. Let f(x) = x5 = e~518% where log x takes
the principal value. Then it follows from the above lemma that

n—1
(A) —SZ/Z(X+2k—1)‘1‘S(x—1)a’x+1+(2n—1)‘s
k=170

n 2n—-1
=23 (2k- 1)-S~/ x~Sdx = Fy(s).
k=1 1

Here we easily see that

Fu(s) =23 (2k = 1)~ = 1.2 (i”_“ll)l_s ifs1
k=1

and .
Fu(s)=2) (2k-1)"'—log(2n-1) ifs=1
k=1

and therefore, it follows that F; (s) is an entire function of s. If 6> 1,
it follows that

2n-1 1 n
—s - 1) — N
/; x~*dx - — and ];(2k 1) Z(s) asn— .
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Thus we see that F,(s) converges to 2Z(s) — 1/(s — 1). On the other
hand, if ¢ > ¢ > 0, it follows that the left-hand side in the above
equality (A) converges to a holomorphic function for ¢ > 0. Thus we
see that 2Z(s) — 1/(s — 1) has the analytic continuation for ¢ > 0. Let

1
ZZ(S) - E_—-—I- = a()+a1(S - 1) +a2(S - 1)2 +
Then it is easily seen that

ap = lim [Zf:(Zk - 1)7! ~log(2n - 1)] :

k=1
Finally a simple computation leads to

llc log(2n) = {Z T ——logn}
{Z Py log(Zn— 1)}

n(2n—l)
+glog )

2n

k=1

Noting that

n
lim { L_ logn} = 7y (the Euler constant),
k

n=o0 k
=1
we see that
im It Neon— 1l = (1 10g2)/2
G P R R A e

This completes the proof.

Acknowledgments. The author is indebted to the referee for a valu-
able suggestion, which led to a simpler reformulation of the main
theorem.
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