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POSITIVE ANALYTIC CAPACITY
BUT ZERO BUFFON NEEDLE PROBABILITY

PETER W. JONES AND TAKAFUMI MURAI

There exists a compact set of positive analytic capacity but zero
Buffon needle probability.

1. Introduction. For a compact set £ in the complex plane C,
H>(E*) denotes the Banach space of bounded analytic functions out-
side E with supremum norm || - || g (gc). The analytic capacity of E is
defined by

Y(E) = sup{|f'(c0)l; S € H®(E®), |fpe=Ee) <1},

where f"(c0) = lim,_ z(f(2) — f(00)) [1, p. 6]. Let & (r,6) (r >
0, —m < 6 < m) denote the straight line defined by the equation
x cos @ + ysin @ = r. The Buffon length of E is defined by

Bu(E) = / / dr db.
{(r0);Z(rO)NE#D}

Vitushkin [7] asked whether two classes of null-sets concerning y(-) and
Bu(-) are same or not (cf. [2], [3]). Mattila [4] showed that these two
classes are different. (He showed that the class of null-sets concerning
Bu(-) is not conformal invariant. Hence his method does not give the
information about the implication between these two classes.) The
second author [5] showed that, for any 0 < & < 1, there exists a
compact set E; such that y(E;) = 1, Bu(E;) < ¢. The purpose of this
note is to show

THEOREM. There exists a compact set Ey such that y(Ey) = 1,
Bu(Ey) =0.

2. Cranks. To construct Ej, we begin by defining cranks. The 1-
dimension Lebesgue measure is denoted by | - |. For a finite union F
of segments in C, its length is also denoted by |E|. For p > 0,z € C
andaset E C C,we write [pE+z]={p{+z;{ € E}. With0< ¢ < 1
and a segment J C C parallel to the x-axis, we associate the closed
segment J(¢) of the same midpoint as J, parallel to the x-axis and of
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length (1 + ¢)|J|. With a positive integer ¢,0 < ¢ < 1 and a segment
J parallel to the x-axis, we associate

2q 1 2q—l
J(g 9)= U[Jzk 1(0) + 279711 | Tk (0)
k=1

where {Jk}i"= , are mutually non-overlapping segments on J of length
279)J); they are ordered from left to right. The set J(g, ¢) is a union
of 29 closed segments of length 279(1 + ¢)|J|. The segment I'j =
{x;0 < x <1} c Cis called a crank of type 0. For a finite sequence
{9 j} '_o 90 =0 (n > 1) of non-negative numbers less than 1, a finite
union I' of closed segments is called a crank of type {¢;}"_, if there

exists a crank I = Uk:1 Je (T k—) are components of F’) of type
{p;}1Z¢ such that

l
I = Ju(g ¢n)
k=1
for some /-tuple (qi,...,q;) of positive integers larger than or equal
to go = 100. We write I'[,, . For a sequence {¢;}%,, ¢o = 0 of
non-negative numbers less than 1, a set I' is called a crank of type
{9i}%0 if there exists a sequence {I',}32 , of cranks such that

(1) 'y is of type {p;}]_o

(2) rO [(01 rl [¢2 ]

(3) r=UYr,
n=0 j=n

We write by O, the finite sequence of n zeros (n > 1). For a finite
union I of segments, L?(I") (1 < p < oo) denotes the L? space on I'
with respect to the length element |dZ|. We define an operator # on
LP(I") by

() = geov. [ Hjag

1. f(£)
270 ¢—0 = z|>g¢erC—zl ¢l

The following fact is already known.
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LEMMA 1 ([5]). For any positive integer m, there exist a crank I},
of type O, and a non-negative function g}, on I'}, such that g}, is a
constant on each component of T,

lgmllrsy =1 llgmlleems) < C1. IReH gpllLer;) < Civm,
Bu(I“j,,) < Cy/m°o,
where Re ( is the real part of { and C; is an absolute constant.

Our method is as follows. We define a sequence {n(k)}2, of non-
negative integers with large gaps. Choos1ng {o; 10"( suitably, we de-
fine a crank I'o,(1) of type {9} 2 10(1) Then |l"10,, | = 10" J(1+40,).
Replacing each component of F 10n(1) bY a crank 51m11ar to F 7(2)—10n(1)
in Lemma 1, we construct a crank F ) of type {¢;}"), where ¢; = 0
(10n(1) + 1 < j < n(2)). Then we see that

10n(1)

1/7(Tng) < 1/7Tionq1y) + Const(n(2) — 10n(1))!/2/ H (1+9)),
j=1
On(1)
Bu( H +9,)(n(2) — 10n(1))~%/10,

Our sequence {¢ ,-}}0='(’) is chosen so that

10n( 4/3
n(2) — 10n(1 {H(1+¢,} .

1/7(Tnz) < 1/7(Tion(1y) + Const(n(2) — 10n(1))~1/4,

Bu(Ty()) < Ci(n(2) — 10n(1)) /2.
Replacing each component of I“n (2) by a suitable crank, we construct a
crank I'jo,(5) of type {¢,}}24%. Replacing each component of T'yon(2)
by a crank 51m11ar to F —10n(2)» W€ construct a crank I',3) of type
{p;}70), where ¢; = 0 (IOn( )+ 1 < j < n3)). The sequence
{3103 | is chosen so that |(n(3) — 107(2)) — (TT}21® (1 + ¢,))*?|
is small. We see that

1/7(Tn@3)) < 1/7(Cron(1y) + Const(n(2) — 10n(1))~ /4
+ Const(n(3) — 10n(2))~'/4 + (negligible quantity),
Bu(Ty(3)) < Cy(n(3) - 10n(2)) /.

Hence
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Repeating this argument, we define a sequence {I',)}72, of cranks
such that

limsup 1/7(T () < 0o, lim Bu(I')) = 0.
k—o00 k—o0

Then the analytic capacity of the limit crank is positive and its Buffon
length is zero.

3. Lemmas.

LEMMA 2. Let T, be a crank of type {¢ j};!=0, gn be a non-negative
Sfunction on Ty, such that g, is a constant on each component of T,
and let {9;};1".| be non-negative numbers less than 1. Then there
exist a crank 'y, of type {¢@ j}” and a non-negative function g,.m

on I'yim such that

(4) &n+m 1S a constant on each component of T'pim,
(5) | gn+mll LTy = N&nllLr(T,)s
n+m
6) Ignsmllzern < lelomy / T (140
p=n+1

(7) IRe .., gntmllLoo(T,,)

n+m
< |IRe ., &nllLeo(r,) + 18nll L=(r,) { H (1 +¢u)}-

Jj=n+l1 u=n+1

We can write I', = (Jy_, J{ with its components {J{"}r_ . We
put

| U Jk (Gn+1, Pn1)s
k=1
where ¢,.1 (= go = 100) is determined later. Suppose that {I‘ﬂ} u=n+1
have been defined. We can write I'; = U o1k U) with its components

{J,Ej)}fé:l. We put

(8) Ljy = U J qj+l’¢j+1)'
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Thus {T';}7" | are defined; {¢,} 1", are determined later. Let n +

1 < j<n+m. Wedefine a non-negative function g; on I'; as fol-
lows. Each component J{" of I, generates 2%+++% components of
I'j. On these components, we put

()= {|J<"|/ &(0) |dc|}/ IT a+00).

u=n+1
Since the total length of these 29+1**4 components is

J
O T 1+ eu),

u=n+1

the integration of g; over these components is equal to [ o gn(0)|d¢|.
Hence ||gjllzyr,) = &nllzir,)- Evidently, g; is a constant on each
component of I';. We have

1&lzer < Nl o / 1T (+00)

u=n+1

In particular, (4)-(6) hold. To prove (7), we estimate

IReZt,,, &j+1llLe(,..)-

Recall (8). We have

aj+] . .
T @1 0500) = UG, 000 + 279710
u=1
aj+]

UU I (0i01) (i1 =207 1<k <)),
u=1

where {J }2‘;’“ are mutually non-overlapping segments on J,ﬁj ) of
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length 279+ ]J l they are ordered from left to right. Let
T41
Zp € U[ ko,2u (9js1) +i27 q’“’JU 1l

and let zj be the nearest point on J,foj ) to zg. Then

L =

Re-z-l—. v, / 8+16) e
T Jk(é)(‘hﬂ,%ﬂ) C—z

1 gJ(C
Res-py. /, N

RC——IZHP /J(” g]+l(€)'da

(@) &~ 20

ko.2u—1

S 2 am |7
" 2% oo (x —Rezg)? + (27912

j+1
S“gn||Loo(rn)/{2 1T (1+¢u)}-

u=n+1

lgirillzoe(r,, ) dx

Let

J— 1 1 () . — () — dj+t
pj 1rsr}clsnljdls(.lk T =07, t(gjm) =27 lr<nka<xl lJ |,

where dis(-, -) is the distance. We choose, for a while, g;.; (> gp) so
that 7(g;,1) < p;/10. Since

gm0l = [ g0z

k2u

/[J,fz),,(%ﬂ J+i2= 4w 0]
gl = [ a0l

[](J)

oyt (Pi+1) k2u—1

1<k <1 <u<297 (= 054)),
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we have

e [ 1By
an r +l—J(1](qJ+l ¢j+l) C

1
- Re27cz/r g C— zol Cll

(i) +i27 1| T £—20

Jk.Zu
& Zolda‘

8j+1({) /
de| -
/J‘ oo L2000 i

k2p—1 k2p—1

L, =

;41

=

2941

< Const (gj+1)p;> ) Z/ g;(9)ld¢]

k#ko p=1
SCOHStT((Ij-H)pj ”gj”L'(F,)
= Const T(qj+1)/7;2||gn”L'(Fn)'

Thus
(9) IReA, gj+1(20)| < |ReH gj(z5)|+ Ly + L,

J+1
< ”Re;?i‘,gj”Lw(l‘,)+”gn”L°°(I‘,,)/{2 II (1+¢u)}

pu=n+1

+ Const 7(¢;+1) £} *l|gnllLur,)-

In the same manner, we have (9) for any point z; in
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Since ko (1 < kg < /) is arbitrary, |[Re#f,,, &j+1llL(r,,,) is dominated
by the summation of the last three quantities in (9). Consequently,

(10) |IRe A, gn+mllLo(T,. )
< |Re#,,,_, 8n+m—1llLo,imr)

n+m
+I|gn||L°°(F,,)/ {2 11 (1+¢’u)}

u=n+1
+ Const T(gnsm) Pyt 1||gn||Ll ) <o < ||Re K, &nll L)

Flgnllzeeey /{2 I1 (1+00) }

—n+1 pu=n+1
n+m
+ Constl|gnllLir,) D ©(a,)p72
j=n+1

Since lim,_. 7(q) = 0, we can inductively define {g; ”+,’1"+1 so that
(7) holds. This completes the proof of Lemma 2.

LemMA 3. Let T, be a crank of type {¢ j};?:O, gn be a non-negative
function on Ty, such that g, is a constant on each component of I'y,
and let m be a positive integer. Then there exist a crank I'p, of type
{;}}25" with9; =0 (n+1 < j < n+m) and a non-negative function
&nim on Ty such that

(11) &n+m 1S a constant on each component of Ty im,
(12) | &n+mllLir,,.) = ll&nlli(T,)

(13) | &n+mllLeo(Tym) £ Crll&nllLoo(r,)

(14) Re 7., &n+mllLoo(T )

< IRe #, gullLo(r,) + CovV il gnll L=,

(15) Bu(Tp4m) < Ci|Tal/m/"°,

where C, is the constant in Lemma 1 and C, is an absolute constant.

We can write I', = (J4_, Ji with its components {J ¥ _,- Let z; be
the left endpoint of J; (1 < k </). We put

!
Trim=J Ak Ak =TT + 24],
k=1
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gnm(2) = 8m((z — zi) [k} gn(zk) (2 € Ap 1<k <),

where I}, g5, are the crank and the function in Lemma 1, respectively.
Then I is a crank of type {9 ;}}£5". Evidently, (11) and (12) hold.
Lemma 1 immediately yields (13) and (15). Let zg € Ay, and let zj
be the projection of z, to J,. Then Lemma 1 shows that

|Re 7., &n+m(20) — Re Zt, 8x(2p)
< Re 1 gn+m(C |dC| 2 / CH(C

- 2ri Aky C-zo

— Re_l__ gn+m(C) ldCl LO

2ni C

1

N
1
< Civm|\gallL=(r,) + 2—L°

where

0= Enem(C) g A C"“ |d<||

. C—2o

k#ko
Let {I';}7_, be cranks such that

Iy [¢. I [m T [¢,. ) B

For 1 <k <[ 0<j<n y(j)denotes the component of I'; gener-
ating Jy.. In particular, y,(n) =J; (1 <k <[). We put

) gnim(®) &n(0) .
0=y —+—_|dC|_/JkZ———23|dC|| (1<j<n),

— Z
i A 20

where
Fi={1<k<Lk#kov(i—1)=v,0 = 1), %)) # 7% ()}
Then

= iLg.
j=1

Since I';, is a crank of type O, a geometric observation shows that,
forany z€e Ay (1 <k <),

dis(z, Ji) < 2T [{27% + 2720 4 ... 4 2-m@0} < ITl)'o‘”kL
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Hence A is contained in the square Q; = {z +is;z € J;, 0 <s <
[71/100} (1 < k < [). Since |y, (n)] = |y, (n)] (k € F), we have, for
k €%,

dis(Qk Qi) > dis(7(n), 74 (1)) = 1517 ()] + 7, ()]}
= dis(e(n). 75, (1)) ~ 5175, ()]

Forany 1< j<n-1,z€(Qy,

dis(z ()< Y {ka(u)i} VA

u= j+1 (I+9
o
< 2|n(J IZ 7)1/ 17 (D) + 15517 (D
u=j+1

< 2 DHZ (1 + 9501+ 272%(1 4 p1)(1+ 910)
o 2D ) (14 )} + sl
< (D@D 4 272070 1y )] € g5l
Since |y (J)| = |74, (J)| (k € F}), we have, fork € 75,1 < j<n-—1,
(16)  dis(Qr. Q) > dis( (). 7 (7)) ~ 55 {1 )] + 72 )1
= dis(re(1). 7 (7)) ~ 55l

Thus (16) holds for any k € 7,1 < j < n. Let 1 < j < n. Since

/ Znim(O)1dC] = / g0l (1<k<D),
Ax Jk

1 1
[A {C— zo  zx -z} } Zn+m(£)dL]

[ {m - e
)

< Const 3 (il + M is(Qi Q1) | &u0)lat

kes,

< Const||gullz=(r,) Y, (il + i, Ik |dis(Q, Ok,) 2
ke,

ke
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The segment y; (j — 1) generates 2% components {4, }2”, of I'; of

length |74, (J)|, where g; = log{(1+¢;)|7,(j— l)l/lyko(J)l}/logZ (= 90)-
We may assume that 4; = y; (/). Let

={keFl =)} (2<v<29)
Then ~=U2“’29;y We have, for 2 < v < 29,

> (Wil + i D1kl
ke,

<272t TT (14 00) D il

j<u<n kes,

2
= [A;]22%(=)) { H 1+ (”u)} < 4122~ @2 n—)),

J<usn

where [, ,<,(1 + @) denotes 1 if j = n.
Hence a geometric observation and (16) show that the last quantity
in (17) is dominated by
24

Const|| gnll e,y D Y (il + [T, )| Tkl dis(Qk Or,) >
v=2keF,,
2%
< Const||gnll ooy D dis(Au, A1) 72 > (1] + i)k
v=2 kes,
24
< COHSt”gn”Loo(r‘")M] |22—(qo—2)(n—j Z dis /1,,, /11)_2

v=2
00

< COl'lSt”gnHLoo(rn)Ml|22_(‘Io Z Mll:u
u=1

< Const||g,,||Lm(r”)2—(qo—2)(n—1)_

Thus
IRG%,,M,gn—fm(ZO)I < |Re% &n(z )I

+ C1vV/m|| gull Lo (r,) + —ZLO

< |[Re A, gnllre(r,) + Clx/_llgn”Loo(r

+ Const|| gn|| L(r,) Z 2~ (@=2)(n—Jj),
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which shows that

[Re 7., &n+m(20)| < [[ReZE, 8nllLo(r,) + Cav'ml|gnll (T,

for some absolute constant C,. Since zg € I’ is arbitrary, this gives
(14). This completes the proof of Lemma 3.

LEMMA 4. Let I be a crank of type {¢; Ror and let {I'y}2, be a
sequence of cranks satisfying (1)-(3). If liminf, ., Bu(I',) = 0, then
Bu(I') = 0.

Let #? (—n/2 < 6 < n/2) denote the straight line defined by the
equation xsin§ — ycos@ = 0. For a set E C C, projy(E) denotes the
projection of E to %Y. We have

n/2 )
Bu(E) = [ [proig(E)| do.

—n/2
We can write I', = Ub_, J{ with its components {J{}-_ . In the
same manner as in the proof of (14), we have

k=1

Iy In
I'c U{z; dis(z, J,ﬁ")) < IJ,E”)I} (: U R}c"), say) .
k=1

Hence, for any —n/2 < 6 < n/2,

I,
|proje(T)| < |projg (U R}("))

k=1

We can decompose {k;1 < k < /,} into a finite number of mutually

disjoint sets {7 w1 80 that projg(Uyees J{™) is connected. Then a

geometric observation shows that

projg ( U Rf(”)) projg ( U J,ﬁ”))
kez?s
~1

kezy
/4
T _ (gm
+Const(2 |0|) iléa%lpro;g(Jk )l

projg U J,E”)
keg?

<

—1
< Const (g — [0[) (1 <u<vry),
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and hence

Vy

. T -1
[proj,()| < Const (5 - |6])

projs | |J 7
u=l keg?

n -1 .
= Const (5 — 161)  Iprojs(T)|

We have, for any 0 < ¢ < /2,

(n/2)-¢

(/2= 7 -1
/ |proje(IN)| d6 < Const/ (5 - |0|) |projg(I'y)| d6
—(n/2)+e —(n/2)+e

< Conste~!Bu(T,).

Since liminf,_ ., Bu(I'y,) = 0, this shows that the first quantity equals
zero. Since 0 < & < m/2 is arbitrary, Bu(I') = 0. This completes the
proof of Lemma 4.

4. Construction of Ey. Let p, be the integral part of (3/2)%/3
(n > 1). We define a sequence {n(k)}2, of positive integers by
n(1) =10,

n(k +1) = 10n(k) + pionek) (k>1).
We define a sequence {¢;}%2, of non-negative numbers by ¢ = 0,
¢'=% (1 SJSn(l)),

pi=5 (nlk)<j<10n(k), k>1),
p;j=0  (10n(k)<j<n(k+1), k>1)

We use Lemma 2 with F 0.8 = 1 and {p; }10" (1), There exist a crank

ion(1) of type {9 }l 1) and a non-negative functlon &1on(1) 00 T'yon(1)
such that &ion(1) 18 @ constant on each component of I'jg, ),

10n(1)
l&10n(1)ll L1 (Tionay) = 1 | 810n(1) |l Lo (Tionay) < / H (1+ou),

IRe Z,, &10n(1) | Lo (Tionr)

10n(1
u= l

{ /H +¢u>} 02":(” l/ﬁ(lwu).
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Using Lemma 3 with n = 10n(1), m = pjg,(1), we obtain a crank I’y
of type {p,;}" and a non-negative function g, on I';(;) such that
&n(2) 1s a constant on each component of I';3),

8n2)llLi (T = 1&10n() L) Tione) = L

10n(1)
l8n2)ll L (Toa)) £ Coll&10n(1) Lo (Tigniy) < Co/ II 0 +0w)

IRe ., 8n(2)ll o= (T)
< ”Re%lomngwn(l)”L°°(r|on(1) + COW“gIOn ||L°<>(1",0,,(1))

n(1) J 10n( 1)
S{ZI/H(1+(/’u)} /H1+¢u)

10n
+ COV Dion(1 / 1+ W),

10n(1)

Bu(Ty2)) < ColT1onnyl/Pon(sy = Co [T (1 + 0)/ 3600y
u=1
where Cy = max{Cy, C,}. Using Lemma 2 with n = n(2), m = 9n(2),
we obtain a crank I'p, () and a non-negative function gjgp(z). Using
Lemma 3 with n = 10n(1), m = pjgp(z), We obtain a crank I';3) and
a non-negative function g, ;). Repeating this argument, we obtain a
crank I' ) (k = 2) of type {¢ j};%(:kg and a non-negative function g,
on I, ) such that g, is a constant on each component of I’ ),

&nyllLr (o) = L

10n(k 1)
8 (0 < CE! / (1+ ),

”Re%,,[k)gn ||L°° n(k )

Bt} £ 5 o /o)

— 10n( u)
+Z{C0Vp10n / +¢ﬂ)}r
v=1
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10n(k—1)

BuTu)) < Co [T (1 +0u)/ 0¥y
u=1

Let ' = N7, Ugza Ink)- Then T is a crank of type {¢;}9%2,. We have
10n(k~1)
Bulne) <Co 10+ earigiily

3 10n(k (4/3)(9/10)10n(k~1)
< Const (—) ( )
2
3 2n k— 1)
= Const (§>
which shows that limy_,o, Bu(I'y)) = 0. Hence Lemma 4 gives that

Bu(l') =
We now show that y(I') > 0. Let £ > 1. Then

/ Zugo (O] = 1.
)

Since n(v) > 10n(v — 1) (v > 2),n(1) = 10, we have n(v) > 10 (v >
1), and hence

3\ ~onlk-1)
I &n i) | oo (T) < C(l)( ! (§> < Const.

Since
10n(v -l 3\ —9n()
plOn H (1 + ¢ﬂ < Vv D1on(v) ('2‘>
3\ (4/3)(1/2)10n(x) 73\ =9n(v)
< b 2
< Const (2) (2)
3\ ~(7/3)nv)
= Const (—2-> (v >1),
we have

IRe 7,4, 8n(k) | o= (1) < Comst.
Hence we can define a non-negative function 4; on I', (4 so that

[ @1t =0, Wl < 172

n(k)
”Re%n(k)hk“lﬁ” ,,(k) -<— 1/2’
hi(¢) =0 at endpoints of each component of I' ),

hy is differentiable along I' 1),
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where 7, is an absolute constant. Let

Py L Ay (€)
h(z) =g [ el

ur(z) = Reby(z), wi(z) = (the imaginary part of A (z)),
fi(2) = {1 — exp(ihy(2))}/{1 + exp(ih(2))} (2 & Tugey)
(cf. [1, p. 30]). We see easily that f; is analytic outside I',,(x) and

fi(00) = ‘/ he(OldC| = no/ 4.

ntk)

The non-tangential limit of |u; (z)| to each point on I, is dominated

by
”hk”L°° ) gy + ”Re%n(k)hkul.‘”(rn(k)) <L

Since [u;| is sub-harmonic in I ,, and continuous in C U {co}, we
have SUPzere, luk(z)] <1 Hence t)or any z & ',

lf (Z)‘Z 1+ exp( 2Vk(Z)) — 2eXp(—vk(Z)) cos(uk(z)) <1
1 4+ exp(—2vi(z)) + 2 exp(—vi(z)) cos(ug(z)) —
which shows that || f, || ge (%) < 1. Since k > 1 is arbitrary, using
an argument of normal famlhes we obtain f € H(I'°) satisfying
f'(00) = no/4n, || fllgeo(ry < 1. This shows that y(I') > #9/47n. Nor-
malizing I', we obtain the required set Ej.
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