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In this paper we determine the set of all second homology classes

in CP 2 # CP which can be represented by smoothly embedded two-

spheres in C P 2 # C P 2 .

We say a class u e H2{M4, Z) can be represented by S 2 if it can be
represented by a smoothly embedded 2-sphere in M4. The purpose of
this note is to prove the following.

THEOREM. Let η, ξ be canonical generators of H2(CP2#CP , Z).
Then γ = aη + bζ, a,b e Z, can be represented by S2 if and only if a,
b satisfy one of the following conditions.

{i)\\a\-\b\\<\,or
(ii) (a,b) = (±2,0) or (0, ±2).

REMARK 1. The " i f part of the theorem is known (see Wall [7],
Mandelbaum [5, the proof of Theorem 6.6]).

REMARK 2. If p e Z, then pη (or pξ) is represented by S2 if and
only if \p\ < 2 (see Rohlin [6]).

REMARK 3. If a, b are relatively prime integers, then γ = aη + bξ is
realized by a topologically embedded locally flat 2-sphere by Freedman
[2]. Hence smoothness condition in the theorem is essential.

By Remarks 1 and 2, the Theorem follows from the following.

PROPOSITION. Let a and b be two integers satisfying

(i) ab φ 0, and(

I
Then aη + bξ is not represented by S2.

Proof Suppose conversely that aη + bξ is represented by £ 2 . By
reversing orientation if necessary, we may assume n = b2 - a2 >

0. Let M4 = CF2#CJ>2#{n - 1)CP2 with &'s the generators of
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H2{M4,Z) with respect to the additional CP 2 's. Then the homol-
ogy class γ = aη + bξ + ΣΊZi £/ c a n t>e represented by a smoothly
embedded 2-sphere S in M4. The self-intersection number of S is
SS = a2-b2 + n-l = — 1. Hence the tubular neighborhood N of
S in M 4 is the (-l)-Hopf bundle over S and dN is diffeomorphic to

S3. Set W4 = (M4 - N)UdD
4. It is known that W4 is a closed, sim-

ply connected smooth 4-manifold with a positive definite intersection
form (see Kuga [4, claim 1]). By Donaldson's result (see Donaldson
[1]), the intersection form of W4 is standard. On the other hand,
M4 =W4#N4 where N4 = N4UdD

4. So, (H2(W4,Z)9 (, )WA) is iso-
morphic to (γ1, {, )M*). Hence there exist exactly In a e H2(M4, Z)
such that a γ = 0 and a a = 1. Writing out the conditions in terms
of the base (η,ξ,ξ\,ξ2, -. -,ξn-ι) by letting α = xη + yξ + Σ^ϊ z&u we
obtain In (> 16) solutions of the system of Diophantine equations

(1)

(2) E}ϊ
Claim. If α, ό satisfy (*), the above equations have at most four

solutions.

Proof. We have y2-x2 = ΣϊZ\ tf-l > - 1 - If y 2 - ^ 2 = - 1 , then
y = 0, x = ± 1 , and zf = 0 for all /. By (1), this implies a = 0; if
y2 - x2 = 0, then only one of z/'s is ± 1 , all others are zero. By (1),
this implies that \\a\ - \b\\ < 1; If y2 - x2 = 1, then y = ± 1 , x = 0,
and only two of z/'s are ± 1 , all others are zero. So (1) implies \b\ < 2,
but \a\ < \b\ by assumption. Therefore, in all cases, α, b fail to satisfy
(*). Hence we have y2 - x2 > 3.

Assume nr of the z/'s are nonzero, say z/y, 7 = 1,2,..., n1. Then we
have

(3) ( a x - b y ) 2 = ( 1 £ z λ < n ' ^

= n'(ί+y2- x2) = n' + n'{y2 - x2)

(4) <n> + (n- i)( y 2 - χ 2 ) = «' + (b2 -a2- l)(y 2 - x2)

= ri + b2y2 - b2x2 + a2x2 - a2y2 - {y2 - x2)
n

= n' + a2x2 + b2y2 - b2x2 -a2y2 ~Σzl + l>
j=ι

where (3) follows from Cauchy-Schwarz inequality.
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Expanding and re-arranging this implies

(5) {bx-ay)2< U'-^

Since each zi} Φ 0, (5) implies all these z^s are ± 1 , and (bx-ay)2 <
1.

There are now only two cases that might happen.

Case 1. bx — ay = ± 1.
Then equalities in (3) and (4) hold. So z\ = = zπ_i = ± 1 , and

(1), (2) reduce to

(6) ax-by = ±{n- 1),

χ2-y2 + (n-\) = 1.

The equation (6) and bx - ay = ±1 give at most four solutions to
the Diophantine equations (1), (2) according to the choice of plus or
minus signs.

Case 2. bx - ay = 0.
Then the equality in (3) must hold because if inequality holds, the

left hand side of (3) will reduce at least - 4 which contradicts (5)
where the right hand side exceeds the left hand side by +1. By the
same argument, the equality in (4) must hold since we have shown
that y2 - x2 > 3. Therefore, the equality in (5) holds which is again
a contradiction. Hence this case gives no solution.
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