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Let G be a reductive Lie group, I" a nonuniform lattice in G. Let
x be a finite dimensional unitary representation of I. In order to
have Eisenstein series, (G, I') must satisfy a certain assumption. The
purpose of this note is to compute the Selberg trace formula for pairs
(G, T) that do not possess Eisenstein series. A necessary preliminary
to this, is a trace formula for IndZ (y). This is also presented.

Introduction. Let G be a reductive Lie group of the Harish-Chandra
class; let I be a nonuniform lattice in . Let y be a finite dimensional
unitary representation of I'. Denote by L?(G/T; ) the representation
space of Ind (y)—then G acts on L2(G/T; x) via the left regular rep-
resentation L . Let L‘C’}sr be the restriction of Lgr to chﬁs(G/l"; xX)—
the maximal completely reducible subspace. One of the central prob-
lems in the theory of automorphic forms is computing the trace of
L‘gjr(a) (a € CX(G)); viz. the Selberg trace formula.

Let L2, (G/T; x) be the orthogonal complement of Lfﬁs(G/F; x) in
L?(G/T; x) and let Lg’/} be the corresponding representation—then
most attacks on the Selberg trace formula begin by expressing the
integral kernel of LCG(’/‘}.(a) (o € C*(G)) in terms of Eisenstein series.
However, a certain assumption (cf. p. 16 of [L2] and p. 62 of [OW1])
needs to be satisfied by the pair (G, I") in order for a satisfactory theory
of Eisenstein series to exist. The purpose of this note is to compute
the Selberg trace formula for pairs (G,I') without Eisenstein series;
i.e. that do not satisfy the assumption supra.

In order to accomplish this a trace formula needs to be given for
L2, (G/T; x), when x # 1. This has been done in the case G = SL,(R)
by Venkov (cf. [V1]). Moore has also done preliminary work for the
real rank one situation (cf. [M1]). For the general case, Eisenstein se-
ries need to be defined with respect to ¥ and a spectral decomposition
following Langlands needs to be given. This was accomplished by the
author in his thesis (cf. [R1]).

When (G, I') does not possess Eisenstein series, the procedure to
compute the trace formula is to describe Lgr in terms of the left
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158 PAUL F. RINGSETH

regular representation of L2(G,/T,; x»), where the pair (G,,T,) is
canonically constructed from (G, I') and does possess Eisenstein series.
It should be noted that, in general, y, will be non-trivial, even when
x = 1. This is carried out in §2.

Section 1 is comprised of summarizing the facts needed about the
spectral decomposition of L2(G/T’; x), in order to describe the integral
kernel of Lg";} in terms of Eisenstein series.

A new type of truncation operator, due to Miiller is introduced in
§3 and the effect of truncating the kernels is computed (cf. [MU1}).

The trace formula presented in §4 follows the work of Osborne
and Warner in [OW2] and uses the truncation operator of Miiller to
simplify the Dini calculus.

I would like to thank Osborne and Warner for suggesting this prob-
lem and for the substantial help they gave me in completing the spec-
tral decomposition of L?(G/T; x).

1. Preliminaries. (1) Let G be a reductive Lie group of the Harish-
Chandra class; let I" be a nonuniform lattice in G. Assume that the pair
satisfies the assumption spelled out on page 62 of [OW1] or equiva-
lently the assumption on page 16 of [L2]. Let (x, V) be a finite dimen-
sional unitary representation of I. Denote by L2(G/T; x) the repre-
sentation space of the corresponding induced representation Indlq (x)-
Following Langlands [cf. [L1], [L2] and [OW1]}, the author has ob-
tained the spectral decomposition of the left regular representation
Lgr acting on L?(G/T; x), in terms of principal series representations
of G [cf. [R1]].

Denote by Lgi/sr the subrepresentation of Lgr, acting on the max-
imal completely reducible subspace Lfﬁs(G/l"; x). There is then an
orthogonal decomposition

L%(G/T; x) = L% (G/T; x) @ L, (G/T; x).

Let o € C°(G). Let K, (x, y) denote the integral kernel of Lg/r(a)—
then, with respect to the decomposition supra, there are integral ker-
nels

{ K$s(x, y),

K" (x, y),
corresponding to the representations

{ Ll

Lg“/‘i—(a).
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In order to compute the trace of L%i/sr(a), it is more convenient to
work with
Ko(x, y) — K3 (%, ¥).

Hence, we shall need to recall the description of K£°%(x, y) in terms
of Eisenstein series.

(2) A maximal compact subgroup K of G has been fixed. Let ¢
belong to the unitary dual K of K. Let P be a (I'-cuspidal) parabolic
subgroup of G, with Langlands decomposition P = M - 4- N. We shall
always assume that A is stable under the Cartan involution. Denote
by @, the orbit of an infinitesimal character of A under the action
of the “Weyl group” W(A). (W(A) consists of all automorphisms
of A induced by an inner automorphism of G.) There is a natural
representation yp of

I'y=I'nP/TNN
on
Vp={veV|x(TNN)v=v}.
Let prp be the orthogonal projection of V' onto Vp. Define

&4is(0,; xp)

to be the space of Vp-valued square integrable automorphic forms on
G/AN, with K-type J and orbit type &, that transform on the right
according to yp. This forms a finite dimensional subspace of

L*(K x M/Tar; xp).

Let 6 € K—then define &; to be the nomalized character of 4. Let
& be the collection of finite subsets of K ordered by inclusion. Let
F € #. Denote by C°(G; F) the set of f € C*(G) such that

Esxfx&s=f
for all 6 € F. Define
C2(G; K) = lim C°(G; F).
5

Then C*(G; K) is an LF-space, consisting of all K-finite elements of
C(G), whose topology is finer than the subspace topology of C°(G).
Denote by L2 (G/T; x) the space of all measurable functions

loc

{ G-V
fxy)=x(rHf(x) (relxei),
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such that || f(-)|| is locally integrable on G/T". Let f € L! (G/T; x)—
then

P = [ prpsfm)dn
N/NAT

is called the constant term of f along P. If f¥ = 0 for all P # G, then
f is called a cusp form on G. Denote by

LZ,(G/Ts %)

the space of square integrable cusp forms—then there is an orthogonal
decomposition

L%(G/T; x) = LA(G/T; x) & L% y(G/T; x).

The subspace L (G/T;yx) is called the residual spectrum and is
spanned by the residues of Eisenstein series associated with cusp
forms [cf. §7 of [L2]].

Let x € G—then x = kman, where k € K m € M,a € A and
n € N. The factor a is uniquely determined by x and the Langlands
decomposition of P. Hence, for A € d ® C, set

Hp(x) = log(a)

and
Er(x) = A(Hp(x))

Two parabolic subgroups P and P’ of G are said to be associate, if
their split components 4 and A’ are G-conjugate. The space of such
maps from A4 to A’ is denoted W (A', A). Let Z be a class of associate
parabolic subgroups of G. If @* is a subset of # comprised of I'-
conjugacy classes and @ = {@p } pcy is a collection of associate orbits,
put

Pez~

Az = {H € [[eriHp =Ad(y""YH.p + Hp(y) (y € 1‘)}:
Peg+
%is(d ﬁ;g*)

{co e I &is@.@p:xp) | 0:p(x) = x()0p(x7) (7 € 1“)},

Pe#-
where ?P = yPy~! and *P = xPx~!.
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Fix once and for all an element H € ag. The Eisenstein series
associated to an element ¢ of &;(d, @;%*) is

E(g Q. A: _X) = Z ¢)P(x) . e(AP—PP:HP(X)—Hr)
Pez+

where the real part of A is restricted to lie in some sector of dg- to
facilitate convergence. The Eisenstein series possesses a meromorphic
continuation to all of dz. ® C.

The induced representations also make an appearance in this set-
ting. One has a natural representation (@p, Ap) of P on Lfﬁs(M/I“; o):

A operates via multiplication by the quasi-character £_y,,

{ M operates by the left regular representation,
N operates trivially.

Call .
Ind$ (@5, Ap)

the associated principal series representation of G. Let
Ind¢(2, A)

denote the corresponding representation on

gdlsﬁg) Z@gﬁlsaﬁg)
sek

However, the representation space of
Ind¢ (2, A)

shall be denoted by
&ais(T3 ).

Let a € CX(G; K)—then
a*E(®*: 9: A) = E(®*: IndS. (7, A)(a)p: A).

Let & and %; be G-conjugacy classes occurring in #—then there is
a canonical intertwining operator

cais(j| B wi Ay))  (weW(E, %)),
characterized by the conditions
E(%i: 9t Ai) = E(B): cais(%) | B2 w: Ay)gi: WA,
cais(Z | E: wi Ay) o IndE (&, A;) ()
= Indg (W - @, WA;) (@) 0 c4is(%) | Bz W: Ay) (o € C(G;K)),
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and satisfying the functional equation
Cais(Br | Gio wijwjis Ai)  (wy; € W(B, B)), wji € W(E), %))
= Cqis(%x | gj Wij: leAz) © cdls(gj | %;: Wjj: Aj).
In fact
cais(%j | &2 w Ay)
is a linear transformation from
&uis(0, 013, %) 10 g?iis(dw'ﬁi;gj)’

that is meromorphic as a function of A; on az ® C. (Here 4, =
{@p}pece.) It should be mentioned that, in a suitable sense, cgis is
unitary on the imaginary axis.

(3) Denote by
ZHGIT;0;%)
the Hilbert space of those measurable functions
F: V—-lig — &5(; %)
such that components are preserved and
Fj(wA;) = cqis(%5 | Gie w: AJFi(A;)  (we W (%, %))

with inner product
(F.6) = iy Z e, (A0 Gl -l

where / = rank(%), r is the number of G-conjugacy classes in % and
*(#%) 1s the number of chambers in dg.
There is an isometric isomorphism

{ ZG/T0;,%) — L*(G/Ts %),

L1 RN
- 5 /\/__w%E(%. F(A): A) - |dA|,

whose image shall be denoted
L*(GIT;2;%).

Let {p,}, be an orthonormal basis for &;;5(, ) chosen such that each
¢, lies in some &is(6, @, €). The inverse isomorphism

L*(G/T;0,%) —» LHGIT; ;%)
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is given by
fro = Z{/G

This is the Eisenstein-Fourier transform of f.
There is an important connection with the principal series repre-
sentations. The spectral decomposition of Langlands states:

LY(G/T;x) = ZZ@LZ (G/T;2;%),

the spaces on the right being L; /r-lnvanant. Denote by
Ind(G/T;@;%),

E#: p,: A: x))dx}m
/T

the direct integral

1

which operates on the Hilbert space
1
gGI’;ﬁ;%:———/ &is(@, N) - |dA|,
( / ) (27!)1 C(g)® dlS( ) I I

where C(%) is the positive chamber in /—1dg. There is a canonical
identification

{ Z*(G/T;0;%) — &(G/T; 0, %),
D — P cz),

which, when composed with the Eisenstein-Fourier transform inter-
twines L r with Ind; viz.

(Lg/r(@)f)" = Ind(G/T;@;%)(a) f,
for all f € L?>(G/T;@;%) and a € C>(G).

(4) The upshot of the foregoing is that
L.(G/Tix) = Y. S DL G/T;0:9).

&#{G} ¢
Whence, for fixed & # {G}, Lg?/'}- operates on

L*(GIT;0;%)
according to

1
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Let o € C®(G;K). Suppose that f € L*>(G/T;0;%) (Z # {G})—
then

a* f(x)
1 1

NG /RC(A)zo“ *E(F: [(A): Az )(x)ldA]
1 1

- 67—[_)7;?%?)- ;/Re(/\)zo E(% Indg(@,’ A)(O{)¢#: A: X)

<{ [ O)LEE: g A: »)dy }an

This computation motivates the following theorem.

Set
Cu(a: @, A) = (IndS (@, A)(@)9,, 9,).
Form
K.(x,y:@,A)
= ZCW(a: O AN)-EF: 9, A:x) - E(F:0,: Ar y),
wy
where
| Kalxy: @M f () dy
G/T
=Y Cul(a:@,A)-E(Z: 9, A: X)
wv
[ OB 0z As y)
G/T
Write
Ko(x,y: ;%)
in place of
1 1 /
— . K, (x,y:2,A)-|dA|,
2m)l (%) Jren)=0 (e y ) dA]

and then put
Ko(x,y: %) =) Ku(x,y: ;%)
i

Let #!(G) denote Harish-Chandra’s space of integrable rapidly de-
creasing functions. Let #!(G;K) denote the K-finite functions in
#!(G), with the LF-topology.
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THEOREM 1. Let o be element of #'(G;K)—then LE(a) is an
integral operator on

Ln(G/T3 1)

with kernel

K (x,y) = ZK(xy %)
e#{G}

continuous in each variable separately. O

REMARKs. The form of K£°(x, y) follows directly from the pre-
ceding calculation. For the proof of the continuity, in slightly less
generality, the reader is referred to §8 of [OW1].

2. The spectral decomposition for groups without Eisenstein series.
(1) Recall that the pair (G,I') has been subject to a certain assump-
tion. Let us make this assumption precise. Put

G, = analytic subgroup of G corresponding to the compact

{ Z = analytic subgroup of G corresponding to the center of g,
ideals of g,

and
{ r.=r-z2-G6./Z-G,,
G,=G/Z-G..
Define E(G,I") to be the collection of split parabolic subgroups of
G obtained by pulling back to G the percuspidal subgroups of I',, in
Gy (cf. p. 37 of [OW1]).

Assumption. E(G,T") comprises all I'-percuspidal subgroups of G.

This assumption is entirely equivalent to the condition imposed by
Langlands on page 16 of [L2] (cf. pp. 62-63 of [OW1]). It should be
noted that an example of pair (G, I") that does not satisfy this assump-
tion is constructed on pp. 63-65 of [OW1].

(2) Henceforth we shall drop the assumption on (G,I'). It is not
known whether a satisfactory theory of Eisenstein series exists for the
pair (G, T"). However (G,, I',;) always possesses Eisenstein series. This
fact is crucial for applications to the trace formula of the spectral
decomposition that follows.
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Denote by GV, the identity component of G. Set

M=rngo,
G=G%Z -G,
r?lzr‘o'Z'Gc/Z'Gc,
I.=I'nZ-G,,
I'z=I,.-G.nZ

Observe that G2 and I' may be viewed as subgroups of G with the

property that
{ G'=Z G.- G,
Z -G, -1'=27.G.-TO
Let
Ie: L}(G:/Ge NTe; x) — LA(Ge -Te/Tes x)

be the canonical isomorphism. Decompose
U.€G.,

Let x. be the left regular representation of I'; on I.(E(U.)), where
E(U,) is the representation space of my U.. Since G. -I'c = G, -T'z,
it follows that

LXZ -G /Te; x) = IndE S (LX(G, - Te/Tes 1))

~ Ind% 5 (Z P mu.U. ® XC)

U.€G,
= Y P myU. ®Indf, (xc).
U.€G,
Put
= Indf, (x.).
Thus

L(Z-GJTsx0)= )Y, PmyU.or
U.€G.
The multiplicities my, shall be computed. By the Selberg trace for-
mula for L?(G./G. NT¢; %),

S mytrace(Uefa) (e € C(G,))
U.€G.

— . ) o -1
-;‘y}trace(x(y)) Vol((Ge)y/(Ge NTe),) /G g Clm d
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where

{ (G.)y = the centralizer of y in G,
(GeNTI¢), = the centralizer of y in G, NT,

and ), {y} denotes the sum over the conjugacy classes in G, NT.
Insert o = trace(U,) into the trace formula, to obtain

my, =Y trace(Uc(y)) - trace(x (7)) - Vol(Gc/(G, NT)y).
{»}

(3) Let
Io: LX(Z - G¢/Te; x) = LHZ - G - TO/T%; )

be the canonical isomorphism. Let x2 be the left regular representation
of I'? on I4(E(U. ® 1)), where E(U, ® ) is the representation space
of my U, ® 1. Thence

(2.1) LXZ-G. -TUT% )= Y PmylU.0t® 0.

U.€G.
Suppose that I is contained in G%—then
Indf (x) = Indg(Indf" (x)).

Combining this observation with 2.1 yields

(2.2)  L*G/T;y) =Indgo{ > @mUCUC®r®Iner,§(x2)}.
U.€G.

Let a € C*(G). Put
a®(Ue)(x)
=/ // a(wxyzw™Ytrace(t(z))trace(U,(y)) dw dz dy.
G0 Jz JG,

Then
. d 1 3
trace(Lgfr(e)) = > my, trace(L, /)f‘.,’ (aO(U,)),
UeG.
where L‘gf’/’l‘.% denotes the left regular representation on

L2 (GO/T9: x9).
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However, when I is not contained in G then
L*(G/T; x) = no(L2(G/T%; x)),

where

() () = =57 D X(0)S(x).
r: F ]
yel’/TO
There does not seem to be any reasonable way to incorporate nll-} into
the trace formula when (G,I") does not possess Eisenstein series. In
order to overcome this obstacle, an assumption shall be placed on G,
which is satisfied by all connected groups. Assume that G, embeds in
G in such a way that

ZG. NGy
is discrete, and
G=27Z G. Gy
More generally, assume that (G, I') satisfies the following
G =Gy x Gy,
{ I'= I“, X rz,

where I', is contained in Gg and G, is a product of groups satisfying
the assumption of §2.1 and groups G’ for which G) embeds in G’ as
described above.
Let
I:L*(Z-G./Te;x) = L*(Z -G, -T/T; %)
be the canonical isomorphism. Let y, be the left regular representation
of I'y on I(E(U, ® xn))—then

LYZ-G.-TTix) =Y. PmyrtoU o1
U.€G.
Ergo
(2.3) L*(G/T; x) = Ind§ 6, r(L*(Z - G. - T/T; x)).

(4) We shall now explicate the trace formula that arises from the
decomposition (2.3), the situation in the case of (2.2) being entirely
analogous.

Let a € C(G)

. Put
// trace(t(z)) - trace(U.(y)) - a(xyz)dz dy.
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Then o(U,) belongs to C°(Gp), by the Schwarz kernel theorem (cf.
Appendix 2.2 to Vol. I of [W1]). Let L‘é‘s/’f. denote the left regular
representation of G, on
Lzﬁs(Gn/rn; Xn)-
Whence, on the assumption that L‘g/sr(a) is of the trace class,
trace(LEr())
= 3 @Y trace(T.(7)) - trace(x(y)) - Vol(Ge/(Ge NT);)
U.eG. {r}
- trace(LG*4 (a(Ue))).
The function
a(U,: x)
can be further described by the Selberg trace formula for
= Indf, (xc).

Perhaps it is better to call it the Poisson summation formula since Z
is abelian. Indeed
a(U;: x)

equals

Z trace(x.(d)) - Vol(Z/T'z) / trace(U.(y)) - a(xyd) dy.
J€r, Ge

REMARK. Let o € C°(G; K)—then o(U;) = 0 for all but finitely
many U, € G,.. Therefore, whenever L‘é‘s/’} (a) is of the trace class, so

is LG5 ().

3. Truncating the kernels. In this section the basic properties of the
truncation operator QY are reviewed. In addition, a partial truncation
operator Qy, due to Miller (cf. [MU1]), is introduced. The effect of
truncating the kernels introduced in §1 is then investigated.

(1) Assume that (G, I') satisfies the assumption of §2.1.

Let #(I') be the set of all I'-cuspidal subgroups of G. Give ag(r)
the obvious definition. There is a natural order “<” on ag(r) that
need not be specified until the applications. Let H € ag(r) and f €
L] .(G/T; x)—then the truncation operator Q! is defined by

QHf(x)= Y (1)K Plyp. ((Hp — Hp(x)) - fF (),

Pez(T)
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where xp. | is the characteristic function of the positive cone of P.
In order to state the salient properties of QH, a few facts need to
be recalled. Let P be a fixed I'-percuspidal subgroup of G. Let

Gro=K A[t] v,
where w is a compact neighborhood of 1 in M - N and

Al = ({ae|éla) <1}

el

Here, Z‘}, is the set of simple roots determined by P. It follows from
Lemma 2.11 of [OW1] that ¢y, w, ot and s = {k;: 1 <i<r} C K can
be chosen so that

G=6,4, 5T,

#{y G rtho’w '5 ' ynsto,w 5 # @} < OO,

Snow Ki ?PNGye k; =3 (i #])

6to,w"€i 'ynGO,t,w’Ki 7£®=> yGTﬂPi,

(3.1)

where P; = k7 'P - k;. In addition, we shall assume that (k] 'wk;) -
('NP)=M;-N,.
Put

Let f € L] .(G/T; x)—then f is said to be slowly increasing with ex-
ponent of growth r (r € R) if there is a constant ¢ > 0 such that

|f(xr)| < cEp(x) (X €Gpm 1 <i<r).

Let S®(G/T; x) be comprised of all smooth f € L. (G/T;x) such
that for every right invariant differential operator D, Df is slowly
increasing with exponent of growth r—then the seminorms

|fl.p = sup sup Ep"(x)|Df(xk;)|
1<i<r x€6,

endow S°(G/T; x) with the structure of a Fréchet space. Denote
by R(G/T; x), the space of functions on G that are slowly increasing
with exponent of growth r, for every real number r. The seminorms
| -1r1 (r € R) also provide a Fréchet space topology. The functions in
R(G/T; x) are said to be rapidly decreasing.

Let us summarize the properties of the truncation operator that are
of the most use.
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THEOREM 2.
(i) limy_,_o QUf = f uniformly on compact subsets of G.
(ii) Q" = ID on cusp forms.
(iii) QH: §°(G/T; x) — R(G/T; x) is continuous.
(iv) QY is a bounded linear operator on L*(G/T; x).
In fact, there exists Hy € ag(r) such that for all H < Hy, Q" is an
orthogonal projection on L*(G/T; x) and as such

: H _
Hl—lvlzlooQ =1D

in the strong operator topology on L*(G/T; x). m]

(2) Let P* be an element of #(I') different from G. Denote by
™ the association class containing P*. Order the orbits &}, 25, . ...
Choose an orthonormal basis {(p/’;}fj’:l for &5(@; €*), such that each
(0/'; lies in some &;5(6, #*;€*). Let f € LL (G/T; x) andletk € K, m e

loc

M*, a € A* and n € N*. Define the function

np- Ny (f)(kman)
to be

i > { /K /Mm,. (fF" (k*m*a), ¢;',,P.(k*m*))dk*dm*} 9L, p. (km).

i=N+1 g
Set
neN(Sf)=Ff

The partial truncation operator Qy is defined by

@vNx) = D (1P yp. 1 (Ho = Hp-(x)) - wp- v () (),
P+e#(T)
where Hy is a fixed element of ag(r) that is sufficiently negative in a
sense yet to be made precise.

(3) Specialize now to the case that G is of I'-rank 1 (i.e. the I-
percuspidal subgroups of G are of rank one). agr) can be identified
with J];_, a;. We shall restrict to the diagonal determined by s and
identify it with a. For H € a, set ty = e®) (£} = {a}). Choose
Hj € a such that 7y < o t—then it follows from (3.1) that for 15 < o ¢
and x € G, -5,

0% f(x) = { f(x) = f(x): x €640 ki (30),

f(x): X€60-5
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and
_[fx)—mpn(N)(x): x €60 (3i),
Onflx)= { f(x): XE6y, 08

Using this formulation the following theorem is easily seen to be true.

THEOREM 3.
() If fe Ll (G/T;x) and x € S,y - 5, then
QHf(x): x€640-s,

HO = o H =
Q7 o Qnf(x) =0noQ" f(x) {QNf(x): X€S,,w-5.

(ii) limy o QN f = f uniformly on compact subsets of G.

(ii1) Qn = ID on cusp forms and on Eisenstein series associated with
an automorphic form (p,ﬁ fori < N.

(iv) Qu is an orthogonal projection on L2(G/T; x) and as such

im, Qv = 1D

in the strong operator topology on L*(G/T; x). o

REMARK. I do not know whether Theorem 2 and Theorem 3 are
valid without the assumption on (G, I') specified in §2.

(4) Return now to the situation that the pair (G, I") is of arbitrary
rank. _
Let o belong to Z'(G; K). Define K,(x, y) to be any one of

Ka(x, ),

K3 (x, ).
Let QF, Q) (resp., 0¥, Q%) denote truncation in the first (resp., sec-
ond) variable of I?a(x, y). Lemma 8.1 of [OW1], combined with The-
orems 1, 2 and 3 imply that

QlHi(;a (x,y),
QF Ko(x, ),

OF Q¥ Ko(x, y)
are separately continuous (off a set of measure zero) and locally norm
bounded on G/T" x G/I". Moreover, the functions

trace(QH K, (x, x)),
trace(Q¥ K, (x, x)),
trace(QF QF K, (x, x))
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are integrable on G/I'. It follows from the Theorem in the appendix
to §8 of [OW1] that

QfoLgr(axa*)o Q¥  (a*(x)=a(x1))

is of the trace class. (Of course, the same is true when L/ is replaced
by Lg,i/sr or LZf.) In fact,

trace(Q o Lg/r(a* a*) o Q) = / trace(QF O Koo~ (x, X)) dx.
G/T

Thus

0" o Lg/r(a)
is Hilbert-Schmidt (when H is sufficiently negative). The theory of
paramatrix (cf. Theorem 4.4 of [W2]) implies that for every integer
p > 1, there exists an integer N > 1 and u € C?(G), v € C®(G) such
that

AV . p=6+vy,
where J is the dirac distribution at 1 € G and A is the Laplacian on
G. Ergo

a=(AY 0)su—ax*v
Thence
Q"o Lgr(a)oQf  (ae?!(G))
is of the trace class.
Observe

lim [ 1QF0f Rolxx)ldx = [ |0f Kalx x)ldx,
s G/T

H'—-00 JG
and if H' < H « 0, then
trace(Q" o Lgr(a) o Q') = trace(Q o (Qf o L r(a) o Q7))
= trace((Q¥ o Lg/r(cr) 0 Q%) 0 Q)
= trace(Q o Lgr(a)o o).
Therefore trace(QF Ka(x, x)) and trace(Q¥ QF K, (x, x)) have the same
integral, which, by a similar argument, coincides with the integral of

trace(Q{’ I?a(x, x)). Proceeding in the same manner, it is easily seen
that

(3.2) trace(Qy o Lg/r(a) o Qy o o)

is equal to the sum of

/ trace(Q K, (x,x))dx  (H < Hp)
G/T
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G I

ReMARK. If LS. denotes the restriction of Lg;r to L2, (G/T;x),
then since KS"5(x, y) is represented by cusp forms, the preceding re-
sults imply that LCG“/SF(a) (a € #1(G)) is of the trace class.

Let o be an element of #!(G; K)—then, in general, it is not known
whether L‘(i;ijr(a) is of the trace class (cf. [OW6] and [W3]). However,
if G is I'-rank 1, then Donnelly has answered this question in the
affirmative. If G is real rank 1 and § € K, then it follows from the
spectral decomposition of Langlands that the d-isotypic component of

L%es (G/T; x)

is finite dimensional. (Here the assumption of §2 is needed.) This
obseryation combined with the remark supra implies the traceability
of Lg‘/sr(a) directly. If G is I'-rank 0, i.e. I" is cocompact in G, then

Lgus(G/r;X) = LZ(G/F;X)’
so that Lg/r(a) (¢ €¥F 1(G)) itself is of the trace class.

(5) For the remainder of the paper the pair (G, I') shall be of I"-rank
1 and satisfy the assumption of §2.1. Observe that there are only two
G-conjugacy classes of I'-cuspidal parabolic subgroups of G; viz., {G}

and %.
Let o be an element of C°(G;K). Then the results of Donnelly

(cf. [D1]) imply that .

L (a)
is of the trace class. Since

On — ID

in the strong operator topology on L?(G/T’; x), it follows immediately
that
A;lm trace(QN o Lg/r(a) o QN) = tI'aCC(Lg/I‘(OZ)).
—00
Given a positive integer N, let
N

LZN(G/T 0 =Y P LHG/T;6;%),

i=1
and let LY (G/T; x) be the complement of L&y (G/T; %) in
ON(L*(G/T x)).



THE SELBERG TRACE FORMULA 175

Denote by

G/r>’
Lcon,N

{ Ldis,N
G/T 7

the restriction of Qn o Lg/ro Qn to
{ LEN(G/T; ),
L3 (G/Ts x).
It is easily seen that
LG = On o Ljro Qv + TR,
where T{" is the restriction of

Q%o Lt 0 Q%

to
Q””( > @LZ(G/F;@};%))-
i=N+1
Therefore L‘éi/sifv () is of the trace class, with
trace(LE%Y (a)) = / trace(K%s¥ (x, x)) dx,
G/T
where

N
K35V (x,y) = QN QR Ka(x%. ¥) = Y _ Ka(X, y: 03 ),
i=1
(cf. §1.4). Here, we have implicitly used (an obvious variant of) The-
orem 2 on page 23 of [O1]. Furthermore,

lim trace(LE («) = trace(LEr()).

4. The Selbert trace formula. In this section the pair (G,I") shall
satisfy the assumption of §2.1, and be of I'-rank 1.

On the basis of the work of Donnelly, the closed graph theorem
implies

a— trace(L‘(i;i/sl-(a))

is continuous in the topology of C°(G; K) (or even in the topology of
#!(G;K)). The remainder of this paper will be devoted to an explicit
realization of this distribution. The techniques used are based on the
work of Arthur, Miiller, Osborne and Warner (cf. [A1], [MU1] and
[OW2]).
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(1) Fix an element o of C®(G; K)—then

lim trace(Lg5 (@) 0 Q) = trace(LEY ().

——00

Write

trace(Lgi%V(a) o Q) = / trace(QF K3V (x, x))dx  (H < Hp)

G/T
(4.1) :/ trace(QI0 K, (x, x)) dx
G/T
(4.2) +/ trace((Q5 o Q} — Q3°)Ko(x, X)) dx
G/T
N
(4.3) —;/G/rtrace(Q{’Ka(x,x: ;%)) dx.

The plan of attack is to send H — —oo first and send N — oo second.

We shall need the following fact from reduction theory. Let C be
a compact subset of G. Assume, without loss of generality, that

C CGp
Parametrize 4 by ¢,(a(t)) =t. Let y € '—then
a(t)ya(—t)e C = a(t)ye K - A[ty] - a(t)M - N.
Thus, if 0 < € < (¢ is chosen small enough
Altola(t) C A[pt] (t<e).
Hence, forall0 < ¢ < ¢,
a(t) €6 ye (TNP)Y ' 'NGye- (CNP),

which, in view of (3.1), implies y e I' N P.
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Let x € 64,0 (Ho < 0)—then a consequence of the calculation
supra is the following.

/ prpK,(x, xn)dn
N/NAT

=/N/Nmrprp {Za(xyn”f‘)x(y)} dn

yel

=/N/NnrprP{ > X a(XVf‘“n“x“)x(Y)x(é“)} dn

yel/TNN deI'NN

= /N { > prpa(xynX“‘)x(Y)} dn

yel’/TNN

Z/N{ Z Z Drpa(xyénx‘l)x(y)x(g)} dn

yel/TAP €Ty
=/ { ooy prpa(xyénX“)x(V)x(5)} dn
N | yernp/rnp sery,
_ / { > [pr,,a(xanx—l)x(a)} dn.
N\ sery

Observe that if x € 6, -5 and f € L] (G/T; ),

(Qf o Qy — Q) (f)(x)
_ {f”‘ —npn(f): th <&(xk!) <ty (30) }

0: otherwise

Moreover, if
oS (m) = / / a(k~\mnk) dk dn,
KJN

then the Schwarz kernel theorem implies that oX belongs to C®(M).
Whence
Kox(my, my) = ) prp{of(mdm;")x(6)}
sely,

is the integral kernel of the trace class operator Lyyr, (o). (Recall
that M/T"), is compact.) An elementary calculation now shows that

| trace((Q4 o @3 - QI")Ko(x, X)) dx
G/T
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is equal to

a(Hy) — o(H)
llexl

TN: Z@gﬁls(ﬁh% Z@%xs(é}ag)

i=1
is the orthogonal pro;ectlon. The notation is poor because « is being
used to denote both a simple root and a function. There should be no
ambiguity.

(4.4) - trace(Lagr,, (of ) - Tw),

where

(2) Let
c(A)=cy4s(F|%: —1: A),

where —1 is the unique nonidentity element of W(%, #). As a function

on
&4is(0,0,F),

¢(A) is unitary on the imaginary axis and

c(A)* =c(A).
The following functional equations are satisfied

{ c(A)e(—A) = ID
E(#:c(A)p: —A)=E(Z:¢p:A).
In view of the identifications, write
7x(a) = IndS (4, A)(e) (Aeia®C).

It follows that

Ko(x,y: 6, A) =Y E(B: mp(a)pl: A: x) -EX(Z: 9l A: p).
u

Let A € v/=1d and { € a with A # O—then the L? inner product
formula of Langlands (cf. p. 135 of [L.2] and [R2]) shows that

(QYE(Z: ma(e)p: A+(), QFE®: 9: A+ ))gr

is equal to

S {7 A+ Oma(@)p. A+ p) — X (nr(0)p, )}
1

NEINGA)

{e_ZA(H) (c(A+ O)mp()e. 0)

—eXAH) (7, (0)p, o(A + C)(p)} :
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where a(H,) = ||a||. Letting { — 0, obtains

2%“ 22H) ()0, 9) + (¢ (A)ma(@)0, c(A)p)
+ 2A(1Ha) {e? M (c(A)mp(2)9, ) — M) (mp(0)p, c(A)p)}-
Therefore

N
trace(Lg"/‘i;N(a) o Q) = Z/ trace(QF K, (x, x: ;%)) dx
— Jo/r

23 [ o
= . trace Ky(x,x:0;,A))-|dA|dx
y > Y (@2 Ko i A)) - |dA|

== Z}_‘,/ (QPE(®: 7(0)pu: A),

i=1 U

2 n'

Q7E(Z: gu: N)gr- ldA|

which is equal to 1/4n times the sum over 3%, of the integral over
Re(A) = 0 of the sum of the following four terms:

(4.5) -2"”( ”)trace(lndg(ﬁ,-,A)(a)),

(4.6) trace(Indg (&, A)() - ¢(A) - ¢ (A)),
(4.7) fA(;HJ 2A(H)trace(IndS (2, A)(e) - ¢(A)),
and

(4.8) —EA—(I@eM(H Jtrace(IndS (&, A)(e) - ¢(A)).

Consider the term (4.5). It is readily computed that
trace(IndS (2, A)(a))

is given by

[ [ e
M/Ty

The Schwartz kernel theorem implies that

> prpaf(mém™'a)x(6) p &_(a-p) dadm.
aer

a — trace(Lygr, (a§(~: a)))
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belongs to Cg°(A); thus
trace(IndS (4, A) (o))

is rapidly decreasing Moreover

Z = / trace(IndZ (7, A) ) ldAl

is equal to :
3 trace(Lygr, (af) - Tv),

by Fourier inversion. Hence the contribution of terms of the form
(4.5) to (4.3) cancels the part of (4.4) depending on H.

Consider the terms (4.7) and (4.8). Parametrize v—14d and a by
A =+v—=1¢a/|a| and 2H = —¢H,—then A(H,) = vV—1{. Write

/ (4.7) + (4.8) |dA|
Re(A)=0

as the sum of

4.9 47)d 48)d
(4.9) /m%( ) “/m»( ) d¢
and

(4.10) / C(47)+ (4.8)dL.

The Riemann-Lebesgue lemma implies that both integrals in (4.9) are
o(H). Express (4.10) as the sum of

(4.11) /_ i cos(&C) - trace (Indg(@’i, (o) - (%ﬁ)) dc

and

(4.12) /_ Z Siném - trace (Indg(é’,-, (@) - (@izi(i))) dc.

Another application of the Riemann-Lebesgue lemma shows that (4.11)
is o(H). On the other hand, suppose g € L!(R) is differentiable at 0—

then by writing
o) = 50+ {220

Jim [ S5 g(0)dg = g 0)

it follows that
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Then the limit as H — —oo of (4.12) is
7 trace(Ind< (&, 0)(a) - ¢(0)).

(3) Let us summarize what has been shown so far.
trace(L‘C’;/SlfV( o)o Q) mod(o(H))
is equal to the sum of
/ trace(Qf"Ka(x, x))dx,
G/T
a(H)

”a” trace(LM/rM (allg) TN)'

Z/Re(A trace(Indg (4, A)(e) - ¢(A) - ¢(A)) - |dA|,

and

N
—% - trace(Indg (&, 0)(a) - ¢(0)).
i=1
Send H — —oo—then send N — oco. Hence

trace(LE ()

is equal to the sum of

(4.13) / . trace(Q1° K, (x, x)) dx,
G
(4.14) % - trace(Lyyr,, (f)),

(4.15) ‘ZIE'; /R . trace(IndS(#, A)(a) - (&) - ¢(A)) - |dA],

and

(4.16) —% > trace(Indg (&, 0)(a) - ¢(0)).
g

Observe that c¢(0) extends to a bounded operator on
Z @ Edis (ét %)

Let 4% (m: A) denote the Fourier transform of the function

K

a — ap(ma).
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Then (4.16) is quickly seen to equal
1 .
— gtrace(Lygr, (65(-: 0)) - (0)).

Whence, Weierstrass’ theorem on conditional convergence implies that
the sum in (4.15) converges absolutely.

(4) Denote by Ty, (o) the sum of (4.13) and (4.14)—then Ty, and
(4.16) extend to distributions on C°(G). Thus (4.15) must be a dis-
tribution on C(G; K). If it could be shown that there are constants
C and L (C > 0), independent of é and #, such that

I(A)llor < C(L+1S1 + Il +IAD" (A€ V-Ta),

then the integral series in (4.15) is absolutely convergent and (4.15)
extends to a distribution on C*(G). Here

{ 161l = {0, wx ),
£l = (¢, w),

where
{ wg = the Casimir of X,

w = the Casimir of G,
and || - |lop is the operator norm on

Eais (5’ g, %)
This, of course, would imply that
a L‘C‘;i/sr(a)

is also a distribution on C®(G) (or even on Z!(G)). In particular,
L3 (a) is of the trace class for all o in C°(G).

’{'he term T, (a) is now unraveled mod o(Hy) into orbital integrals
corresponding to the semisimple elements of I" and a term

(4.17) lim(s9a(9: 5)),

corresponding to the non-semisimple elements of I. This is done
by Osborne and Warner in [OW2], pp. 56-92. In particular see the
formula on page 93 of [OW2] for the complete trace formula. Just
recently, the non-semisimple term (4.17) has been completely expli-
cated by Hoffman (cf. [H1]), in terms of zeta functions attached to
prehomogeneous vector spaces. The argument is quite analogous to
the R-rank 1 situation (cf. [W2]).
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Added in proof. By utilizing a result of Arthur [cf. Theorem 8.1;
Amer. J. Math., Vol. 104, No. 6, pp. 1289-1336], it can be shown
that the integral series in (4.15) is absolutely convergent and hence
each of its terms are distributions on C*(G; K).
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