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Let G be a reductive Lie group, Γ a nonuniform lattice in G. Let
/ be a finite dimensional unitary representation of Γ. In order to
have Eisensteίn series, (G, Γ) must satisfy a certain assumption. The
purpose of this note is to compute the Selberg trace formula for pairs
(G, Γ) that do not possess Eisenstein series. A necessary preliminary
to this, is a trace formula for Indp(x). This is also presented.

Introduction. Let G be a reductive Lie group of the Harish-Chandra
class; let Γ be a nonuniform lattice in G. Let χ be a finite dimensional
unitary representation of Γ. Denote by L2(G/Γ;χ) the representation
space of Indp(/)—then G acts on L2(G/Γ;χ) via the left regular rep-
resentation LG/Γ. Let L ^ Γ be the restriction of LG/Γ to L2

άis(G/Y\ χ)—
the maximal completely reducible subspace. One of the central prob-
lems in the theory of automorphic forms is computing the trace of
L<?/r(α) ( α e CΪ°(G))> v i z t h e Selberg trace formula.

Let L2

on(G/Γ;χ) be the orthogonal complement of L^is(G/Γ;χ) in
L2{G/T\χ) and let L g ^ be the corresponding representation—then
most attacks on the Selberg trace formula begin by expressing the
integral kernel of Lg^(α) (a E C£°(G)) in terms of Eisenstein series.
However, a certain assumption (cf. p. 16 of [L2] and p. 62 of [OW1])
needs to be satisfied by the pair (G, Γ) in order for a satisfactory theory
of Eisenstein series to exist. The purpose of this note is to compute
the Selberg trace formula for pairs (G, Γ) without Eisenstein series;
i.e. that do not satisfy the assumption supra.

In order to accomplish this a trace formula needs to be given for
L^G/Γ χ), when χφ\. This has been done in the case G = SL2(R)
by Venkov (cf. [VI]). Moore has also done preliminary work for the
real rank one situation (cf. [Ml]). For the general case, Eisenstein se-
ries need to be defined with respect to χ and a spectral decomposition
following Langlands needs to be given. This was accomplished by the
author in his thesis (cf. [Rl]).

When (G,Γ) does not possess Eisenstein series, the procedure to
compute the trace formula is to describe LG/Γ in terms of the left
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158 PAUL F. RINGSETH

regular representation of L2(Gn/Γn;χn), where the pair (Gn>Γn) is
canonically constructed from (G, Γ) and does possess Eisenstein series.
It should be noted that, in general, χn will be non-trivial, even when
χ = 1. This is carried out in §2.

Section 1 is comprised of summarizing the facts needed about the
spectral decomposition of L2(G/Γ;χ), in order to describe the integral
kernel of L^Jγ in terms of Eisenstein series.

A new type of truncation operator, due to Mϋller is introduced in
§3 and the effect of truncating the kernels is computed (cf. [MU1]).

The trace formula presented in §4 follows the work of Osborne
and Warner in [OW2] and uses the truncation operator of Mϋller to
simplify the Dini calculus.

I would like to thank Osborne and Warner for suggesting this prob-
lem and for the substantial help they gave me in completing the spec-
tral decomposition of L2(G/T\χ).

1. Preliminaries. (1) Let G be a reductive Lie group of the Harish-
Chandra class; let Γ be a nonuniform lattice in G. Assume that the pair
satisfies the assumption spelled out on page 62 of [OW1] or equiva-
lently the assumption on page 16 of [L2]. Let (χ, V) be a finite dimen-
sional unitary representation of Γ. Denote by L2(G/Γ;χ) the repre-
sentation space of the corresponding induced representation Indγ(χ).
Following Langlands [cf. [LI], [L2] and [OW1]], the author has ob-
tained the spectral decomposition of the left regular representation
LG/γ acting on L2(G/Γ;χ), in terms of principal series representations
of G [cf. [Rl]].

Denote by L£??Γ the subrepresentation of LG/γ, acting on the max-
imal completely reducible subspace L^is(G/Γ;χ). There is then an
orthogonal decomposition

L2(G/Γ;χ) = L2

άis(G/Γ;χ)ΘL2

on(G/Γ;χl

Let a e C™(G). Let Ka(x, y) denote the integral kernel of LG/Γ(a)—
then, with respect to the decomposition supra, there are integral ker-
nels

corresponding to the representations
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In order to compute the trace of L^Γ(a), it is more convenient to
work with

Hence, we shall need to recall the description of K%on(x, y) in terms
of Eisenstein series.

(2) A maximal compact subgroup K of G has been fixed. Let δ
belong to the unitary dual K of K. Let P be a (Γ-cuspidal) parabolic
subgroup of G, with Langlands decomposition P = MAN. We shall
always assume that A is stable under the Cartan involution. Denote
by &> the orbit of an infinitesimal character of M under the action
of the "Weyl group" W(A). (W(A) consists of all automorphisms
of A induced by an inner automorphism of G.) There is a natural
representation χP of

= ΓnP/ΓnN

on
VP = {veV\χ{ΓnN)v = v}.

Let prp be the orthogonal projection of V onto VP. Define

to be the space of VP -valued square integrable automorphic forms on
G/AN, with K-type δ and orbit type *?, that transform on the right
according to χP. This forms a finite dimensional subspace of

L2(KxM/ΓM;χP).

Let δ G K—then define ξ$ to be the normalized character of δ. Let
& be the collection of finite subsets of K ordered by inclusion. Let
F E F . Denote by C°°(G;F) the set of / e C™{G) such that

for all δeF. Define

Then C£°(G;K) is an LF-space, consisting of all ΛT-finite elements of
C^°(G)5 whose topology is finer than the subspace topology of C%°{G).

Denote by Lfoc(G/Γ;χ) the space of all measurable functions

f(xv) = x(y-ι)f(χ) (γeΓ,xeG),
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such that | |/(.) | | is locally integrable on G/T. Let / G L\0Q(G/T\χ)—
then

fp(x)= ί prPf(xn)dn
JN/NΠΓ

is called the constant term of / along P. If fp = 0 for all P Φ <?, then
/ is called a cusp form on G. Denote by

the space of square integrable cusp forms—then there is an orthogonal
decomposition

L^G/Γ χ) = L2

CUS(G/Γ;χ) Θ I^G/Γ χ) = LCUS

The subspace L*ts(G/T\χ) is called the residual spectrum and is
spanned by the residues of Eisenstein series associated with cusp
forms [cf. §7 of [L2]].

Let x G G—then x = kman, where k E K, m £ M, a E A and
n G N. The factor a is uniquely determined by x and the Langlands
decomposition of P. Hence, for Λ G ά ® C, set

) = log(α)

and

Two parabolic subgroups P and P1 of G are said to be associate, if
their split components A and A1 are G-conjugate. The space of such
maps from A to A1 is denoted W(A', A). Let ^ be a class of associate
parabolic subgroups of G. If g7* is a subset of ^ comprised of Γ-
conjugacy classes and (9 = {&p}pew is a collection of associate orbits,
put

= Ad(x)AP (xeG)\,

= Ad(γ-ι)Vίγp + Hp(γ)(γeΓ)\,

(*)0 (7 e Γ)

where ^ = yPy"1 and XP = xPx'K
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Fix once and for all an element H e α^. The Eίsenstein series

associated to an element φ of <§diS(£^;^*) *s

: ?>: Λ: x) = ] ζ φP{x)

where the real part of Λ is restricted to lie in some sector of d^* to
facilitate convergence. The Eisenstein series possesses a meromorphic
continuation to all of d^* ® C.

The induced representations also make an appearance in this set-
ting. One has a natural representation {&p,AP) of P on L^is(M/Γ;(f):

M operates by the left regular representation,

A operates via multiplication by the quasi-character ξ-\p,

N operates trivially.

Call

the associated principal series representation of G. Let

Indg(*,Λ)

denote the corresponding representation on

δek

However, the representation space of

shall be denoted by

gdis(^ Λ).

Let a e Q°(G; A")— then

: φ: A)=E(&*: Indg.(^,Λ)(α)p: Λ).

Let g] and ffj be G-conjugacy classes occurring in 8"—then there is
a canonical intertwining operator

«/:w:A/) (weW(β),«;-)).

characterized by the conditions

^ : ^ : A/) = E ( ^ : c d i s ( ^ | ^ : w: A/)^-: wA/)

I«/: w : A/) o Indg(^ , Λ/)(α)

| ( w . ^ , wA/)(α) ocd i s(g) |«J: w: A/) (α G
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and satisfying the functional equation

cdis(«/c I %' WkjWβ: A/) (wkj e Vf{%, g} ), wβ e W(g), g?

= Cdis(̂ /c I «y: >%•: WβAi) o cdis(g) | gj: wy7: Λ, ).

In fact

is a linear transformation from

SdiβW ^ ;«/) to ^ ( 4 w 0f9 ψj),

that is meromorphic as a function of Λz on α^ ® C. (Here ^ =
{@p}pe%-) It should be mentioned that, in a suitable sense, c d i s is
unitary on the imaginary axis.

(3) Denote by

the Hubert space of those measurable functions

F: v^Tfi*->%,(<?; g?)

such that components are preserved and

¥j(wAi) =*totf?j\%\ w: AίJF/ίA,-) (W

with inner product

(F.G) = T ^ W W L Σ / (Fk(Ak),Gk(Ak)) • \dhk\,

where / = rank(^), r is the number of G-conjugacy classes in g7 and
*(g7) is the number of chambers in ά^.

There is an isometric isomorphism

whose image shall be denoted

Let {φμ}μ be an orthonormal basis for ̂ diS(^, g7) chosen such that each
φμ lies in some %fas(δ,(?, g>). The inverse isomorphism



THE SELBERG TRACE FORMULA 163

is given by

This is the Eisenstein-Fourier transform of /.
There is an important connection with the principal series repre-

sentations. The spectral decomposition of Langlands states:

L\G/T;χ) =

the spaces on the right being LG/Γ-invariant. Denote by

1nd

the direct integral

which operates on the Hubert space

θ d i . ( * Λ ) \dA\,

where C(W) is the positive chamber in \f^\a>#. There is a canonical
identification

1 Φ -• Φ i C(gr)f

which, when composed with the Eisenstein-Fourier transform inter-
twines LQ/T with Ind; viz.

{LG/Γ(ά)f)~ =

for all / € L2(G/Γ;&; W) and a € Q

(4) The upshot of the foregoing is that

L2

con(G/T;χ)=

Whence, for fixed g? φ {G}, Lc°fγ operates on

according to
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Let a e C™(G;K). Suppose that / € L2{G/T;@;Ψ) {& φ {G})
then

a i

1
(2*

X

1 Γ atEίW' f( ΛV Λ1 VI 1λ

{/ {f{y),E(V:φμ:A:y))dy\

This computation motivates
Set

Cμu{a\ &,A)

Form

where

'-§Cμι/(a: @,A) -

r
/ Ka(x,y:c
JG/Γ

the following

E(W: φμ: A:

f,A)f(y)dy

-)(x)\di

/ V / T μ

\dh\.

I theorem.

x) E*

Ψ\ φμ: K:x)

M
v ι

• A ^
. ί\- A> j

Λ: y),

IG/Γ

Write

/ (/(>;),E(^:^:Λ:y))^.

in place of

—J-y ^— f Ka(x,y: ά?,A) \dA\,
{2πγ *{&) JRQ(A)=O

and then put

Let &ι(G) denote Harish-Chandra's space of integrable rapidly de-
creasing functions. Let &ι(G;K) denote the ίΓ-finite functions in
&1{G), with the LF-topology.
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THEOREM I. Let a be element ofWι{G\K)—then Lfgfc(a) is an
integral operator on

L2

con(G/Γ;χ)
con

with kernel

continuous in each variable separately.

REMARKS. The form of K%on(x, y) follows directly from the pre-
ceding calculation. For the proof of the continuity, in slightly less
generality, the reader is referred to §8 of [OW1].

2. The spectral decomposition for groups without Eisenstein series.
(1) Recall that the pair (G, Γ) has been subject to a certain assump-

tion. Let us make this assumption precise. Put

Z = analytic subgroup of G corresponding to the center of g,

Gc = analytic subgroup of G corresponding to the compact

ideals of Q,

and
(Tn=ΓZ Gc/ZGCf

[Gn = G/Z Gc.

Define E(G,Γ) to be the collection of split parabolic subgroups of
G obtained by pulling back to G the percuspidal subgroups of Γn in
Gn (cf. p. 37of[OWl]).

Assumption. E(G,Γ) comprises all Γ-percuspidal subgroups of G.

This assumption is entirely equivalent to the condition imposed by
Langlands on page 16 of [L2] (cf. pp. 62-63 of [OW1]). It should be
noted that an example of pair (G, Γ) that does not satisfy this assump-
tion is constructed on pp. 63-65 of [OW1].

(2) Henceforth we shall drop the assumption on ((/,Γ). It is not
known whether a satisfactory theory of Eisenstein series exists for the
pair (G, Γ). However (Gn, Γn) always possesses Eisenstein series. This
fact is crucial for applications to the trace formula of the spectral
decomposition that follows.
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Denote by G°, the identity component of G. Set

Γ° = ΓΓ)G°,

G°n = G°/Z • Gc,

Γ°n = Γ° Z Gc/Z • Gc,

Observe that C?° and Γ^ may be viewed as subgroups of G° with the
property that

Let
Z Gc • Γ° = Z Gc • Γ°.

Ic: L2(Gc/GcnΓc;χ) - L\GC • Γc/Γc;/)

be the canonical isomorphism. Decompose

L2(Gc/GcnΓc;χ)= ^ @mUcUc.
uceόc

Let χc be the left regular representation of Γ z on IC(E{UC)), where
/c) is the representation space of mucUc. Since Gc • Γ c = Gc • Γ z ,

it follows that

L2(Z σc/Γc;z) = lndf%(L2
; z ) = lndfc%(L2(Gc • Tc/Tc;χ))

uceGc

I n d Γ

Put

Thus
L2(Z-Gc/Γc;χ)=

The multiplicities muc shall be computed. By the Selberg trace for-
mula for L2{GC/GC Π Γc;χ),

mUctmce(Uc(a)) (a € C°°(GC))

uceόc

ί a
JGc/(Gc)r

(xγχ-ι)dx,
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where

ί (Gc)γ = the centralizer of γ in Gc,

I ((jc Π Γ c ) y = the centralizer of γ in Gc n Γc,

and X){y} denotes the sum over the conjugacy classes in Gc ΓΊ Γc.

Insert a = trace(Z7c) into the trace formula, to obtain

mUc = j ; trace(Z7c(y)) traceQe(y)) No\{Gc/{Gc n Γ),).

{7}

(3) Let

70: L 2 (Z Gc/Γc;χ) - , L 2 (Z Gc Γ°/Γ°;z)

be the canonical isomoφhism. Let χ® be the left regular representation
of Γ^ on IQ(E(UC®T))9 where E(Uc®τ) is the representation space
of mjjcUc®τ. Thence

(2.1) L 2 (Z.σ c

Suppose that Γ is contained in G°—then

Combining this observation with 2.1 yields

(2.2) L2(G/Γ; χ) = Indgo

LetαGCc°°(C7). Put

a°(Uc)(x)

Then
trace(L£;r(α)) =

where £^oS}p denotes the left regular representation on



168 PAUL F. RINGSETH

However, when Γ is not contained in G° then

where

πUf)(χ) = rfrWi Σ
L J

Σ
y€Γ/Γ>

There does not seem to be any reasonable way to incorporate n^ into
the trace formula when (G, Γ) does not possess Eisenstein series. In
order to overcome this obstacle, an assumption shall be placed on G,
which is satisfied by all connected groups. Assume that Gn embeds in
G in such a way that

ZGC Π Gn

is discrete, and
G = Z - Gc Gn.

More generally, assume that (G, Γ) satisfies the following

G = Gi x G2,ί G =

where Γ2 is contained in G^ and G\ is a product of groups satisfying
the assumption of §2.1 and groups G' for which G'n embeds in G' as
described above.

Let

/: L2(Z Gc/Γc;χ) - L 2 (Z Gc Γ/Γ χ)

be the canonical isomorphism. Let χn be the left regular representation
of Γn on I(E(UC ® χ Λ ) ) — then

Ergo

(2.3) L\G/T:χ) = Indg.G c.Γ(L2(Z Gc Γ/Γ;/)).

(4) We shall now explicate the trace formula that arises from the
decomposition (2.3), the situation in the case of (2.2) being entirely
analogous.

Let a e Q°°(G). Put

a(Uc: x) = / / trace(τ(z)) tmcc(Uc(y)) a(xyz) dzdy.
JZJGC
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Then a(Uc) belongs to C™{Gn), by the Schwarz kernel theorem (cf.
Appendix 2.2 to Vol. I of [Wl]). Let LJ?**? denote the left regular
representation of Gn on

L2

dis(Gn/Γn;χn).

Whence, on the assumption that L^?Γ(α) is of the trace class,

trace(Z*;Γ(α))

= Σ
uceόc

The function
a(Uc:x)

can be further described by the Selberg trace formula for

Perhaps it is better to call it the Poisson summation formula since Z
is abelian. Indeed

a(Uc:x)

equals

t r a c e d ) ) Vol(Z/Γz) / t r a c e r y ) ) a(xyδ) dy.
JG<δer

REMARK. Let a e C™(G\K)— then a(Uc) = 0 for all but finitely

many Uc € Gc. Therefore, whenever L l 1 ^ (α) is of the trace class, so

3. Truncating the kernels. In this section the basic properties of the
truncation operator Qn are reviewed. In addition, a partial truncation
operator QN, due to Mϋller (cf. [MU1]), is introduced. The effect of
truncating the kernels introduced in § 1 is then investigated.

(1) Assume that (G, Γ) satisfies the assumption of §2.1.
Let ^(Γ) be the set of all Γ-cuspidal subgroups of G. Give α^(p)

the obvious definition. There is a natural order " < " on α^(Γ) that
need not be specified until the applications. Let H e α^(Γ) and / e

) — t ' i e n ^ e truncation operator Qn is defined by

QHf(x)=
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where χp: ] is the characteristic function of the positive cone of P.
In order to state the salient properties of QH, a few facts need to

be recalled. Let P be a fixed Γ-percuspidal subgroup of G. Let

β t > ω = K A [ t ] ω f

where ω is a compact neighborhood of 1 in M N and

A[t]= f| {aeA\ξa(a)<t}.

Here, Σ^ is the set of simple roots determined by P. It follows from
Lemma 2.11 of [OW1] that t0, ωf ot and $ = {JC/ : 1 < / < r} c K can
be chosen so that

= β / 0 i ω s Γ,

(3.1)

Ki γn eot,ω -κj = 0 (i Φ j),

where P, = κ~ιP • κr, . In addition, we shall assume that {κjxωκΐ)
'nP,) = Mi Nj.
Put

ΞP{x) = inf ξa(x).

Let / G L\QC(G/T\χ)—then / is said to be slowly increasing with ex-
ponent of growth r(reR) if there is a constant c> 0 such that

|/(XJC/)| < cΞr

P(x) (x e 6/θffi>, 1 < i < r).

Let S°°(G/Γ 9χ) be comprised of all smooth / e L\QC(G/T\χ) such
that for every right invariant differential operator Z), Df is slowly
increasing with exponent of growth r—then the seminorms

\f\r,D = SUP SUP Epr(x)\Df(XKi)\
l<i<rxeetQ,ω

endow S?°{G/Γ ,χ) with the structure of a Frechet space. Denote
by R(G/Γ;χ), the space of functions on G that are slowly increasing
with exponent of growth r, for every real number r. The seminorms
I \r i (r € R) also provide a Frechet space topology. The functions in
R(G/Γ;χ) are said to be rapidly decreasing.

Let us summarize the properties of the truncation operator that are
of the most use.
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T H E O R E M 2.

(i) lim//_>_oo Q
Hf = / uniformly on compact subsets ofG.

(ϋ) (?H = ID on cusp forms,
(iii) QH: S?°(G/Γ;χ) -+ R(G/Γ;χ) is continuous.
(iv) Q H w α bounded linear operator on L2(G/Γ\χ).

In fact, there exists H o € <%(Γ) swc/z /Λα/ for all H < Ho, Qn is an
orthogonal projection on L2(G/T\χ) and as such

lim QH = ID
i/—-oo

in the strong operator topology on L2(G/Γ; χ). π

(2) Let P* be an element of ^(Γ) different from G. Denote by
g"* the association class containing P*. Order the orbits ff^ff^
Choose an orthonormal basis {(p^}™=x for <§dis(̂ Γ;̂ *)> s ^ c h that each
φl lies in some ^{δ9 @*\ Ψ*). Let / e L\0C(G/T\ χ) and let keK, me
M*, aeA* and n e N*. Define the function

πP*tN{f)(kman)

E Σ f ί ί {f^^m^a
=N+\ μ ^ K M*/ΓM+

to be

i=N+\ μ

Set

The partial truncation operator QN is defined by

(QNf)(x)=

where H o is a fixed element of α^(Γ) that is sufficiently negative in a
sense yet to be made precise.

(3) Specialize now to the case that G is of Γ-rank 1 (i.e. the Γ-
percuspidal subgroups of G are of rank one), a^^ can be identified
with Π/=i α/ We shall restrict to the diagonal determined by s and
identify it with α. For H e α, set tH = eα ( / / ) (Σ$> = {α}). Choose
Hoea such that ί//0 < o t—then it follows from (3.1) that for tH < 0 /
andx e 6 , 0 , ω s,

Hfίx) = ί

l
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and

QNJ (X) = < °
I f{x): x<έβtHof(ύ'S.

Using this formulation the following theorem is easily seen to be true.

THEOREM 3.

(i) /// 6 L\JG/T\ χ) and x e 6 ί o.ω *, then

QH o QNf(x) = QN o Q»f(x) = { QHfJ;x]: x I β*.« *.

(ii) limAΓ̂ oo QNf = f uniformly on compact subsets ofG.
(iii) Q^ = ID on cusp forms and on Eisenstein series associated with

an automorphic form φι

μ for i < N.

(iv) QN is an orthogonal projection on L?{G/T\χ) and as such

lim QN = ID
N-+oo

in the strong operator topology on L2(G/Γ; χ). Π

REMARK. I do not know whether Theorem 2 and Theorem 3 are
valid without the assumption on (G, Γ) specified in §2.

(4) Return now to the situation that the pair (G, Γ) is of arbitrary
rank.

Let a belong to Wι(G;K). Define Ka(x, y) to be any one of

Ka{x,y),

Let Q^t Qι

N (resp., Q%, Qfy denote truncation in the first (resp., sec-
ond) variable of Ka(x, y). Lemma 8.1 of [OW1], combined with The-
orems 1, 2 and 3 imply that

Q?Ka(x,y),

are separately continuous (off a set of measure zero) and locally norm
bounded on G/T x G/T. Moreover, the functions

(

\

(
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are integrable on G/T. It follows from the Theorem in the appendix
to §8 of [OW1] that

QH o LG/Γ(a * α*) o QH (a*(x) = α(χ-i))

is of the trace class. (Of course, the same is true when LG/T is replaced
byLg;ΓorLg?Γ.) In fact,

" o LG/Γ{a * α*) oQH)= ί trace(βf β f Ka*a* (x, x)) dx.
JG/Γ

Thus
QHoLG/Γ(a)

is Hilbert-Schmidt (when H is sufficiently negative). The theory of
paramatrix (cf. Theorem 4.4 of [W2]) implies that for every integer
p > 1, there exists an integer N > 1 and μ e C?(G), v e C°°(G) such
that

AN μ = δ + is,

where δ is the dirac distribution at 1 e G and Δ is the Laplacian on
G. Ergo

a = (AN - a) * μ — a * v.

Thence
QHoLG/Γ(a)oQH (ae&ι(G))

is of the trace class.
Observe

lim / \Q?Q?'Ka(x,x)\dx= [ \Q?Ka{x,x)\dx,
H'-+-ooJG/γ JG/γ

and if H' < H < 0, then
H o LG/T{a) o QH>) = trace(QH o (QH o LG/Γ(a) o QH'))

)HoLG/Γ(a)oQH).

Therefore tmc^Qf1 Ka(xf x)) and \r?iCt(QHQϊf Ka(x, x)) have the same
integral, which, by a similar argument, coincides with the integral of
\r?iCQ{Q2 KQ(x, x)). Proceeding in the same manner, it is easily seen
that

(3.2) trace(&v o LG/Γ(a) o QN o QH)

is equal to the sum of

/ trace(Q"°Ka{x, x)) dx {H < Ho)
JG/Γ
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and
/ trace(«2f o β ^ Q?Q)Ka{x, x)) dx.

JG/Γ

REMARK. If Lcgjτ denotes the restriction of LG/T to Llm{G/T\χ),
then since K%us(x, y) is represented by cusp forms, the preceding re-
sults imply that L^Γ(a) (a e &1{G)) is of the trace class.

Let a be an element of &ι(Gm

9K)—then, in general, it is not known
whether L$Γ{a) is of the trace class (cf. [OW6] and [W3]). However,
if G is Γ-rank 1, then Donnelly has answered this question in the
affirmative. If G is real rank 1 and δ e K, then it follows from the
spectral decomposition of Langlands that the ̂ -isotypic component of

is finite dimensional. (Here the assumption of §2 is needed.) This
observation combined with the remark supra implies the traceability
of L^Γ(a) directly. If G is Γ-rank 0, i.e. Γ is cocompact in G, then

L2

cus(G/r;χ)=L2(G/Γ;χ),

so that LG/γ{a) (a e ^X{G)) itself is of the trace class.

(5) For the remainder of the paper the pair (G, Γ) shall be of Γ-rank
1 and satisfy the assumption of §2.1. Observe that there are only two
G-conjugacy classes of Γ-cuspidal parabolic subgroups of G; viz., {G}
andg".

Let a be an element of C™(G;K). Then the results of Donnelly
(cf. [Dl]) imply that

is of the trace class. Since

in the strong operator topology on L2(G/Γ;χ), it follows immediately
that

lim trace(βΛr o LG/Γ(a) o QN) = \xaeε{LG/τ(a)).

Given a positive integer TV, let

7 = 1

and let I%£(G/Γ;χ) be the complement of L$&{G/Γ;χ) in

QN(L2(G/Γ;χ)).
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Denote by
( τάis,N
J ^G/Γ >
I r con,iV
^ ^G/T '

the restriction of QM O LG/γ o QN to

L2

ώ

N

n(G/Γ;χ).

It is easily seen that

τdis,N - O χ τ C^G/Γ "UN0

where Tϊ?n is the restriction of

to

\i=N+l

Therefore L^γ{a) is of the trace class, with

trace(Lg^(α)) = / tτace(K**>N (x, x)) dx,
1
 JG/Γ

where

N

K**>N(x, y) = Qι

NQ2

NKa(x, y)-ΣKa(x, y: ^ 9).
i=\

(cf. §1.4). Here, we have implicitly used (an obvious variant of) The-
orem 2 on page 23 of [Ol]. Furthermore,

lim t r a c e ( L ^ ( α ) ) = trace(L^s

Γ(α)).

4. The Selbert trace formula. In this section the pair (G, Γ) shall
satisfy the assumption of §2.1, and be of Γ-rank 1.

On the basis of the work of Donnelly, the closed graph theorem
implies

a •-> trace(L^s

Γ(α))

is continuous in the topology of C£°(G;K) (or even in the topology of
Wι(G;K)). The remainder of this paper will be devoted to an explicit
realization of this distribution. The techniques used are based on the
work of Arthur, Mϋller, Osborne and Warner (cf. [Al], [MU1] and
[OW2]).
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(1) Fix an element a of C°°{G;K)— then

lim trace(Ll1/^(α) o QH) =
H-+-00 ulι

Write

trace(I**"(a) oQH)= ί trace(Q? K*is N {x, x)) dx (H < Ho)
J G/T

(4.1) = / \xacε{Q?°Ka{x,x))dx
JG/Γ

(4.2) + / trace((Q? o β ^ _ Q»°)Kα(x, x)) dx
JG/Γ

N .

(4.3) - Σ / trace(βf Kα(x, x: 0t\ &)) dx.

The plan of attack is to send H —> -oo first and send N -+ oo second.

We shall need the following fact from reduction theory. Let C be
a compact subset of G. Assume, without loss of generality, that

C c 6 / 0 , ω .

Parametrize A by ξα(α(ή) = t. Let γ € Γ—then

α{t)γα(-t) e C ^ α(t)γ e K • A[t0] • α(t)M • K

Thus, if 0 < ε < QI is chosen small enough

A[to)α(ή c A[ot] (t < ε).

Hence, for all 0 < t < ε,

α(t) e eΰt,ω • (Γ n P)γ~1 n &ΰt,ω • (Γ n P),

which, in view of (3.1), implies γ eTf)P.
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Let x G &tHo,ω{Ho < 0)—then a consequence of the calculation
supra is the following.

ρrPKa(x,xn)dn

= prP i }"ot(xyrΓιx~ι)χ(γ) ^ dn
JN,

N/NΠΓ

= / WP I Σ Σ ^xγδ-χn-χχ-χ)χ{y)χ{δ-λ) \ dn
JN/NDΓ (γeΓ/rnN SEΓΠN J

γeΓ/ΓπN

/ I Σ Σ PrPa(xyδnx'ι)χ(γ)χ{δ) \ dn
JN [γeΓ/Γn

I Σ Σ
[γeΓ/ΓnPδeΓM

= \ Σ Σ vrPoc{xyδnx x)χ{y)χ[δ) > dn
N {γeΓnP/ΓnPδ-^ '

= / - j Σ [ p r p α (
yόeiM

1

Observe that if x e eto>ω s and / e L\QC(G/T\ χ)9

(QHoQN-QH°)(f)(x)

= ίfPι- *phNtf): tH < ξ«{xκγι) < tHo (5i) 1
\ θ : otherwise J

Moreover, if

ap(m) = / / a(k~ιmnk)dkdn,
JK JN

then the Schwarz kernel theorem implies that af belongs to C£°(M).
Whence

Kaκ{mhm2)=

is the integral kernel of the trace class operator LM/γM(aίp). (Recall
that M/TM is compact.) An elementary calculation now shows that

G/Γ
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is equal to

(4.4)

where

a(H0)

II
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-a{H)
a\\

(«£) • τN).

N

i = l 1=1

is the orthogonal projection. The notation is poor because a is being
used to denote both a simple root and a function. There should be no
ambiguity.

(2) Let

where -1 is the unique nonidentity element of W(£f, &). As a function
on

£dis(<^;n
c(Λ) is unitary on the imaginary axis and

c(Λ)* = c(A).

The following functional equations are satisfied

ί c(Λ)c(-Λ) = ID,

lE(?:c(A)p: -Λ) = Έ(&: φ: Λ).
In view of the identifications, write

πA(a) = Indg(*ί, Λ)(α) (Aeά® C).

It follows that

Ka(x,y: d?ifA) = ΣΈ,(W: π A ( α ) ^ : Λ: x) E*(?: ^ : Λ: y).

Let Λ € Λ/^O and ζ e α with Λ ^ 0—then the L2 inner product
formula of Langlands (cf. p. 135 of [L2] and [R2]) shows that

(QHΈ(V: πA(a)φ: A + ζ),QHE(W: φ: A+ζ))G/Γ

is equal to

ζ)πA{a)φ, c(Λ + C)̂ ) - e2«H\πA(a)φ, φ)}
2ζ(Ha)

A + ζ)πA(a)φ,φ)

-e2AW(πA(a)φ,c(A + ζ)φ)},
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where a(HQ) = | |α| | . Letting ζ —• 0, obtains

- ^ || (^Λ(O?)^ ?) + (c'(Λ)7ΓΛ(α)^c(Λ)0>)

Therefore

^ ( α ) o QH) = y ; / tiace(βf J5Γα(jcf c:

\ N r r
Y" / / trace(βf ΛΓβ(x, x: ^ , Λ))

= i Σ Σ / «2WE(^: *A(α)^: A),
4 π ~ί7^/Re(Λ)0

which is equal to l/4π times the sum over Σ?=ι °f the integral over
Re(Λ) = 0 of the sum of the following four terms:

(4.5) -2^trace(Indg(^ , Λ)(α)),

(4.6) trace(Indg(^ ( Λ)(α) c(Λ)

( 4 7) ^ p - ^ ^ ^ H r a c e ί l n d g ^ , A)(β)

and

^ ^ ^ H g , A)(α)

Consider the term (4.5). It is readily computed that

trace(Indp(^,A)(α))

is given by

/ / trace < V* pτPaf{mδm~ιa)χ{δ) \ξrA_p)dadm.
JΛJM/ΓM (δ^!M j

The Schwartz kernel theorem implies that

a »-> trace(LM / Γ Λ /(α^( : a)))
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belongs to C°°(A); thus

is rapidly decreasing. Moreover

N . f

ΣJ- trace(Indg {0h Λ) (a))\dA\

is equal to

-trace(LM/ΓM(a$)-τN),

by Fourier inversion. Hence the contribution of terms of the form
(4.5) to (4.3) cancels the part of (4.4) depending on H.

Consider the terms (4.7) and (4.8). Parametrize %/^Tα and α by
Λ = y/=\ζal\\a\\ and 2H = -ξHa—then A{Ha) = v

/ r TC Write

/ (4.7) + (4.8) |rfA|
JKe(A)=0

as the sum of

(4.9) / (4.7) dζ+ ί (4.8) #

and

(4.10) Γ(4J) + (4.S)dζ.
J-ε

The Riemann-Lebesgue lemma implies that both integrals in (4.9) are
o(H). Express (4.10) as the sum of

(4.11) f cos(£C) trace flndg(^ , ζ)(a) (C{ζ}^ζ))) dζ
J-ε \

and

(4.12) JE ^ψl trace (lndg(^ , ζ)(a)

Another application of the Riemann-Lebesgue lemma shows that (4.11)
is o(H). On the other hand, suppose g e Lι (R) is diίferentiable at 0—
then by writing

it follows that

lim
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Then the limit as H -> -oo of (4.12) is

π trace(Indg(^7 , 0)(α)

(3) Let us summarize what has been shown so far.

tτace{L^(a) o QH) moά{o{H))

is equal to the sum of

f tτace(Q"°Ka{x,x))dx,
JG/Γ

~ ΊΓ • Σ ί trace(Indg(^,Λ)(α) c(Λ) c'(Λ)) \dA\,

and
1 N

Send H —»• -oo—then send N —>• oo. Hence

is equal to the sum of

(4.13) ί tτace(Q"°Ka {x, x)) dx,
JG/ΓG/Γ

(4.14)

(4.15) __L. V; / trace(Indg(^Λ)(α) c(Λ) c'(Λ)) \dA\,
4 π ^ j R e ( Λ ) = 0

and

(4.16) - i J^trace(Ind^(<f,O)(α) c(0)).

Observe that c(0) extends to a bounded operator on

Let άp(m: Λ) denote the Fourier transform of the function

α ι-+ αf(mα).
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Then (4.16) is quickly seen to equal

-itrace(LM / Γ Λ /(ά^(.:O)).c(O)).

Whence, Weierstrass' theorem on conditional convergence implies that
the sum in (4.15) converges absolutely.

(4) Denote by THo(a) the sum of (4.13) and (4.14)—then THo and
(4.16) extend to distributions on CC°°((J). Thus (4.15) must be a dis-
tribution on C£°(G;K). If it could be shown that there are constants
C and L (C > 0), independent of δ and ^ , such that

(Λ e V=

then the integral series in (4.15) is absolutely convergent and (4.15)
extends to a distribution on C£°(G). Here

where
ί o)K = the Casimir of K,
I ω = the Casimir of G,

\\op is the operator norm on

This, of course, would imply that

is also a distribution on C£°(G) (or even on &ι(G)). In particular,
L^Γ{a) is of the trace class for all a in CC°°(G).

The term ^ ( α ) is now unraveled modO(HQ) into orbital integrals
corresponding to the semisimple elements of Γ and a term

(4.17) lim(s^{δ:s))t

corresponding to the non-semisimple elements of Γ. This is done
by Osborne and Warner in [OW2], pp. 56-92. In particular see the
formula on page 93 of [OW2] for the complete trace formula. Just
recently, the non-semisimple term (4.17) has been completely expli-
cated by Hoffman (cf. [HI]), in terms of zeta functions attached to
prehomogeneous vector spaces. The argument is quite analogous to
the R-rank 1 situation (cf. [W2]).
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Added in proof. By utilizing a result of Arthur [cf. Theorem 8.1;
Amer. J. Math., Vol. 104, No. 6, pp. 1289-1336], it can be shown
that the integral series in (4.15) is absolutely convergent and hence
each of its terms are distributions on C^°(G;K).
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